
Driving Simulation Conference 2014 Paris, France, September 4-5, 2014

Paper number 08 - 08.1 - DSC’14

COPING WITH COMPLEX DRIVING SCENARIOS: EXPLORATORY SCENARIO

DESIGN

Julian Schindler 1, Tobias Hesse 1

(1) : German Aerospace Center, Lilienthalplatz 7, 38108 Braunschweig, Germany

+49-531-295-3510

{julian.schindler, tobias.hesse}@dlr.de

Abstract – The design of current scenarios in

driving simulators can already be very

challenging. It is assumed that new components

of driving simulation, like coupling of simulators

or the introduction and addressing of additional

agents (e.g. pedestrians, cyclists or

communicating infrastructure like Road Side

Units) will aggravate this problem. Therefore,

the issues of current scenario design have been

analysed and recommendations have been

extracted leading to a new suggested approach

of scenario design. This new approach is driven

by tools promoting the collaboration of the

people involved in scenario design. Being part of

a PhD thesis, this paper describes both the

process and the needed tools, focussing on the

operation of a multi-touch table guiding through

the design.

Key words: Exploratory Scenario Design;

driving simulation; collaborative platform, multi-

touch table.

1. Introduction

Performing simulator studies in driving

simulators is motivated by very different things,

from functional testing via psychological testing

to training or plain demonstration of technology.

Driving simulators therefore make use of driving

scenarios with different content, but mostly

consisting of phases of free driving in traffic

flows which should be as realistic as possible

interrupted by phases with special behaviour of

any involved agents. An agent could be movable

like cars, trucks, cyclists or pedestrians, but also

stationary like a traffic light or a Road Side Unit.

The special behaviour of an agent, e.g. a strong

braking of a car ahead of the ego vehicle, is

used to force a special behaviour of the ego

driver, e.g. by utilizing the function to be tested.

Olstam & Espié [Ols1] already described the

alternation of the phases by introducing the

Theater Metaphor, in which phases of

“Everyday life” driving are interrupted by

phases in which the automated road users

have to follow certain manuscripts with special

behaviour (“Play” on the “Stage”), see Figure

1.

Fig. 1. Theater Metaphor by Olstam & Espié [Ols1]

In order to produce comparable results, the

“Play” phases must consist of very well defined

traffic behaviour leading to a strong

behavioural restriction of all the involved

agents, manifested in the presence of a

manuscript. This contrasts to the mostly

unrestricted “Everyday life” driving phases, in

which all the agents may only be restricted in

following road traffic regulations and optionally

some additional advices by the study

instructors like maintaining a minimum speed.

Therefore, a “Preparation” phase is needed

used to migrate all acting agents from free

driving to a well-defined starting behaviour,

e.g. a defined position with a defined speed

and acceleration, when the “curtain goes up”

and the “Play” phase begins.

It is mandatory in the scenarios that these

transitions have to take place unrecognizable

by the ego driver, because the driver gets a

pre-warning to the upcoming event when the

behaviour of the involved agents changes too

much or is not fully comprehensible to the ego

driver. Therefore, the behaviour of the agents

in the “Preparation” phases must be restricted

as well, by providing limits of possible

behaviours (e.g. a maximum acceleration) in

the manuscript.

Driving Simulation Conference 2014 Coping with complex driving scenarios: Exploratory Scenario Design

Paper number 08 - 08.2 - DSC’14

This results in manuscripts consisting not only of

trivial information like the number of cars, used

car models and the sometimes trivial special

behaviour in the “Play” phases, e.g. the braking

of a car ahead, but also consisting of fairly

unknown parameters for the phase transitions in

the “Preparation” phases and in some “Play”

phases. Sometimes the value of parameters is

unknown, but sometimes even selecting the

right parameter is an issue. As a result, the

parameters are frequently guessed, and

therefore mostly not optimal. This introduces the

following issues:

(1) The traffic situation and its parameters

must be adapted iteratively in order to

make a good look-and-feel.

(2) A wide range of situations must be tested

to guarantee a smooth transition to the

“Play” phases and the occurrence of the

“Play” phases in any precondition.

In addition to this, scenarios are becoming more

and more complex, as e.g. sophisticated

Advanced Driver Assistance Systems (ADAS),

the interaction between different kinds of agents

or even the interaction between the drivers (and

not the vehicles they are in) may be tested.

Sometimes, on top of this, these tests also cover

more complex sensor simulations, or Vehicle-to-

Infrastructure/Vehicle-to-Vehicle (V2X)

communication, probably resulting in additional

complexity of the manuscripts.

As described in [Fis1], DLR’s Institute of

Transportation Systems (ITS) currently has

many different simulators and test vehicles in

service which may also be coupled so that

various test drivers can participate in one

scenario of the above mentioned complexity in

the so called “Modular and Scalable Application

Platform for ITS components” (MoSAIC). MoSAIC

enables many new kinds of scenarios, but

introduces the complexity of getting not only the

automated agents to the correct positions and

velocities in the “Preparation” phases, but also

the human ones. As human drivers represent

subjects in studies, they can mostly not be

advised to follow many extra rules. Therefore,

the human drivers have to be influenced by the

surroundings, e.g. traffic lights, automated road

users, or instructed human drivers, again

resulting in a higher complexity of the

manuscripts with lots of parameters not known

in the beginning.

The problem now is that the scenario design

process in companies or institutes in general,

i.e. the process for specifying the manuscript, is

very often not tailored for iterations or multiple

test cases, esp. not in the case of rising

complexity. Although there might not exist any

specified process for this in many institutes or

companies operating driving simulators, the

generation of the manuscripts commonly

follows a requirement-driven approach. This

means, as shown in Figure 2, that the basic

idea and the goals of a scenario are analysed in

a first step in order to get a catalogue of

requirements. The requirements are afterwards

transferred into a rough plan of the scenario

and the following creation of the 3D model and

the implementation of the scenario. After the

implementation, the scenario is getting tested.

As this is a well-known procedure in other

disciplines like systems or software

engineering, it can be found that there are

many parallels to common process models,

esp. the Waterfall Model [Roy1]. The only main

difference to this model is that refinements can

be done by restarting any of the phases

directly instead of moving up phase by phase.

In addition to the often criticised linearity of

this model, e.g. by [Liv1] or [Boe1], scenario

design is very often challenged by the

existence of two parties: One party – mostly

consisting of people from the domain of

psychology (esp. when performing

psychological studies) – is analysing the needs

of the scenario and describing the

requirements of it. In the following, we

therefore call this party the “requesters”. The

other party is responsible for the

implementation (the “implementers”) and

therefore this party consists of people trained

in the operation of manuscript editors or

driving simulators. So both parties may lack a

lot of knowledge of the other party, often

leading to the specification of incomplete

requirements and to the implementation of

scenarios not complying with the initial needs.

Fig. 2. Waterfall-like approach of common scenario

design

As a result, the testing of the scenario script

very often fails, and large refinements of the

scenario design have to be performed. Due to

Driving Simulation Conference 2014 Coping with complex driving scenarios: Exploratory Scenario Design

Paper number 08 - 08.3 - DSC’14

the waterfall-like structure of the process, these

refinements are expensive and time consuming.

Catalogues of requirements have to be adapted,

the meaning of situations have to be explained.

There are several possibilities to cope with the

occurrence of these iterations: On the one hand

by changing the process and on the other by

using proper tools. This paper addresses both,

by introducing a new scenario design process

and tools for enabling it.

2. Ideas for a better process

As mentioned before, the missing tailoring to

possible iterations is not a new phenomenon,

but has been widely discussed in systems or

software engineering. So it is not surprising that

various approaches exist for solving this issue,

e.g. prototyping [Flo1 or Ril1] or the spiral

model of Boehm [Boe1] (which is also based on

the prototyping approach).

In prototyping, the goal is the creation of

horizontal prototypes (e.g. mock-ups without

function) or vertical prototypes (e.g. parts of the

complete target system) which can be tested by

users before the complete system has to be

built. Furthermore it describes how to get closer

to a final product, e.g. by rapid, evolutionary or

incremental prototyping [Ril1].

Adapted to the scenario design this means that

the target scenario needs to be decomposed into

smaller parts, which can be implemented in a

prototypic way. As a “scenario mock-up without

functionality” can only be hardly imagined, we

classify scenario prototypes as vertical

prototypes. They therefore represent a part of

the whole scenario, e.g. one special situation

during one “Play” phase. The kind of the

prototypes may be rapid (meaning that a

developed prototype may be thrown away after

instantiation) or evolutionary (meaning that a

developed prototype will get more and more

precise in each iteration). As a result, several

prototypes may exist for the several parts of the

scenario which can be merged into one scenario

as done in the incremental prototyping [Ril1].

One major problem of scenario design is that

parameters like acceleration or time-headways,

or the limits of parameters, very often must be

guessed or approximated iteratively, as their

effect can only hardly be imagined. A misfit can

only be recognized when testing the prototype in

action. The same is true for the creation of a

good look-and-feel in the “Preparation” phases,

where a wide range of initial conditions has to be

tested. In some situations not only the

approximation of the value of any parameter,

but the choosing of the correct parameter itself

is already challenging. Both aspects in general

are addressed in the field of exploratory

research [Ste1]. This research has also been

applied to the development of ADAS as

“exploratory design”; see [Fle1] or [Sch2]. In

the exploratory design, the complete space of

design possibilities, the “Design Space”, is

reduced systematically in iterations in order to

find an optimal design. It makes use of a

method called the “integrated testing” where

design alternatives get tested step by step by

driving in a simulation before any line of code

has been written.

It therefore makes use of a tool called the

“Theater System” [Sch1], in which one ADAS

designer playing the role of a potential user of

a future ADAS is sitting in a simulator with

active inceptors (steering wheel, pedals or

side-sticks). The active inceptors are coupled

to a second set of inceptors, operated by

another designer playing the system, the so

called confederate. The confederate now can

directly ask how e.g. a haptic feedback should

feel like while driving through the situation. As

the inceptors are coupled, the driver can

directly feel the actions of the confederate.

Iteratively the designers may also change their

roles and can therefore express their intentions

directly. When a good solution has been found

for any tiny step, this step is implemented

quickly, and directly validated in the

simulation. Thanks to tool support the

implementation can be done (mostly) in

seconds, so that crisp ADAS designs can be

reached very fast.

The approach of integrated testing would

strongly benefit the scenario design, as it

enables quick iterations of prototyping with

high performance and emerging scenarios of

high quality.

Nevertheless, the general prototyping approach

only describes how to get to a final product in

smaller iterative steps, but it does not define

the means used for the creation. As described,

there often are two parties involved in the

scenario design process, the “requesters” and

the “implementers”, both often with different

backgrounds. Bringing both parties closer to

each other would largely benefit the design

process. The party of the “requesters” can be

seen as “users” in a wider sense, as they want

to use the scenario for the performing of their

studies. Therefore, when using the term of

“user”, an analogy to systems engineering can

Driving Simulation Conference 2014 Coping with complex driving scenarios: Exploratory Scenario Design

Paper number 08 - 08.4 - DSC’14

easily be found, esp. by looking at Participatory

Design (PD) [Ken1], where users are directly

integrated in the design of systems. This has

already been done in ADAS design by the

“Theater System”, as a potential user can

directly participate instead of a designer playing

the role of him. As the changing of the roles is

still possible, the designer is able to directly feel

the interaction a potential user has in mind.

The participation of the “users” is a very

valuable step in systems engineering.

Nevertheless, it is criticised to be possibly

ineffective, as the users cannot be professionals

and therefore lack knowledge and tend to

reinvent the wheel. Kensing and Blomberg

[Ken1] state that “…design professionals need

knowledge of the actual use context and workers

[i.e. users in this context] need knowledge of

possible technological options”.

Applied to scenario design user participation as

stated in PD would mean to simply let the

psychologist create the scenario alone. Although

scenario design has changed a lot in the last

years from plain scripting to the common use of

scenario editors with Graphical User Interfaces

(GUI), using those tools and knowing about all

the implemented features is still not fully

intuitive and needs to be trained. So indeed this

option would be ineffective.

The ineffectiveness in general is a well-known

problem already addressed in systems

engineering, e.g. in the Cooperative System

Development Process (CESD) [Gro1], where

“existing technological concepts and systems […]

can be brought in as thought-provoking artefacts

in cooperative workshops extending the

participants’ understanding of alternatives as

well as current practice”. Applied to scenario

design this would mean to show the users the

alternatives they have when designing the

scenario.

But Grønbæk et al. [Gro1] also go a little

further: “To design cooperatively, to develop

visions of technology in use, it is important to

give these visions a form that allows users to

apply their knowledge and experience as

competent professionals in the process.”

Kensing and Blomberg [Ken1] therefore

interpret the mentioned form as the requirement

of “access to adequate prototyping tools” leading

to the statement that “the development of tools

and techniques is a key focus for PD projects”.

Applied to the scenario design this means that

using special tools beyond any GUI scenario

editor may enable a better cooperation between

professionals and users, i.e. implementers and

requesters. Proper Tools may benefit the whole

process of scenario generation. These tools

should bring the requester and the

implementer closer together so that on the one

hand the requester understands which

possibilities and short-cuts exist when

designing scenarios and on the other hand the

implementer gets a better understanding of the

broader context of the scenario and the

reasons for the specified requirements.

Ideally, these tools will also support the former

mentioned approach of integrated testing.

In summary, a new process for scenario design

therefore should cope with the following three

basic recommendations for complex scenario

design:

(1) Prototypes for each part of a scenario

should be created instead of complete

scenarios

(2) Prototypes should be created in quick

iterations, best in a form of integrated

testing, as this enables the exploration

of various parameters and alternatives,

promising scenarios of high quality.

(3) Requesters of the scenario should

participate in the scenario design

actively, best by cooperating directly

with the implementers. This is reached

by the introduction of proper tools.

One suggestion for such a scenario design is

described in the following.

3. The Exploratory Scenario Design

Process

The Exploratory Scenario Design Process as

shown in Figure 3 starts in the same way as

regular processes, i.e. by the initial definition

of the goals of the target scenario. These goals

then have to be transformed into a rough idea,

how a test scenario might look like. The

transformation is done in an analysing phase

by a decomposition of the goals into use cases,

user stories and single requirements. In this

context, use cases describe the general

situation, e.g. being on a two-lane highway

with a speed limit of 120 km/h and mixed

traffic of low density.

User stories than describe the individual things

happening in the use cases, e.g. a close

overtaking of a slower truck when there is

upcoming traffic in the blind spot of the ego

car. Each “Play” phase consists of one or more

consecutive user stories.

In this example, an emerging requirement

would be that there is a slower truck in the

Driving Simulation Conference 2014 Coping with complex driving scenarios: Exploratory Scenario Design

Paper number 08 - 08.5 - DSC’14

lane of the ego car. Another would be that in

that precise moment there has to be another car

in the blind spot.

When the requirements have been specified,

they are transferred into a basic idea of how the

final scenario might be composed. Afterwards, a

phase of preparation is started. In this phase,

e.g. the 3D model of the virtual landscape is

generated and a set of road users of the needed

type and density is provided to the streets in

order to make the desired look-and-feel of

everyday life situations.

The resulting basic scenario is afterwards set up

in the simulator. In order to reduce artefacts of

different simulators, the target simulator should

be the one where the study will take place, if

possible.

Fig. 3. Exploratory Scenario Design

As shown in Figure 3, at this point the integrated

testing is started. As analogy to the “Theater

System” approach when designing ADAS online

in the simulation, the same can be done in the

design of scenarios. The different agents

involved in a situation can be controlled

manually by connecting additional control

entities like simulators or simple game wheels to

the target simulator. In this way, humans play

the interaction between the vehicles on the track

before any single line of scenario code has to be

written. When the involved persons agreed on a

played situation, the scenario script is created

directly from the manually driven test runs.

The exact procedure of the integrated testing in

the scenario design is as follows:

First, the basic scenario is loaded and it is

jumped to the time and/or place where the first

“Play” phase is supposed to happen. Each of the

agents which are going to play a specific role in

the first user story of this phase, including the

ego car in the targeted scenario and any other

agent, is assigned to a manual driver and a

control entity. One of the drivers may also be

the requester of the scenario, who now has the

direct ability to show his intentions. Afterwards,

the scenario is started and the movements of

all agents are recorded.

One special thing about the recording is that

not only the trajectory of the agents is

recorded but also events like indicator signals

or inceptor movements. When a user story has

been recorded, it can be replayed. The

recording may be discarded and repeated when

somebody (and esp. the requester) is not

satisfied with the result.

In case of full satisfaction the recorded data is

analysed by software. This step is necessary

because a simple replaying of the trajectories

during the study will not serve all possible

behaviours of the ego drivers in the study. Just

imagine a fast driving and a slow driving

participant in a study: When cars simply follow

trajectories the resulting situation will be

completely different, as the behaviour of each

agent has an impact on the behaviour of the

others. Therefore, the data esp. of the movable

agents must be brought to a more abstract

level. This is done by categorizing the data into

driving manoeuvres. Afterwards, the events

not fully complying with the currently driven

manoeuvre are marked. The manoeuvres and

the marked events per agent are presented in

form of a timeline of the run in a graphical

way. An example for this with three agents is

shown in Figure 4: All involved movable agents

are classified as driving in the manoeuvre

“follow lane” at the beginning (t0). When the

blue car – let us say18.3 meters in front of the

red car - started to brake, the driver of the red

car did a movement of the steering wheel

resulting in a swerving of his car. The swerving

does not comply with the manoeuvre and

therefore it gets marked (the highlighted red

area shortly before t1). Afterwards, the red and

green car continue driving, the blue one has

stopped (t2).

Fig. 4. Example of a scenario analysis output.

Situations are marked where car behaviour changes.
The upper images show how the situations and the

just driven trajectories looked like at the given
timestamps of t0, t1 and t2. The yellow circle

highlights a marked swerving situation just before t1.

Driving Simulation Conference 2014 Coping with complex driving scenarios: Exploratory Scenario Design

Paper number 08 - 08.6 - DSC’14

The people involved in the scenario design now

have the direct ability to discuss the events.

Events occurring unintendedly can be unmarked.

All the other events have to be linked to

triggers. Triggers can be any logical combination

of one or more other events, manoeuvre

changes or any thresholds of any other available

parameter, e.g. distances/time headways/time

to collisions to other agents or infrastructure,

durations, indicator signals etc.

In the above example, the scenario designers

may decide if the swerving has been intended or

not. When it has been intended, it has to be

linked to one or more triggers, possibly to the

braking of the car ahead and the distance to it.

Also the manoeuver changes have to be linked

to certain triggers. Additionally, the triggers can

be specified with tolerances or limits of

thresholds. E.g. “braking” may be defined as

“braking with more than 0.4g” or “distance” may

be defined as “between 10 and 30 meters”.

Furthermore, not only the trigger itself can be

specified with tolerances; also the event

happening because of the trigger may be

performed with tolerances adapting to the

surrounding. In the example, you may link the

amplitude of the swerving to the width of the

current lane. Another example would be the

linking of the length of a triggered lane change

(like the ones of the red and green car in the

example) to the surrounding traffic situation.

The setting of triggers has to be done for all the

not movable agents as well. Traffic light phases

may be linked to events happening in the

simulated world or simply to timing models.

The general advantage of the abstraction is that

the intended behaviours of the agents can be

separated from the unintended easily. The key-

behaviour in the scenario is extracted and

uncoupled from trajectories, allowing a range of

initial situations to be tolerated for triggering.

The abstraction of the situation furthermore

enables the transferability of manually driven

scenarios to automated car behavior, a

necessary step for creating a script of the

scenario. Driving the situation manually gives a

good overview on the parameters to choose as

triggers and their values.

Each user story of each “Play” phase, i.e. each

situation or prototype, can be recorded

consecutively in this way.

Nevertheless, sometimes situations occur, where

more agents are involved than simulators or

controllers are available. In this case, another

way of scenario creation must be chosen, as

parallel driving is not possible. This can be done

by either manually script parts of the scenario so

that some of the agents are controlled

automatically, or by recording the behavior

sequentially, or by switching between the

currently controlled agents while recording.

When all situations of a scenario meet the

requirements, the whole scenario script is

generated, so that it can be used by single ego

drivers. This procedure is also applicable for

scenarios with multiple ego drivers or agents of

different type.

In any case, a crisp scenario design will

emerge after a short phase of preparation, as

parameters and thresholds are not needed to

be guessed, but are directly tangible in the

simulation. Requesters of scenarios can directly

feel how parameters must be chosen to create

a desired output.

Therefore, the mentioned approach already

copes with the three basic recommendations

for complex scenario design. Nevertheless, it

might be difficult for the design team to keep

track on the proceeding of the scenario

creation. Additionally, it would be beneficial if

the scenario designers are able to discuss the

recorded scenarios in detail in a collaborative

way, something not so easy in the limited room

available in some driving simulator cabins.

Furthermore, not enough control entities might

be available.

To account on these issues it is proposed to

make use of an additional tool, described in the

following.

4. A Multi-Touch-Table as central
tool in the Exploratory Scenario

Design Process

A new tool has been created to cope with the

mentioned issues. It has been found (see

[Sch3] for details) that the ideal basis for such

a tool is a multi-touch-table showing bird views

on the scenario. At DLR ITS an Ideum MT 55”

Multi-Touch-Table with a maximum of 32

possible parallel touch points has been chosen

for this task.

The software running on the table is a self-

developed scenario editor with a graphical user

interface focussing on maximum collaboration

and intuitive control. In Figure 5, the table is

shown running attached to the three small

simulator entities of the DLR ITS MoSAIC

Laboratory. Up to six bird-views of the

situation are shown on the table in parallel,

each of it centring on a freely selectable agent

of the scenario. Each bird-view can be

controlled by using standard gestures as

known from current smart-phones, e.g.

Driving Simulation Conference 2014 Coping with complex driving scenarios: Exploratory Scenario Design

Paper number 08 - 08.7 - DSC’14

zooming with two fingers moving away from

each other, rotating with two fingers doing a

circular movement.

Fig. 5. Scenario preparation around the Multi-Touch-

Table at the DLR MoSAIC Lab

Additionally, it is possible to control the centred

agents directly on the table. The controlling of

movable agents is possible in three ways

according to the three hierarchical layers of the

driving task from Donges [Don1]: It is possible

to specify and change the route of each agent

(navigational layer), to change the actually

driven manoeuver (guidance layer), and to

directly control the movements of the agent

(control layer). The route of each road user can

be specified by dragging waypoints into the

scenery. Manoeuvers are switched by selecting

them in a small menu displayed near the car.

The direct control is done in the following way as

shown in Figure 6: first, one finger is put on the

displayed agent who has to be controlled.

Afterwards, another finger is put where it is

supposed to head. This second point is also the

neutral position for acceleration, so moving the

fingers apart will accelerate the agent, moving

them towards each other will cause deceleration.

Fig. 6. Controlling a moving agent with touch gestures

Agents which are not movable are controlled

similar as the controlling of manoeuvers, i.e. by

small menus, e.g. showing the phases of the

traffic lights.

Another aspect of the multi-touch table is that it

allows the controlling of the scenario recording

and basic functionality like 3D model loading,

vehicle insertion etc. Therefore, dialog-boxes

and menus are shown on the screen. Due to

the fact that the designers are supposed to

stand around the table, the position and even

the orientation of the menus had to be freely

adjustable. Because of this, each menu can be

picked, rotated and resized with the former

introduced gestures known from smart phone

interaction. This makes it possible to work on a

menu and to “hand it over” to another person

on the other side of the table. As all the

standard windowing toolkits (at least FLTK,

GTK, QT) do not have the ability to perform

such actions easily, it has been chosen to

create a new toolkit based on osgwidgets, a

part of OpenSceneGraph [Wan1]. The creation

of the windowing toolkit has been discussed in

detail in [Hes1].

The same menu structure can be used to

directly access and manipulate all available

parameters of the agents, e.g. by smoothing

the recorded values, setting some initial

speeds, selecting the 3D model of the agents,

or by introducing threshold values etc.

Finally, the output of the scenario recording

can be displayed similar to the example in

Figure 4. As described, the manoeuvres and

the events per agent are presented in form of a

timeline of the run. The discarding, the setting

of triggers of events or the modification can be

done graphically on screen. The resulting script

can be exported into a human-readable XML

scenario script files and used for testing in the

simulator.

The multi-touch table application is currently

(May 2014) under development. The work on

the windowing toolkit and the support of multi-

touch gestures is already finished, the

implementation of the scenario recording and

analysis has just started and is targeted to

finish by the end of 2014. Therefore, the

approach of Exploratory Scenario Design has

not been tested practically in any project, and

there is currently no data on increasing

efficiency available. As soon as the tool

development is finished, the performance will

be measured.

5. Conclusion

This paper has described the issues of current

scenario design and the assumed aggravation

of them in the near future. A new approach,

the Exploratory Scenario Design, has been

introduced which focusses on the direct

integration of the people normally only creating

requirements for scenarios into the process of

the detailed design of the scenario itself. It has

Driving Simulation Conference 2014 Coping with complex driving scenarios: Exploratory Scenario Design

Paper number 08 - 08.8 - DSC’14

been shown that the methods of prototyping and

“integrated testing” used in the Exploratory

Scenario Design are strongly benefitting the

design of complex driving scenarios in terms of

time needed for the preparation and quality of

the resulting scenario. Furthermore, the

integration of a multi-touch table as central tool

and enabling technology for the Exploratory

Scenario Design has been introduced and

described in detail, including some of the

available multi-touch gestures.

The utilization of the design process, the

methods and the proposed tools will enable the

coping with complex driving scenarios of all

kinds in the upcoming future.

6. References

[Boe1] Boehm, B.W. “A Spiral Model of

Software Development and Enhancement” In:

IEEE Computer, Vol. 21, Issue 5, pp. 61-72,

1988

[Don1] Donges, E. “Aspekte der aktiven

Sicherheit bei der Führung von

Personenkraftwagen”. In: Automobil-Industrie,

Volume 27, pp. 183–190, 1982.

[Fis1] Fischer, M., Richter, A., Schindler, J.,

Plättner, J., Temme, G., Kelsch, J., Assmann, D.,

Köster, F. “Modular and scalable driving

simulator hardware and software for the

development of future driver assistance and

automation systems”, Paper submitted to the

Driving Simulation Conference, 2014.

[Fle1] Flemisch, F., Schindler, J., Kelsch, J.,

Schieben, A., Damböck, D. “Some Bridging

Methods towards a Balanced Design of Human-

Machine Systems, Applied to Highly Automated

Vehicles”. Applied Ergonomics International

Conference, Las Vegas (USA), 2008

[Flo1] Floyd, C. “A systematic look at

prototyping”. In: Approaches to prototyping.

Springer Berlin Heidelberg, pp 1-18, 1984.

[Gro1] Grønbæk, K, Kyng, M., Mogensen, P.

“Toward a Cooperative Experimental System

Development Approach”. In Kyng, M.,

Mathiasen, L. (Eds.): Computers and Design in

Context, MIT Press, pp. 201-238, 1997

[Hes1] Hesse, S. “Development of a Graphical

User Interface for the Explorative Design of

Driving Scenarios”, Bachelor thesis, 2014.

[Ken1] Kensing, F., Blomberg, J. “Participatory

Design: Issues and Concerns”. In: Computer

Supported Cooperative Work, Vol. 7, Kluwer

Academic Publishers, pp. 167-185, 1998

[Liv1] Liversidge, E., “The Death of the V-

Model”, 2005, Available at

http://www.harmonicss.co.uk/index.php/hss-

downloads/doc_download/12-death-of-the-v-

model, Last accessed May 2014

[Ols1] Olstam J., Espié, S. “Combination of

autonomous and controlled vehicles in driving

simulator scenarios”. In Andrea Benedetto

(Ed.): Advances in Transportation Studies,

University Roma Tre (21), pp. 23–32, 2010.

[Ril1] Riley, D. D. “Software Lifecycle Models”.

2010, Available at

cs.uwlax.edu/~riley/CS741Sum10/lectures/2_L

ifeCycles.pdf, Last accessed May 2014

[Roy1] Royce, W. “Managing the development

of large Systems”. In: IEEE Wescon, pp 1-9,

1970.

[Sch1] Schieben, A., Heesen, M., Schindler, J.,

Kelsch, J., Flemisch, F. “The theater-system

technique: agile designing and testing of

system behavior and interaction, applied to

highly automated vehicles”. In Albrecht

Schmidt (Ed.): 1st International Conference on

Automotive User Interfaces and Interactive

Vehicular Applications, pp. 43–46. 2009

[Sch2] Schindler, J., Temme, G., Schieben, A.,

Flemisch, F. “Exploratory design of a highly

automated system for entering the

expressway”. In: de Waard, D., Axelsson, A.,

Berglund, M., Peters, B., Weikert, C. (Eds.):

Human factors. A system view of human,

technology and organisation. Maastricht:

Shaker Publishing, pp. 201–216, 2010.

[Sch3] Schindler, J., Kelsch, J., Heesen, M.,

Dziennus, M., Temme, G., Baumann, M. “A

Collaborative Approach for the Preparation of

Cooperative Multi-User Driving Scenarios”. In:

10. Berliner Werkstatt Mensch-Maschine-

Systeme, Berlin, Germany, 2013.

[Ste1] Stebbins, R. A., ed. “Exploratory

research in the social sciences”. Vol. 48, Sage,

2001.

[Wan1] Wang, R., Qian, X. „OpenSceneGraph

3 Cookbook“, Packt Publishing, 2012.

