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1 Introduction 
 
 
 
Evolutionary algorithms (EA) are a computation tool that utilizes biological principles found 
in the evolution theory [1]. One major difference to other optimization methods is the fact that 
a large group of solutions is evaluated, not a single one. Combination of various solutions 
from such a group, called population, allows improvement of the solutions. Overall several 
terms in usage in the field of evolutionary algorithms have their origin in genetics or biology, 
especially the three major function principles of EAs: Selection, recombination and mutation 
[2]. 
Intrinsic to evolutionary algorithms is also the fitness function, which provides a numerical 
quality evaluation of a solution within the population of solutions [1] and thus sets the 
probability of this solution’s reproduction [3]. Generally a fitness function is a function to be 
optimized by EAs. One major advantage of EAs in this respect is their ability to shift from 
one possible optimum to another and thus they are not bound to local optimization but can 
find global optima [1].  
Regarding astronautic applications, evolutionary algorithms have been used for optimization 
of trajectories of low-thrust engines [4, 5, 6] and impulsive engines [7]. Various other fields 
apply evolutionary algorithms for optimization, e.g. aerodynamics [8] or warehouse planning 
[9].  
This survey will concentrate on the usage of evolutionary algorithms for space applications, 
especially trajectory optimization and will try to describe future developments as currently 
planned and also to determine valuable areas of research. 
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2 Objectives and Proceedings 
 
 
 
Evolutionary algorithms are applied in astronautics inter alia for trajectory optimization, but 
have been used in other areas as early as the 50s of the last century due to their ability to 
globally search a solution space. Their usage occurs in a very wide area of fields of research 
aside from space technology or even engineering [1]. Consequently advances in the subject of 
EAs also occur in various fields. This variety complicates the tracking of these advances and 
therefore the objectives of this work are the following: 
 

 To provide an overview over EAs, their traits, their advantages over more other 
optimization methods and their disadvantages and drawbacks 

 To examine the global trait of EA optimization and the methods used to 
improve this trait 

 To grant an overview over the different directions that have been or are 
currently taken in further developing EAs 

 To evaluate the applicability on trajectory optimization and determine valuable 
areas of further research with respect to this field 

 
 
To achieve these objectives, first of all the concept of evolutionary algorithms is investigated. 
Furthermore the current application and methods used in combination with EAs are 
researched via a literature survey. It will be pointed out where improvements are possible and 
thus where further development and research is worthwhile. 
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3 About Evolutionary Algorithms 
 
 
 
Evolutionary algorithms are a heuristic optimization method and generically describe 
computation methods that adapt principles from the evolution theory in optimization schemes. 
Subsets of these are Genetic Algorithms, Genetic Programming, Evolutionary Programming, 
etc. [10].  
Genetic algorithms use data structures of fixed size and the development of the solution is 
done via mutation and recombination of previous solutions [1]. These algorithms will be 
concentrated on in this work. 
Genetic programming uses data structures of variable size, mostly parse trees, [1] and/ or 
optimizes programmes [10]. 
Evolutionary programming leaves the view used in other evolutionary algorithms, i.e. 
regarding the solutions, which are evaluated, as individuals of one species, and broadens the 
view such that each solution is regarded as a whole species. Therefore several species are 
evaluated at once. Consequently no recombination between solutions is possible, but only 
mutation enables changing of the solutions [10].  
 
As mentioned before, due to the nature of their optimization process, genetic algorithms will 
be concentrated on in this work. They are used for global optimization [11] and have certain 
traits in common [12]:  
 

 Their data elements (solutions) are binary coded 
 A whole population of solutions is subject to optimization 
 Optimization is based on an objective function 
 Transition is based on probabilistic rules and not deterministic ones 
 

Especially the latter two allow computation of problems where little to no information is 
already present about the possible solution. What needs to be known is the desired result and 
the actual results are then evaluated according to their closeness to that.  
Genetic algorithms are by their very nature valuable means to find a global optimum [12], yet 
there still is a certain risk that they converge to early to a local optimum. Various methods 
exist to prevent this; they will be elaborated in Chapter  4. The fact that several solutions are 
evaluated at once allows the combination of good solutions to find even better ones [2].  
The remaining part of this chapter will lay out the theoretical background of genetic 
algorithms, including their basic building blocks and elements as well as processing functions.  
 
 

3.1 Definitions 
The following paragraphs will explain the terminology of the genetic algorithms, which 
heavily leans onto biology and anthropology. Not all terms are unique and in some cases 
several terms are used for the same idea – in that case it is attempted to use the most common 
term.   
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3.1.1 Chromosome and Genotype 
The chromosome is the image of the data of each individual solution [1]; it is the solution’s 
mapping [2]. A chromosome consists of one or more genes which are the binary strings of 
each design parameter. The individual positions within the string are called loci and their 
value is an allele [14]. Another term for chromosome is genotype [15]. 
 

3.1.2 Population and Generation 
The population is the set of evaluated solutions [2], which are called individuals. The size of 
the population is an important issue to allow enough diversity of the algorithm to be 
successful but at the same time bears the danger of increasing computation effort. A 
population usually is initially filled with random solutions, which are then optimized. In case 
of large populations a lot of effort is needed to reduce the amount of bad solutions [1]. 
The population changes from iteration step to iteration step, to distinct between the different 
populations, the term generation is used [2]. 
 

3.1.3 Phenotypes 
The phenotype of a chromosome is the expression, the appearance, result of its genes, in other 
words it is the chromosome's fitness value [15]. 
 

3.1.4 Optimization Objectives 
Optimization is done with an objective – the measure that has to be optimized (e.g. flight time 
on a trajectory). This objective in turn provides the cost function or fitness function of an 
optimization. It is of course possible to use several objectives during optimization, different 
methods exist for formulation of a fitness function in that case. One, for example, weights the 
different objective function with factors and adds them to a cost function [18]. 
When optimizing more than one objective this usually results in a situation, where the 
improvement of one objective, decreases the solution's quality regarding another objective. 
Therefore a pareto-optimal solution is sought for. A solution is pareto-optimal, if it cannot be 
improved in one aspect without reducing its quality regarding another one [18]. 
 

3.1.5 Building Blocks and Schema-Theorem 
The Schema-Theorem describes the probability of reproduction of schemata shared by several 
chromosomes. Schemata are defined by their order (o) and defining length (δ). The latter 
describes the distance between the first and last locus of a schema, whereas the former gives 
the number of identical alleles [16]. 
 
Example: 
  δ(***1***0101001) = 10   
  o(***1***0101001) = 8 
 
Equation (1) expresses the schema theorem mathematically and gives an estimate of the 
number of occurrences n of a schema S in the generation t+1. It depends on the number of 
occurrences in the previous generation t and the schema’s fitness f related to the mean fitness 

f . It furthermore depends on the probability pc of crossover and its defining length δ as well 
as the probability pm of mutation and the schema’s order o [16]. 
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Building blocks are schemata of short length and with above average contributions to good 
fitness. According to Goldberg [17] these building blocks combine to form good solutions of 
the optimization problem.  
The reason behind this is that crossover is unlikely to disrupt schemata with a short defining 
length and mutation does probably not affect schemata of low order. Therefore the probability 
for their concurrent contribution to the solution improvement is higher than those of longer 
schemata or those of high order [16] (the extent depends on the probabilities for mutation and 
crossover).  
The schema theorem is a simple formulation and does not cover all aspects of EAs, e.g. 
change of fitness and/ or mean fitness between the different generations. On the other side the 
most notable traits of EAs are very well covered – highly probable mutation reduces survival 
of high order schemas and highly probable crossover is likely to disturb very long schemas. 
Overall the settings of an algorithm should allow a balanced amount of exploration of the 
search space as well as sufficient exploitation of suitable and good solutions [16]. 
 
 

3.2 Basic Operations 
Evolutionary algorithms are based on the evolution theory and the basic operations of 
selection, usually in some dependence on the solution’s fitness, recombination, which can 
occur along different patterns, and mutation, which changes only parts of a chromosome.  
Depending on the respective algorithm, see Chapter  3, and with weights on the single steps 
depending on the actual optimization pattern, the above mentioned algorithms share the 
following basic scheme for optimization: 
 

1) Set-up of a population of possible solutions 
2) Until a certain stopping condition is met, the following steps are repeated: 
 

i. Each individual solution is evaluated regarding its fitness to fulfil 
the optimization objective(s) 

ii. In dependence on this fitness individual solutions are selected for 
further processing with a certain probability 

iii. Recombine the selected solutions to new solutions with a certain 
probability  

iv. Mutate the solutions with a certain probability 
v. Insert the total of solutions into a new population 

 

3.2.1 Selection 
As seen in the example algorithm formulated before, the selection process determines the 
solutions, which are chosen for further processing, i.e. usually for procreation by 
recombination and if applicable further processing due to mutation. Selection is performed 
based on some scheme, which should allow a preferred survival of solutions with above 
average fitness [1], which is called selection pressure. At the same time this selection pressure 
should not be too large and thus hinder wide exploration of the whole solution space [16].  
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Furthermore there are selection schemes, which insert the new solutions instead of the 
original ones, i.e. with replacement, and those that do not replace the source solutions but 
other less fit solutions [10]. 
 
Selection Schemes 
There exist various schemes for selection of the solutions, which are usually based on the 
general superiority of one solution, be it rank within the population or its fitness. The 
selection method has a significant influence on the overall algorithm performance [10].  
 
One of the most common schemes is roulette wheel selection. In this case the probability of a 
given solution’s selection is p = fi/ F, where fi is the individuals fitness and F the total of all 
solutions’ fitness. Obviously solutions on the lower end of the existing fitness values have a 
very low probability of being selected. However even the best solution is not selected with 
certainty [1], which results in less good performance when compared to tournament or rank 
selection [10].  
 
In tournament selection the various solutions compete directly against each other based on 
their fitness values. This can occur in larger groups or in pairs. In the former case, k best 
solutions within a group are chosen for reproduction and their k children replace the worst 
solutions [1]. In the latter case, the mating pool is created by the winning solutions of the 
pairs. In all cases the method guarantees that the best solution moves over to the next 
generation [10], a process which is called elitism. Extensive prejudice favouring good fitness 
values, i.e. extensive elitism, does however hinder the wide exploration of the search space [1] 
and increases the risk of convergence to a local optimum [10]. 
 
Rank selection sorts all solutions into a ranked order, according to their fitness. The best 
solution has the highest rank, the worst solution has the lowest one. The probability for 
selection is then a function of the rank similar to roulette wheel selection [1]. 
 
Selection Noise 
As described above the probability of selection for reproduction is increased for highly fit 
solutions, i.e. they are more likely to be explored further. However in case of equal fitness one 
solution usually receives biased processing, as the number of possible solutions is restricted. 
Consequently it can happen that very fit solutions drop out of evaluation before they have 
been thoroughly explored. This divergence from the predicted path of reproduction is 
considered noise [16].  
 
Replacement 
While no actual part of the selection process, the insertion of the new solutions into the new 
population usually follows comparable schemes, like roulette wheel replacement, rank 
replacement, absolute fitness replacement, random replacement. Either the children compete 
only against their parents or they are compared to the whole population [1].  
 

3.2.2 Recombination 
The solutions, which are selected for further processing, are the parents of the new solutions 
to be evaluated. These new ones are usually referred to as children and are based on the 
original parents, they are recombinations of them. While it is possible to use totally different 
schemes, e.g. simply duplication (cloning) of existing solutions, or even random creation of 
new solutions, the reproduction of existing solutions is one core trait of EAs [10].  
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Recombination involves the cross-over of two (or theoretically more) parent solutions into a 
single new one. Especially if the children automatically replace their parents each pair of 
parents has to create two children. As for selection several schemes for crossover exist [1]. 
 
Point crossover, which is demonstrated in Figure  3-1, cuts the parents’ chromosome at given 
loci and the children then share one parent’s alleles before such a locus and the other one’s 
after it. The two children are then complementary to each other. It is possible to use only one 
locus instead of several ones, in this case this is referred to as single-point crossover, in the 
other cases it is multiple-point crossover. Especially in the former one, it is difficult to save 
good genes to the child when these are distributed widely over the chromosome [1].  
  
 

Figure  3-1: An example of a two-point crossover operation. 
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Uniform crossover, which is illustrated in Figure  3-2, randomly assigns one parent’s allele to 
a child. For each locus it is randomly determined whether parent one’s or parent two’s allele 
is used [1].   
 

Figure  3-2: An example of a uniform crossover operation. 

 

 
 

 
Other methods exist, e.g. adaptive crossover. There each parent carries a template (consisting 
of 1s and 0s) along, which provides information on whose genes are used at what position. 
Null crossover means there is no crossover at all [1].  
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3.2.3 Mutation 
Mutation is the EA process of introducing new data into the population by random change of 
single loci. This increases the diversity of the solutions and new areas of the solution space 
are investigated. The number of loci, which are changed, depends on the exact mutation 
scheme. Just as with recombination it is possible to change several loci, i.e. single-point or 
multiple-point mutation is possible. Null mutation means none is performed at all and 
Lamarckian mutation investigates up to k mutations and the fittest one is retained [1].    
 

3.2.4 Assignment of Fitness 
The fitness function is a numerical, heuristic evaluation of a given solution, assigning each 
individual within a population a fitness value. Higher fitness values should usually result in 
higher probabilities for selection and thus solution processing to exploit evolutionary effects. 
If a function is optimized it usually is set as the fitness function and a solution’s function 
value is that case’s fitness [1].  
 
 

3.3 Advantages and Disadvantages 
 

3.3.1 Advantages 
Global search characteristics are probably the most beneficial advantage of EAs, caused by 
the parallel evaluation of many solutions within a population. They are furthermore able to 
shift from one optimum to another by introduction of new solutions into the population (either 
due to mutation or recombination) [1]. There are several techniques, which elaborate the 
diversity traits of EAs even further [16]. No additional information like derivatives is required 
for the optimization process, which makes them usable for trajectory optimizations where the 
final result is not known at the beginning of the optimization process [6]. Generally the 
application is not very complicated [19]. 
  

3.3.2 Disadvantages 
One of the disadvantages of EAs is that it is difficult to find suitable stopping conditions for 
the optimization. The difficulty arises from the fact that the optimal result is usually not 
known and therefore it is problematic to determine when it is reached. Common stopping 
criteria are thus usually e.g. insufficient change of the solutions for a certain number of 
iterations [1].  
In general, in EAs diversity always competes against convergence. Strong convergence to a 
solution results in only locally optimal solutions, the completeness of the solution space is 
only insufficiently searched. On the other hand, too strong diversity significantly decreases 
the search strategy’s performance [16]. Overall the solutions are only compared among a 
randomly chosen set and not the complete solution space is investigated. Discretisation of the 
problem results in loss of gradient information and thus reduces the performance of EAs when 
compared to calculus-based methods [19].  
Dependent on the exact problem, EA solutions are not very precise regarding the closeness to 
the global optimum [6].   
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4 Current Application and Developments 
 
 
 
As mentioned before, currently one major utilization for evolutionary algorithms in 
astronautic applications is the optimization of (low-thrust) trajectories. To improve the 
performance of EAs especially regarding solution diversity there are several modifications of 
the standard algorithms used and in development. This chapter attempts to summarize current 
usage and also evolution that is still in progress. 
 
 

4.1 Application 
 

4.1.1 Combination with Artificial Neural Networks 
Application of evolutionary algorithms for use with artificial neural networks is not a new 
concept and has been performed for several applications, e.g. the simulation of virtual robots 
and their behaviour [1] or optimization of production processes [3]. 
Artificial neural networks are modelled after their organic paragons. They consist of 
computation elements, neurons, and weighted connections between these. The weights are the 
long-term knowledge of the neural network. Different structures exist. Usually such networks 
are organized in layers, input-, output- and hidden layers in case of feedforward networks, 
where information is passed on only in one direction. Usually only the weights are changed 
during optimization to adapt the network to the bestowed task [20]. There are different 
learning schemes, for trajectory optimization reinforced learning applies.  
In difference to supervised learning, where an optimal solution is presented as example that 
has to be achieved, such an optimal solution is generally not known for trajectory 
optimization. Thus in a reinforced learning scheme, the solution’s quality is evaluated on the 
criteria to be optimized. The network then adapts to improve the quality [20]. 
Dachwald [6, 21] and Carnelli, Dachwald and Vasile [22] have used a combination of neural 
networks and evolutionary algorithms for trajectory optimization with and without respect to 
gravity assist manoeuvres. The basic approach of the code InTrance is to use the neural 
network as controller (“pilot”) and to train it in finding an optimal control strategy to assume 
an optimal trajectory with respect to certain objectives like minimum propellant consumption, 
minimum time of flight (TOF), etc. and constraints due to e.g. rendezvous conditions. The 
network is modelled via a network function Nπ with πi describing the various weighting 
factors. Several inputs like the state vector of the spacecraft and target, as well as propellant 
mass are fed into the network, which then produces the control vector consisting of throttle 
and thrust direction. Both the network’s input and output are used to integrate the equations of 
motion over an interval which in turn grant the state vectors for the next point in time. This 
process continues until the stopping condition (e.g. maximum number of integration steps) is 
reached. The network is then evaluated according to the trajectory quality and receives a 
fitness value, while its network function is saved in a chromosome containing all weighting 
factors. This chromosome becomes part of the processing via evolutionary algorithms [6]. 
This method has been able to improve actual, existing trajectory designs regarding TOF, etc. 
[21] and is thus considered a successful approach on trajectory optimization. 
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4.1.2 Multi-Objective Optimization 
Inherently trajectory optimization is a multi-objective optimization problem and these 
multiple objectives can contradict each other (e.g. minimum propellant mass and maximum 
payload mass). One traditional method of bringing the different objectives together for fitness 
evaluation is weighting of the objectives in regard to each other and combining the individual 
evaluations respective to each objective into one overall fitness value. However this usually 
requires extensive knowledge about the relations between all of the fitness contributors [15]. 
Another approach is to optimize only one objective and include the remaining ones as 
constraints for the optimization. In both cases, however, only a single solution is generated 
[21]. 
One method to create several solutions, which also show the dependence of the different 
objectives on each other, is Pareto-optimization [15, 21]. Pareto-optimality means that a 
solution cannot be improved regarding one of the objectives without decreasing its quality 
with respect to another one. In the objective space the so called non-dominated solutions form 
the Pareto frontier [9]. Non-dominated means that no solution has a better quality in all 
objectives, although there may be solutions, which have a better quality in some of the 
objectives [15]. The concept of a Pareto-frontier is illustrated in Figure  4-1 [9].      
 
 

Figure  4-1: The pareto frontier of an optimization with two objectives f1(x) and f2(x) [9]. 

 

 
 
Srinivas and Deb have successfully designed a genetic algorithm that derives a solution’s 
fitness directly from its rank in the Pareto frontier, where rank equals the row within the 
population [23]. It was also used by Hartman et al. for trajectory optimization [15].  
This algorithm also includes modification due to sharing (see Chap.  4.2.1). Once the fitness 
according to rank is attributed to the first row, the evaluated solutions are removed from the 
pool and the remaining ones are then again evaluated until another Pareto-frontier is found. 
This receives a new fitness, reduced with respect to the first frontier’s solutions. This process 
continues until each solution has received a rank evaluation and thus a fitness value [15]. 
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4.1.3 Improvement of Convergence 
As described in Chap.  3.3.2 one drawback of evolutionary algorithms is the low convergence 
rate when compared to local optimizers. While this allows a broad evaluation of the search 
space and in fact is mandatory for the global search as implemented for evolutionary 
algorithms, it still means that the final solution is not the actual global optimum but only close 
to it [24].  
Therefore one aim of improvement of ordinary evolutionary algorithms is to improve their 
convergence via combination with e.g. local optimization strategies and algorithms. Such 
strategies are called memetic algorithms [24]. 
Crain, Bishop and Fowler [25] and also Wuerl, Crain and Braden [24] have successfully used 
a calculus-of-variations-method in unison with genetic algorithms. With that method the lack 
of solution precision of genetic algorithms and the lack of global search characteristic of local 
optimizers are remedied [24]. In a first step Crain et al. [25] used a genetic algorithm to 
identify the approximate region of the global optimum and once the found solution was within 
the globally optimal solution’s probable radius of convergence a recursive quadratic 
programming method was used as local optimizer to find the precise global optimum. This 
way the genetic algorithm provided the initial parameter guess needed for the local optimizer, 
which usually has to be supplied by the mission analyst. The stopping criterion for the genetic 
algorithm was a preset number of generations (which should be at least equal to the 
chromosome size) and in this case was chosen as 40 by Crain et al. They furthermore report 
that a small population size could result in sensitivity of the algorithm regarding the initial 
random seed values. Generally the final results were as precise as with standard methods 
using local optimization, but due to the global search effort undertaken by the genetic 
algorithm, the number of trajectory evaluations has been two orders of magnitude smaller. 
According to Crain et al. [25] further improvement could be achieved by applying the local 
optimizer parallely to the genetic algorithm. 
The results of this evolution have been reported by Wuerl et al. [24]. As before the final 
solution provided by the genetic algorithm served as initial input for the local optimizer. In 
addition two different learning strategies are optionally used during calculations (leading to 
increase in computation time). The first option is to check each solution for its potential in 
improving to a better quality – the fitness is adapted accordingly to represent “learned” traits 
that are not genetically inherited. The genome is not altered. In the second option the 
solutions are altered by a short local optimization (only for some iterations) and are also 
awarded a certain modified fitness. This is supposed to represent learned traits that are 
actually biologically inherited by children. This second option increased the convergence rate 
at the cost of diversity. Generally elitism, i.e. retention of the best solution, increases the 
performance of the memetic algorithm [24]. For both learning strategies a second stage of 
optimization has been added at the end of the genetic algorithms optimization, which was 
stopped once the convergence radius of the global optimum had been reached. The combined 
algorithm was able to reach this stopping criterion after around 20 generations for the applied 
problem (Mars to Earth trajectories). As before the overall results were at least as accurate as 
with other methods at an improved computation speed [24]. 
Vavrina et al. [13] have also incorporated a direct, gradient-based method (GALLOP) into a 
genetic algorithm search strategy. Their goal was to optimize gravity assist manoeuvres. 
However in their case every solution was locally optimized as an integral part of the genetic 
algorithm, after mutation and before fitness assignment. 
Quite similarly Hartmann et al. [15] have successfully combined a modified genetic algorithm 
with a calculus-of-variations based optimizer called SEPTOP. Good performance of this 
optimizer requires initial guesses that are already close to an optimum. Thus the results of the 
global search via EA are used as such an initial guess to begin the local optimization. The 
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combination was able to produce more optimal solutions and also to produce solutions aside 
the initial guess of the operators [15]. 
Kim [26] states that simulated annealing is a global search technique with superior 
performance regarding genetic algorithms due to a larger convergence rate. Therefore in that 
work calculus-of-variations-based local optimizers are included in the process of optimization 
as several stages after the global search, which results in more precise solutions for 
minimization of time of flight calculations [26]. 
 

4.1.4 Multi-Level Optimization 
El-Beltagy and Keane [27] have described several methods (not exclusively for EAs) for 
multi-level optimization, in which case level refers to the grade of accuracy. The strategies 
they reported include: sequential multi-level optimization, gradually mixed optimization and 
totally mixed optimization.  
In sequential optimization, the level of accuracy is increased by staging several calculations of 
the same problem but increasing the accuracy with each calculation. The final population of a 
less accurate computation is used as starting population for the more precise calculation (cf. 
warmstart in InTrance). In case of gradually mixed optimization, more accurate and less 
accurate calculations are mixed during the whole optimization process according to a certain 
probability dependent on the number of evaluations already performed (later evaluations grow 
in probability to use more accurate parameters). The third method uses constant probability 
values for each level of accuracy throughout the calculations. In all cases genetic algorithms 
with niching functions (see Chap.  4.2.1) provided the best results [27].     
 
 
 

4.2 Developments 
 

4.2.1 Improvement of Diversity 
In Chap.  3.3.2 it was already pointed out, that diversity plays an important role in EAs’ 
capability to locate and determine the global optimum of an optimization problem. It 
furthermore is a contradiction to convergence. Fast convergence to an optimum means the 
algorithm does not completely search the solution space of said problem, i.e. it results in a 
small diversity. Generally the ability to maintain a global search pattern and to escape local 
optima relies on solution diversity [28]. In addition diversity and thus global search 
characteristics are the justification for the application of EAs. Maintaining diversity increases 
the probability to find a global optimum and is the only source of reliability of the algorithm 
regarding this goal, since the final result cannot be compared to a known global optimum 
(although of course an algorithm can be tested with problems where the globally optimal 
solution is known).  
There are many different methods to improve diversity of genetic algorithms; the simplest one 
is already included in most EAs per design: mutation [1]. Another option is to run the 
algorithm sequentially or parallely for creating different, non-interacting populations or to 
introduce new random solutions into the population after a certain criterion is reached [16]. 
More methods have been developed.  
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Nested Partitions 
Shi, Ólafsson and Chen [29] have proposed a new algorithm to be combined with – in their 
view – the local optimization scheme applied by genetic algorithms. Their new method is 
called nested partitions. In this case the (finite!) solution space is divided into one most 
promising region and the remaining region. This most promising region is subdivided into 
sub-regions. In each iteration step these subregions and the surrounding region are sampled 
for their quality by randomly selecting solutions from their domain and calculating their 
fitness values – the best of these becomes a region’s promising index. If this sampling 
produces a new (sub)-region to be most promising it obtains this status for the next iteration. 
If the surrounding region is instead found to be more promising, the search returns to a 
previous level. In combination with the genetic algorithm, for each (sub-)region a population 
is sampled. Each population is optimized by the genetic algorithm normally with the 
constraint that each population may only draw solutions within its own region. Next each 
region receives an overall fitness, in this case determined to be the best fitness found within 
the region. Furthermore a new region is selected as being the most suitable and thus the space 
of possible solutions is reduced [29]. 
 
Niching and Sharing Functions 
Ordinary genetic algorithms do not evaluate solution similarity [30]. Niching is used to 
represent the fact that certain species tend to specialize in certain regions/ environments [27], 
although one species may have several niches (e.g. representing feeding habits). The to be 
optimized function is considered as environment and niching is meant to ensure that the 
solutions are distributed evenly over this environment by penalizing the fitness value if there 
are several solutions within one region [3]. This even distribution is especially useful in case 
of multi-level optimization, where the evaluation’s accuracy varies – generally more areas are 
investigated and the possibility to locate the global optimum improves [27]. Another reason 
for niching is the detection of multiple solutions (which can be close to the global optimum or 
to different optima) [16], which is especially true if the accuracy of the fitness function is not 
precise and therefore the solutions need to be robust [30]. Generally diversity has no end in 
itself, its goal has to be retaining good solutions and not just any solution, to analyse and 
explore all optima [16]. 
Even distribution is achieved by penalizing a given solution’s fitness in case other solutions 
are close and thus do not add new information regarding diversity. Penalizing of a solution’s 
(true) fitness fi,true in case there are solutions within a certain limiting distance, σshare, is 
performed with the following function, giving the shared fitness fi, shared [27]: 
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where n is the number of evaluated solutions in the population (note that j = i is also 
considered, thus the sum of the sharing functions is always at least 1 and thus the shared 
fitness always at best equal to the true fitness) and s(dij) the sharing function with [27]:  
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The distance dij is a measure for the proximity of the solutions. For p-dimensional solutions 
and q optima, this distance becomes [27]: 
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where xk,i resp. xk,j are the k-th parameters of the i-th resp. j-th individual and max resp. min 
denote the extrema of the allowable values.  
The limiting distance is given by [27]: 
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It can be seen that for the definition of the limiting distance, knowledge about the number of 
optima (q) is required, which is usually not given for the mentioned problems – i.e. they need 
to be estimated.  
 
The effect of lowering the fitness of similar solutions ensures a more even distribution of the 
solutions over the solution space. Solutions with good true fitness values that are penalized 
due to their close neighbours can still investigate their optimum further as their larger number 
increases reproduction probability. Generally the high fitness values tend to draw more 
population members to an optimum, the sharing function however acts as repulsive force 
against this attraction [3]. This way if a niche is too densely populated, wandering off into 
other regions becomes beneficial and therefore diversity is forwarded [16].   
 
Crowding 
Related to niching mechanisms are strategies involving crowding, which is also employed to 
increase solution diversity. The idea is that a solution replacement occurs based on similarity, 
i.e. distance, of the solutions to each other (see Equ. (4)) [16]. 
Crowding is achieved during solution replacement by selecting m possible candidates for 
replacement, which are in turn compared to the new solutions. The most similar solution is 
then (with a certain probability where applicable) replaced. If the possible candidates are 
selected from all solutions, the method is considered an explicit one [30].  
Other methods, e.g. deterministic crowding, restrict candidates for replacement only to 
parents. As parents and children are per definition similar to each other, restricting 
replacement to each pairing (children of one pair cannot replace solutions not part of this pair) 
already ensures diversity [12]. This is called an implicit method [30]. 
Mengshoel and Goldberg have reviewed two different approaches to crowding, probabilistic 
and deterministic. The basic method of selection and replacement does not differ and is done 
in the before mentioned manner. What differs is the probability for replacement. In 
deterministic replacement the fitness determines whether or not replacement takes place. If 
the child is fitter than the parent, the latter is replaced by the former. Probabilistic crowding 
assigns each child and parent a probability, which depends on the fitness of the individual and 
the sum of the fitness of the competing child and parent [30]: 
 



   4 Current Application and Developments   

 
 

 
  20/ 30 

.
pc

c
c ff

f
p


   (6) 

 
The difference in the replacement decision results in higher convergence rates for 
deterministic crowding along with the possibility to loose niches from the evaluation. 
Probabilistic crowding in turn keeps niches but has a lower convergence rate than the former, 
although the convergence is stable and predictable. The deterministic method is especially 
useful for flat fitness functions, due to the high convergence. Generally a mix of both methods 
allows exploitation of the benefits. In this scheme, which is called portfolio, each method is 
assigned a probability for use [30]. 
  

4.2.2 Gravity Assist Manoeuvres  
Gravity assist manoeuvres allow increase of the ∆Vs a spacecraft is capable of during a 
mission by exploiting close flybys of planets. Even the, regarding achievable ∆V, already well 
performing low-thrust missions can benefit from gravity assist manoeuvres and thus it is also 
of interest to include such swing-bys into the optimization of their trajectories.  
The disadvantage that goes along with the increase in possible ∆V is however a decrease in 
mission flexibility as mission times need to be observed closely [26]. 
Crain et al. [25] have used a combination of a genetic algorithm and a local optimizer based 
on recursive quadratic programming for gravity assist manoeuvre optimization. The latter has 
been developed for optimization of gravity assist manoeuvres already, but only on a local 
scale. As sketched in Chapter  4.1.3 a sequential combination of the two optimization schemes 
was applied to optimize previously user-given sequences for gravity assist manoeuvres 
(Earth-Mars-Earth and Earth-Venus-Earth).  
Debban et al [31] also optimized preselected gravity-assist sequences yet with a different 
method (not using genetic algorithms, but also a broad search involving a cost function). In 
their case low-thrusts were approximated as multiple high thrust manoeuvres and furthermore 
the trajectories were optimized using a shape-method for broad searches, which later on in the 
process are refined. The broad search applies only a two-body model that also uses a patched-
arc approach. This approach employs Keplerian conic sections for coasting and for thrust arcs 
so called exponential sinusoids, which can be described by the following equation [31]: 
  
 

,)sin(
0

21   kkekr   (7) 

 
where k0, k1, k2, θ and Φ are user-defined settings that affect the shape of and thus thrust on 
the respective trajectory leg. These arcs can be analytically approximated with Equ. (7). 
Evaluation is done via a cost function that regards propellant mass and the arrival v∞ in 
approximation. Time of flight is not regarded and needs to be assessed by the user [31]. 
Good quality solutions are then subjected to optimization by GALLOP (Gravity-Assist Low-
Thrust Local Optimization Program). During the optimization the gravity assist manoeuvre is 
modelled as instant rotation of the velocity vector and the trajectory is divided into legs, 
which range from one body to the next. These legs are further subdivided into equally long 
parts (length referring to time) and at the midpoint of the segment one ∆V is applied (the sum 
of ∆Vs modelling the continuous thrust), between that position conic arcs are used as 
trajectory approximation. The leg furthermore has a so called match-point. The start of the leg 
is propagated forward to this point on the trajectory, the end is propagated backwards, until 
they match. A sequential quadratic algorithm is used for optimizing the spacecraft mass. The 
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method proves to be an improvement regarding calculation effort when compared with other 
methods of finding and calculating gravity assist manoeuvres. Overall the need for an 
astrodynamics specialist was reduced by Debban’s et al. yet not eliminated as still a gravity 
assist sequence has to be initially chosen [31]. The same method was successfully used by 
Ham et al. [32] for investigating a nuclear powered low-thrust mission to Jupiter (JIMO).  
Although not using genetic algorithms in their approach, Vasile and Campagnola also 
employed a combination of global search methods with local search to optimize gravity assist 
manoeuvres [33]. The global search was applied to evaluate a large number of trajectories for 
their quality and the best were then used as first estimate inputs for the local optimization. In 
their mission design, Vasile and Campagnola, optimized a transfer to Jupiter and following 
that a gravity-assist sequence of Jupiter’s moons for a rendezvous with Europa. Different 
calculations were applied to obtain solutions for the first transfer and the subsequent gravity-
assist sequence. The self-designed global search algorithms employed a simplified model, e.g. 
assuming coplanar body orbits and modelling of the low-thrust by using several impulsive 
manoeuvres and no actual continuous thrust. The direct method for local optimization applied 
a q-Gauss quadrature sum scheme. Their method was successful in determining a trajectory 
design for evaluation of mission feasibility [33].    
Carnelli [33] and Carnelli et al. [22] have investigated the use of an evolutionary 
neurocontroller (ENC, s. Chapter  4.1.1) for optimization of gravity assist low-thrust 
trajectories. Carnelli assumed that artificial neural networks can exploit the possibilities of 
gravity assist manoeuvres for improvement of mission performance because earlier 
calculations have shown that they are able to exploit so called solar photonic assist 
manoeuvres in case of solar sail trajectories. These manoeuvres bring a spacecraft close to the 
sun to increase thrust before it moves further away [33]. 
Carnelli considered two different optimization schemes - first, the application of a single ENC 
for the whole mission or several ENCs, one for each trajectory leg. As the latter would have 
meant that the gravity assist sequence had to be submitted by the user of the optimization tool, 
he chose the first option. The calculations however were not able to improve or even reach the 
results of existing trajectories, which was partly due to the fact that rewarding gravity assist 
manoeuvres via fitness did not prove sufficient to benefit the reproduction of gravity assist 
trajectories. As only few trajectories are sufficiently close to the respective body’s sphere of 
influence, their progress is not fast enough compared to trajectories not using gravity assist. 
Furthermore the effect of gravity assist manoeuvres on the trajectories is significant and very 
sensitive, which makes training of the neural network difficult and often even decreases the 
fitness of the trajectory, therefore causing such trajectories to be extinguished from the 
population. Furthermore, in difference to the solar photonic assist, where the source of fitness 
improvement does not change its position, in case of gravity assist manoeuvres, the source of 
additional “free” ∆V does change its position and therefore it is difficult for the ANN to learn 
how to exploit it efficiently. As an alternative to using an ENC for gravity assist optimization, 
Carnelli introduced a gradient based local optimizer into the process for single gravity assist 
manoeuvres, which proved successful due to the fact that the solution space is smooth and 
only has one optimum, when applying a so called b-plane. The b-plane is a plane 
perpendicular to the incoming trajectory, where it “pierces” the sphere of influence of the 
body. This gravity assist “consultant” for the network proved to operate successful in 
providing a suitable insertion into the body’s sphere of influence [22, 33]. As alternative 
Carnelli suggests to use multiple ENCs, one for each trajectory leg, however this would 
require previous knowledge of the gravity assist-sequence [33]. 
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5 Summary and Conclusion 
 
 
 
In the previous chapters the basic evolutionary algorithms were presented along with their 
attributes and evolutions on this basic concept. The need for diversity has been explained and 
means to achieve it have been reported. Similarly other aspects such as improvement on 
convergence, multi-objective optimization, etc. have been part of this review. 
 
It has been shown that combination of evolutionary algorithms with local optimizing methods 
(based on calculus-of-variations and gradient methods) does have the potential of 
significantly increasing the performance of an optimization tool. The solution quality of such 
combined methods is not below that of optimization with a non-combined tool, yet the 
number of necessary evaluations to find a global optimum have been reduced by two orders 
of magnitude for certain methods. It is therefore conclusive that a combined use of local and 
global optimization is highly beneficial and required to remain competitive regarding other 
tools. To successfully exploit the increase in performance it is necessary, to cease the global 
search as early as possible, i.e. to determine a point where local optimization suffices to find 
the global optimum (when its convergence radius is reached).  
It is also clear that the improvement or maintenance of diversity is crucial for the performance 
of global search. Distribution of the solutions over the whole solution space ensures that all 
optima are equally explored and thus the global one can be found.  
Due to the benefits of gravity-assist manoeuvres on mission feasibility there is also a great 
interest in exploiting these for low-thrust missions. Consequently also the interest in 
optimizing such trajectories is as great. The complexity of the problem has, up to now, 
however prevented the creation of simple methods for such mission designs. It is apparent 
that especially the determination of a suitable gravity assist sequence is difficult to achieve by 
optimization with genetic or global search algorithms alone. New methods and tools, e.g. the 
use of an expertsystem, are required to erase the need for an expert operator.  
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A Appendix 
 

A.1 Trajectory Optimization 
Trajectory optimization is the task of finding the best solution regarding a certain objective 
within a mission design. The solution contains a steering strategy that is best suited to achieve 
the mission under consideration of the given objective, which is usually evaluated at the end 
of the trajectory [35]. Depending on the methods used and the actual problem to be solved, it 
can be reduced to finding any solution at all for a given mission layout [21], however.  
A trajectory maps a time interval  ],[ 0 fttt  onto a state space nX  [26], where n is 

usually 6 for spacecraft trajectories as the elements of X, ,}{ Xx sc  need to be able to 

completely determine an orbit, which requires six parameters. For trajectory calculations it is 
common to use the orbital position 3scr  and velocity 3scr [21]. Part of the trajectory 
calculation is also the control function U that maps from an interval, which is commonly 
identical to the one of the state space, onto a spacecraft control vector mu  . This control 
vector defines the thrust direction and throttle [26]. 
The trajectory is calculated by integration of the equations of motion, which can be expressed 
by six differential equations of first order of the following form: 
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These differential equations are a dynamic constraint for the optimization problem [21]. A 
control that is able to find an optimal trajectory is referred to as optimal control vector u*. The 
task to find such an optimal control is referred to as optimal control problem [26]. 
 

A.1.1 Optimization Objectives 
Each optimization is undertaken with regard to certain optimization objectives, a property that 
needs to be maximized (or minimized, which is exchangeable via the sign) at the end of the 
optimization process [35]. 
Usually the objective function, which mathematically describes the objective, has the form of 
[35]: 
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where Φ is a function of the final state and time, L is a general function of the instantaneous 
state, control and time, integrated over time along the trajectory. 
For trajectory optimization there are two categories of objectives [21]: 
 

1) minimization of transfer time 
i. for a given payload and propellant mass 

ii. for a given launch and propellant mass 
 

2) minimization of propellant mass: 
i. for a given payload mass and transfer time 

ii. for a given launch mass and transfer time 
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It should be noted that launch mass is not independent of the payload mass and therefore there 
is no direct distinction between the two. On the other hand, the maximization of payload mass 
for a given launch mass (resp. minimization of launch mass for a given payload mass) is a 
typical system engineering optimization problem.   
With regard to Equ. (9) the objective of minimization of flight time can be expressed as [26]: 
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The minimization of propellant mass yields [26]: 
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where pm is the propellant mass flow and mp the propellant mass.  

The objectives of optimization usually contradict each other for trajectories – minimization of 
transfer time usually requires large thrust, which in turn requires large amounts of propellant. 
Therefore trajectory optimization is as multi-objective optimization. Methods of approaching 
this type of problems are described in Chap.  4.1.2. 

 

A.1.2 Optimization Constraints 
Besides the optimization objective the optimization is often subject to certain constraints that 
have to be fulfilled during optimization. There are various kinds of constraints; they can be 
distinguished in two types. One type of constraint, terminal, requires a condition to be 
fulfilled at a specific point in time, te, (e.g. proximity to a target body at the end of the 
trajectory) or it is evaluated during the whole trajectory [35]. 
The former can be expressed as [35]: 
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where 1f  is the function that describes the constraint, while the latter can be provided by [35]: 
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where 2f  is another function that expresses the constraints mathematically.  
Path constraints affect the whole trajectory or a section of it (e.g. that the consumed propellant 
mass may not exceed the loaded propellant mass) and can be formulated as follows [35]: 
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Each class of constraint can be an equality or inequality type of constraint. The former is 
common for terminal constraints, the latter for path contraints. Generally however they are 
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applicable for all categories. Equations (12) to (14) would have to be adapted accordingly 
[35]. 
   

A.1.3 Mission Requirements 
There are several possible mission scenarios that can be subject to optimization. Their basic 
classifications are orbit transfer problems, flyby problem and the rendezvous problem. If 
required the scenarios can be extended to cover e.g. several flybys of different targets, etc. 
[26].  
The mathematical formulation for each problem is [21]: 
 

- Rendezvous problem: The control function U needs to provide a control vector 
mu  , which transforms the initial state vector of the space craft xsc(t0) to the 

state vector of the target xT(t) while subject to the constraints of the equations 
of motion and the terminal constraint that xsc(tf) needs to be equal to xT(tf) 

- Flyby problem: The flyby problem is identical to the rendezvous problem, 
except that only the position components of the state vector need to be 
addressed. 

- Orbit transfer problem: In this case a vector Z containing the orbit elements 
has to be transformed to assume the elements of the target orbit at the end of 
the trajectory. 

 

A.1.4 Solving of Low-Thrust Problems 
High-thrust trajectories that use few impulsive thrust manoeuvres usually have few 
dimensions regarding the solution space of an optimization. For a single manoeuvre, e.g. for a 
flyby, the manoeuvre at the beginning of the mission is defined by two thrust angles and the 
thrust magnitude. This means the solution space has three dimensions [21]. 
Low-thrust missions are characterized by long periods of continuous thrust. While the control 
variables in u remain the same the continuity of the thrust in time makes the solution space 
infinite [26].  
Only in rare cases such problems can be solved [21], therefore a usual approach is to 
numerically discretise the problem in order to reduce the dimensions of the solution space. 
Therefore the continuous time interval  ],[ 0 fttt  is divided into single points in time 

which then make up a discrete time interval  ],[ 0 fttt . Following this approach the 

optimal solution is no control vector u*(t) but a control vector history u*[ t ], which has a 
finite number of dimensions, as the time interval is also finite [21].  
 

A.1.5 Optimization Methods 
As described in Chap.  4.1.3 the optimization methods for trajectories can be divided into 
direct and indirect methods, which are usually local optimization methods [21]. 
Direct methods directly provide solutions for the control variables, whereas indirect methods 
solve a Two-Boundary-Problem to gain the solutions indirectly [26]. The latter involves 
calculus of variations, i.e. calculation of the problem’s Hamiltonian; the former is usually an 
approximation [35]. 
Techniques for direct optimization are Non-linear Programming and Collocation, which 
involves the discretisation of the timer interval as well [26]. It uses no gradient calculation but 
interpolation instead, which only gives approximate results [35]. Other methods are so called 
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shooting methods, where initial guesses are used to propagate trajectory solutions and 
evaluate at the end of the propagation. In this case the initial solutions need to be guessed by 
the optimizer [35], which makes profound knowledge of the problem and trajectory 
calculation in general a requirement for the user [21]. 
 

A.1.6 Equations of Motion and Propulsion Models 
The equations of motion are based on Newtonian mechanics and can be determined, e.g. via 
the Lagrange equations to [26]: 
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where r is the vector between the two masses of the system, er the unity-vector in its direction 
and μ is the gravitational parameter. In case of real problems, the right side has to be filled 
with terms for perturbations and thrust. 
A thrust model for a solar electric engine can be expressed as follows [21]: 
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where κ as the throttle parameter and F describing the thrust (in direction and magnitude) 
[21]. Combined, the complete model for a solar electric propulsion system would be: 
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Comparable equations can be derived for other thrust sources like nuclear electric propulsion 
or solar sails [21]. 
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B Nomenclature 
 
EA  Evolutionary Algorithm 
ENC  Evolutionary Neurocontroller 
EP   Evolutionary Programming 
GA  Genetic Algorithm 
  Gravity Assist 
GALLOP  Gravity-Assist Low-Thrust Local Optimization Program 
GP   Genetic Programming 
LT  Low-Thrust 
TOF   Time of Flight 
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