IQPC Conference “Advances in Rotor Blades for Wind Turbines”
Bremen, 25.-27.02.2014

Segmentation technology for large onshore blades

Research by

Lutz Beyland, Composite Design Engineer,
German Aerospace Center (DLR), Institute of Composite Structures and Adaptive Systems
Nordex Energy GmbH, Engineering

Dr. Jochen Birkemeyer, Head of Blade Engineering,
Nordex Energy GmbH, Engineering
Why segment a blade?

Because blade lengths still increase!

>> Transportation can be lengthy, complex and costly – or impossible

>> Erection sites must be big and flat

>> Production requires large buildings
Outline

1. Project Overview
2. State of the art
3. Segmentation position
4. Concepts
5. Conclusion and outlook
Sponsorship from Nordex and DLR

Objective:
Investigation and evaluation of joining concepts for segmented rotor blades using the following criteria:
Load bearing capacity, mass, process stability during manufacturing, process stability during assembly on site, quality control and costs.

Action:

1st year
- Literature study
- Generate and evaluate joining concepts
- Choice of preferred concept(s)

2nd and 3rd year
- Detailed design of favored concept
- Verification of structural integrity
- Experimental testing of critical components
Overview of past segmented blade activities

- DEBRA-25 [1]
- Megawind [3]
- JOULE III [2]
- Enercon E126 [4]
- Indeol / CENER [7]
- Modular Wind Energy [5]
- Gamesa Innoblade [6]
Classification

Detachable
- Bolting in longitudinal direction
 - T-bolts
 - Metallic inserts

Non-Detachable
- Bolting in transversal direction
 - Form-fit
 - Force-fit
- Bolting of pieces with a large overlap
 - Connection tubes
 - Bolting of shear web
 - Welding of thermoplasts
 - Bonding of thermosets
 - Single lap
 - Multi lap

Connection principle
DEBRA-25

| Company: | DFVLR Stuttgart (today: DLR) |
| Blade length: | 11,6m (ca. 5,8m + 5,8m) |

- Blade structure similar to modern blades
- **T-bolt**-connection of spar caps
- Extensive static und dynamic tests:
 - Coupon level
 - Static und dynamic flapwise blade test
 - Experimental turbine 18 years in service

Result: **T-bolt connection proofed technical suitability**
JOULE III (1)

Concept studies
18 Concepts (bolting and bonding)

Detailed design including FE-modelling of 3 concepts: T-bolts, embedded bushings, connection tubes

Coupon tests of T-bolts and embedded bushings

- Weak point of embedded bushings: bonding of bushing and laminate
 >> T-bolts are more robust
- Embedded bushings need less space
- Load bearing capacity per unit width of T-bolts and embedded bushings is similar

<table>
<thead>
<tr>
<th>Time span:</th>
<th>1997 – 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Companies:</td>
<td>LM, DLR, TU Delft, …</td>
</tr>
<tr>
<td>Blade length:</td>
<td>23,3m (7,3m + 16m)</td>
</tr>
<tr>
<td>Time span:</td>
<td>13,4m (4,5m + 8,9m)</td>
</tr>
</tbody>
</table>
Production and test of segmented **LM23.3** blade with T-bolt connection
- Produced in one piece, cut into segments afterwards
- NC-machine drilled holes
- Passed static und dynamic full-scale blade test, flapwise and edgewise
- Measurements showed higher than calculated load factors for the bolts at the trailing edge.

Reason: 2mm gap between segments

Economic evaluation of segmented LM23.3 with T-bolts vs. standard LM23.3
- Extrapolation of results to a 60m blade: *Overall costs for transportation, material and production of segmented rotor blade is 14% higher than of standard blade.*

Result: T-bolts proofed technical suitability, but are economically inefficient
JOULE III (3)

Production and test of segmented LM13.4 blade with connection tubes

- Passed static (flap + edge) and dynamic (flap) blade test
 >> minor damages because of bad fit

Result: Connection tubes proofed technical suitability
Megawind

- Design, production and test of segmented **30m-blade with double-row T-bolt connection**
- Production in one piece, then cutting and drilling
- Passed static blade test in flap- and edgewise direction
- Failed dynamic in flapwise direction: At 20% of design life, 9 of 44 bolts were broken
 - No obvious reason
 - Possible cause: irregularities in production

Result: Fatigue is a problem for T-bolts in big blades
Enercon E-126

- Segmented blades with T-bolt connection
- L-Flange in root segment
- T-Bolt in tip segment

Time span: since 2007
Blade length: 59m (24 + 35m)
Gamesa Innoblade

Research program „UpWind“
- Concept study (different bolting solutions)
- Detailed design of „channel fittings“

Gamesa Innoblade with „channel fittings“
- Erection of prototype in 2009
- Certification completed in 2011

<table>
<thead>
<tr>
<th>Time span:</th>
<th>since 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade length:</td>
<td>62,5m (30,5 + 32m)</td>
</tr>
<tr>
<td>Companies:</td>
<td>Gamesa</td>
</tr>
</tbody>
</table>
Indemodular

- Indemodular is a joining concept for bolting the spar caps
- Component tests

Time span: since 2010

Companies: Indeol, CENER
ModBlade

- Design, production and test of segmented 45m “ModBlade”
- Spar caps made of **pultruded planks (GFRP)**
- Joining of spar caps in a **bonded finger joint**
- Component and full scale blade tests

<table>
<thead>
<tr>
<th>Time span: 2008 - 2013</th>
<th>Company</th>
<th>Modular Wind Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade length</td>
<td>45m (3 segments)</td>
<td></td>
</tr>
</tbody>
</table>
Summary

Bolted connections, in particular T-bolts, have been investigated the most
- Technical suitability
- Economic efficiency
 >> Big extra cost in materials and production

Bonded connections have been investigated only in the past few years
- Technical suitability not entirely proven
 >> Validated on-site joining process is still missing
- Economic efficiency is promising

Result: Segmented blades are far away from serial production
Where to cut the blade?

- Bolting
- Bonding

Transportation
- Spar cap loads
- Secondary loads
- Big extra mass = extra cost

Extra mass = dynamic loads
- Little space

Spar cap loads under flapwise bending

Load vs Blade length
Considered concepts

Connection principle

- **Detachable**
 - Bolting in longitudinal direction
 - Bolting in transversal direction
 - Bolting of pieces with a large overlap

- **Non-Detachable**
 - Welding of thermoplasts
 - Bonding of thermosets

Concepts

- **T-bolts**
 - T-bolt connection
 - Direct bolting of metallic inserts
 - Bolting of metallic inserts at an intermediate plate
 - Bolting of metallic inserts
 - Bolting of GFRP
 - Bolting of fibre metal laminate
 - Bolting of shear web
 - Bolting of shear web

Project Overview

- [Connection principle](#)
- [Detachable](#)
- [Non-Detachable](#)
- [Bolting in longitudinal direction](#)
- [Bolting in transversal direction](#)
- [Bolting of pieces with a large overlap](#)
- [Welding of thermoplasts](#)
- [Bonding of thermosets](#)
Bolting of fibre metal laminate (FML)

- Local reinforcement of joint with FML
- 20 – 60 % metal volume fraction
- Metal sheet thickness: 0.1 to 1mm
- Material combinations: GFRP-steel, CFRP-steel, CFRP-titanium

Pros
- Increased joint strength
- Little/no material thickening needed
- Low weight

Cons
- Costly materials (high-strength stainless steel)
- Special surface preparation for metal sheets
- Special tools required to make holes
Concept evaluation

<table>
<thead>
<tr>
<th>Field</th>
<th>No.</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>1</td>
<td>Testability</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Costs</td>
</tr>
<tr>
<td>Production</td>
<td>4</td>
<td>Integration in half shell construction</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Standard material and processes</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Production accuracy</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Quality assurance for production</td>
</tr>
<tr>
<td>Assembly</td>
<td>8</td>
<td>Simplicity and quickness</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Positioning accuracy</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Quality assurance for assembly</td>
</tr>
<tr>
<td>Service</td>
<td>11</td>
<td>Inspection during service life</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Repair during service life</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>13</td>
<td>Disturbance of aerodynamics</td>
</tr>
</tbody>
</table>
Conclusion

- Segmented rotor blades are not yet capable of competing with conventional blades
- Bonding concepts still lack validated on-site joining process
- Bolting concepts need to be well designed to be competitive

Project outlook

- Detailed design of favoured concepts
- Optimisation of critical components
- Mechanical tests from coupon to full scale
MANY THANKS FOR YOUR ATTENTION.

Lutz Beyland
Nordex Energy GmbH / DLR
L.Beyland@Nordex-online.com / Lutz.Beyland@DLR.de
German Aerospace Center (DLR), Institute of Composite Structures and Adaptive Systems
Lilienthalplatz 7, 38108 Braunschweig, Germany

Dr. Jochen Birkemeyer
Nordex Energy GmbH
JBirkemeyer@Nordex-online.com
Langenerhorner Chaussee 600, 22419 Hamburg, Germany
References

