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Resumo 

 

 

 Aplicações futuras de SAR, como monitoramento de desastres ou detecção de 

mudanças de biomassa em escala global exigem grandes larguras de faixas e alta resolução ao 

mesmo tempo. Uma alto resolução de azimute aumenta a necessidade de uma frequência de 

repetição de impulsos elevada (PRF) para amostrar o sinal adequadamente e evitar 

ambigüidades azimute no processo de imagem SAR. Contudo, o PRF elevado limita a largura 

da faixa. Para superar esta limitação, uma solução é dividir a antena receptora em múltiplas 

sub-aberturas e depois combinar os sinais das sub-aberturas usando Beamforming digital para 

suprimir as ambiguidades azimutais. 

 Uma vez que as técnicas de digitais de Beamforming digital requerem um 

conhecimento preciso dos diagramas de irradiação das antenas, uma primeira investigação desta 

tese trata da estimativa do diagrama complexo de irradiação de antenas a partir de dados de 

imagem dar de um alvo pontual. Estes diagramas estimados são então aplicados no processo de 

beamforming, o que significa que nenhuma informação a priori em termos de diagrama de 

irradiação é necessário. Aqui, basicamente, são apresentados dois conceitos, sendo o primeiro 

um otimizador de SNR eo segundo dedicado à supressão de ambigüidades de azimute. 

 Em uma segunda análise, a exigência de informação a priori é descartada quando a  

chamada matriz de covariância de ruído dos canais é estimada a partir dos dados. 

  

 

 

 

 

 

 

  



 

 

 

Abstract 

 

 Future SAR applications such as disaster monitoring or detection of biomass changes 

on a global scale demand large swath widths and high resolution at the same time. A high 

azimuth resolution raises the need of a high pulse repetition frequency (PRF) in order to sample 

the signal adequately and avoid azimuth ambiguities in the SAR imaging process. However, 

the high PRF limits the swath width. To overcome this limitation, a solution is to split the 

receiving antenna into multiple sub-apertures and then combine the sub-apertures signals using 

digital beamforming techniques to suppress the azimuth ambiguities. 

Since digital beamforming techniques require precise knowledge of the antenna 

patterns, a first investigation of this thesis deals with the estimation of the complex azimuth 

antenna patterns from point target data. These estimated patterns are then applied in an a 

posteriori beamforming process, meaning that no a priori information in terms of pattern 

knowledge is required. Here, basically two concepts are presented, the first being an SNR 

optimizer and the second dedicated to the suppression of azimuth ambiguities. 

In a second analysis the requirement of no a priori information is dropped insofar that 

only the so called noise channel covariance matrix is estimated from the data. The beamforming 

is performed on the basis of the array steering vector, assumed to be known a priori. 
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 1 – Introduction 

 

1.1 – Motivation and Objectives 
 

  Synthetic Aperture Radar (SAR) is a well proven imaging technique, finding application 

in various fields of natural sciences, military surveillance and security services. 

 However, conventional SAR systems are not capable of fulfilling the increasing 

demands for improved spatial resolutions and wide swath coverage, required for applications 

like Earth system dynamics monitoring [1], disasters management with shot revisit time and 

biomass changes monitoring on a global scale. The conventional SAR systems cannot meet 

these rising demands because unambiguous swath width and high azimuth resolution pose 

contradicting requirements on the system design [2].  

 To achieve a high azimuth resolution, a broad Doppler spectrum has to be acquired, 

what raises the need of a high Pulse Repetition Frequency (PRF) in order to sample the signal 

adequately and avoid azimuth ambiguities in the image. However, the high PRF limits the swath 

width. Alternative SAR imaging modes push this trade-off only further into one direction or 

another without resolving the constraint: the spotlight mode yields a high resolution but not 

sufficient coverage [3], while burst modes as ScanSAR [4,5] and TopSAR [6] map a wide swath 

but only with a coarse resolution. 

 One possibility to overcome this restriction is to transmit a signal using a broad beam, 

record the echo with multiple receivers and later combine the individual receiver signals using 

digital beamforming (DBF) techniques to reconstruct the high resolution image. In the classical 

approach a planar array antenna is employed [7,8], where the aperture is split on receive into 

several subapertures. Innovative DBF concepts and optimization strategies have been 

developed [9,10]. Although DBF techniques require the knowledge of the channels noise 

covariance matrix and the complex antenna patterns. 

 Adaptative beamforming has been approached in [11,12,13], but only in the sense of 

estimating the noise covariance matrix from the data, where the antenna patterns are assumed 

to be known a priori. Some other works has also been done showing different methods of 

estimating the noise covariance matrix [14,15,16,17].  

 Regarding the antenna patterns, methods of estimating the magnitude of the patterns 

from the data [18,19,20] have been derived, but no work was done so far to estimate the 

complex array manifold. This raises the need of the a priori knowledge of the complex patterns 
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to enable DBF techniques to be applied. Although, for spaceborne radars antenna pattern 

measurements are difficult to deploy from space and a priori measured or analytically calculated 

patterns are subjected to changes, what prohibits the efficient application of DBF techniques. 

 Motivated by that, the main objective of this thesis is to provide a posteriori knowledge 

based digital beamforming concept, where both the complex antenna patterns and the noise 

covariance matrix are estimated from multi-channel SAR data and later applied with DBF 

techniques to suppress azimuth ambiguities and optimize the image SNR. 

 

1.2 – Structure of the Thesis 
 

The thesis is structured in 7 chapters. Chapter 2 introduces the theoretical background, 

as the SAR principles and the planar array complex patterns formula. Chapter 3 presents the 

multi-channel SAR system principals, introducing DBF concept and two specific azimuth DBF 

techniques: Linear Constraint Minimum Variance (LCMV) beamforming and Minimum 

Variance Distortionless Response (MVDR) beamforming. Chapter 4 presents the method used 

to estimate the complex antenna patterns from SAR data employing a point target or 

transponder and also the method to estimate the noise covariance matrix from the data. Chapter 

5 presents simulations where the estimated patterns are applied with DBF techniques to 

combine multiple channel signals in order to form a final high resolution image where azimuth 

ambiguities are suppressed or the SNR is optimized. Chapter 6 describes the experiment with a 

multi-channel demonstrator, with the aim of showing in practice the proposed method of pattern 

estimation.Chapter 7 presents the conclusions and suggestions for future work. 
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2 – Theoretical Background 

2.1 – SAR Principles 
 

SAR systems are active imaging systems operating at radio frequencies. This kind of 

radar is capable of obtaining an improved azimuth resolution compared to real aperture Radar 

(RAR) using signal processing and phase information of the successive recorded radar echoes. 

The radar radiates pulsed waveforms with duration 𝜏𝑝 at a pulse repetition frequency (PRF) and 

receives the backscattered echoes. As the pulse travels on the velocity of light, and this one is 

much higher than the velocity of the platform, the radar is considered stationary during the 

transmission of the pulses and reception of the corresponding echoes. After reception, the 

echoes are down-converted, sampled and stored in a matrix called the raw data matrix. After 

the raw-data processing, that is, range compression, range cell migration correction and azimuth 

compression, a focused two-dimensional image is obtained. 

 

2.1.1 – SAR Acquisition Geometry 
   

 In Fig. 2.1 a simplified geometry of a side-looking radar is shown [2]. The radar is 

carried on a platform (aircraft or satellite) moving at speed 𝑉𝑠 in a locally straight line at constant 

altitude. The radar beam is assumed to be directed perpendicular to the flight path of the vehicle 

and downwards to the Earth surface. 

  

  
RADIATED 
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  SAR
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SWATH FOOTPRINT
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a) Perspective view 
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b) View in flight direction 
Figure 2.1 –SAR acquisition geometry 
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For this geometry, the direction parallel to the radar movement is the azimuth direction, 

the direction parallel to line between the radar and the target is the slant range direction and its 

projection on the ground is called ground range direction. The area illuminated by the 

transmitting antenna is called footprint and its range extension is the ground swath width (𝑊𝑔). 

The look angle 𝛾, relative to the vertical, is the same as the incidence angle, 𝜂, which is the 

angle between the radar beam and the normal to the earth’s surface at a particular point of 

interest.  

 

2.1.2 – Range Resolution 
 

The resolution of the radar in ground range (Fig. 2.1 b) is defined as the minimum range 

separation of two points that can be distinguished as separate by the system [1]. If the arrival 

time of the leading edge of the pulse echo from the more distant point is later than the arrival 

time of the trailing edge of the echo from the nearer point, each point can be distinguished in 

the time history of the radar echo. If the duration of the radar pulse is 𝜏𝑝, the minimum 

separation of two resolvable points is then: 

 

Δ𝑅𝑔 =
Δ𝑅𝑆
sin 𝜂

=
𝑐𝜏𝑝

2 sin 𝜂
 (2.1) 

 

Where Δ𝑅𝑆 is the resolution in slant range and 𝑐 is the speed of light. 

 To obtain a reasonable resolution Δ𝑅𝑔, the required pulse duration 𝜏𝑝 would be too short 

to deliver adequate energy per pulse to produce a sufficient echo signal to noise ratio (SNR) for 

reliable detection. Therefore, a pulse compression technique is commonly used to achieve both 

high resolution (with a longer pulse) and high SNR. Processing the received pulse using 

matched filtering, the range resolution obtainable is: 

δ𝑅𝑔 =
𝑐

2BRsin 𝜂
 (2.2) 

 

where 𝐵𝑅 is the frequency bandwidth of the transmitted pulse.   

All radar systems resolve targets in the range dimension in the same way. It is the 

resolution of targets in the azimuth dimension that distinguishes a SAR from other radar 

systems.  
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2.1.3 – Azimuth Resolution 
 

 

  

R

R

Y

VS

  

 

Figure 2.2 – Real Aperture Radar azimuth resolution 

 

As shown in Fig. 2.1, 𝐿𝑎 is the antenna length in the azimuth direction [2]. Then the 

antenna azimuth beamwidth 𝜃𝐻  is given by:  

θH ≈
𝜆

𝐿𝑎
 (2.3) 

 

where 𝜆 is the wavelength. For the conventional real aperture radars , two targets on the ground 

separated by 𝛿𝑦 in the azimuth direction and at the same slant range 𝑅 (Fig. 2.2) can only be 

resolved if they are not in the radar beam at the same time, leading to an azimuth resolution of: 

   

𝛿𝑦𝑅𝐴𝑅 = 𝑅𝜃𝐻 ≈
𝑅𝜆

𝐿𝑎
 (2.4) 

 

 From equation (2.4), to improve the azimuth resolution 𝛿𝑦𝑅𝐴𝑅  for the RAR at a specific 

slant range 𝑅 and wavelength 𝜆, it is necessary to increase the antenna length in the azimuth 

dimension. For spaceborne imaging radars with range distance of hundreds of kilometers, to 

achieve a high resolution required for use in scientific application, it would be necessary an 

antenna of impractical length 𝐿𝑎 and problematic to deploy in space. 
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 The observation that led to SAR and improved the azimuth resolution was the one that 

two point targets, at slightly different angles with respect to the track of the radar, have different 

speeds at relative to the platform. Therefore, the radar pulses reflected from the targets will 

have different Doppler frequency shifts. 

 For a target at slant range R and azimuth coordinate 𝑦 relative to the radar as shown in 

Fig. 2.2, the Doppler shift relative to the transmitted frequency is given by:  

𝑓𝐷 =
2𝑉𝑠 sin 𝜃

𝜆
=
2𝑉𝑠𝑦

𝜆𝑅
 (2.5) 

 

where 𝑉𝑠 is the platforms velocity and 𝜃 is the angle of target relative to the platform as shown 

in Fig. 2.2. If the frequency of the signal is analyzed, any energy observed in a return time 

corresponding to range 𝑅 and at Doppler frequency 𝑓𝐷 will be from a target at azimuth 

coordinate:  

𝑦 =
𝜆𝑅𝑓𝐷
2𝑉𝑆
 

 (2.6) 

 

So even though the targets are in the same range and in the beam at the same time, they 

can be discriminated by the analysis of the Doppler frequency. Now there are two coordinates 

to distinguish the targets. The echo time delay 𝜏 gives the range 𝑅 and the Doppler frequency 

shift 𝑓𝐷 gives the azimuth distance 𝑦 relative to a point directly beneath the vehicle as shown 

in Fig. 2.2.  

With the use of Doppler analysis of the echoes, the resolution 𝛿𝑦 in the azimuth 

coordinate is related to the resolution 𝛿𝑓𝐷 of the measurement of the Doppler frequency.  

From equation (2.6), the azimuth resolution for the SAR is then: 

 

𝛿𝑦𝑆𝐴𝑅 =
𝜆𝑅𝛿𝑓𝐷
2𝑉𝑆
 

 (2.7) 

 

The measurement resolution in the frequency domain is the inverse of the time interval 

𝑇𝑖𝑎 of the waveform being analyzed, that is the time which a particular target remains in the 

beam. From Fig. 2.3 this time extension, called illumination time, is:  

𝑇𝑖𝑎 =
𝑅𝜃𝐻
𝑉𝑆
 

≈
𝑅𝜆

𝐿𝑎𝑉𝑆
 (2.8) 
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which results in 

𝛿𝑓𝐷 =
1

𝑇𝑖𝑎
≈
𝐿𝑎𝑉𝑆
𝑅𝜆

 (2.9) 

 

Substituting equation (2.9) into equation (2.7):  

𝛿𝑦𝑆𝐴𝑅 ≈ (
𝜆𝑅

2𝑉𝑆
 

) (
𝐿𝑎𝑉𝑠
𝑅 𝜆

) =
𝐿𝑎
2

 (2.10) 

 

 Equation (2.10) shows that the azimuth resolution for SAR depends only on the length 

of the antenna and it doesn’t depend on the range distance 𝑅 and wavelength 𝜆.  

 

2.1.4 – SAR Response to a Point Target 
 

Since the theory of this thesis is based on SAR-Data for a strong point target, the 

system’s response to a point target and the processing of this raw data will be further explored.  

The raw data is a two-dimensional matrix in which the range 𝑅 and the azimuth position 𝑦 are 

the coordinates. As the sensor moves in the azimuth direction, it transmits pulses in a frequency 

called pulse repetition frequency (PRF), the pulse is reflected by the target, the echo is received, 

quadrature-demodulated, digitized and put into the echo memory. As the velocity of light 𝑐 is 

much higher than the velocity of the platform 𝑉𝑠, the azimuth position is considered constant 

during the time a pulse is transmitted and reflected back. Due to the movement of the platform, 

the time delay for echoes arriving from the point target is changing for each azimuth position 

and the variation of the time delay corresponds to the range variation and is called Range Cell 

Migration. The Range Cell Migration also causes an azimuth phase modulation, called Azimuth 

Chirp.  

 

2.1.4.1 – Geometry and Parameter Definition 
  

 Fig. 2.3 shows a top view of the azimuth acquisition geometry considered here. For this 

geometry, the azimuth time zero is the moment of closest approach between the point target 

and the platform, 𝑡𝑎1 is the azimuth time when the point target starts being illuminated, 𝑡𝑎2 is 

the azimuth time when the point target stops being illuminated, 𝑅0 is the slant range distance at 

the closest approach between the target and the platform, 𝑅(𝑡𝑎) is the slant range distance at 
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the considered azimuth time 𝑡𝑎, 𝜃𝐻 is the 3dB azimuth antenna beamwidth, 𝑉𝑆 is the platforms 

velocity and 𝜃(𝑡𝑎) is the angle of the target off broadside at the considered azimuth time.  

 

Azimuth
Direction

  

Ta

0 ta2
ta1

 

  

ta

   (  )

Point 
Target

 

Figure 2.3 – Azimuth acquisition set up 

 

 From Fig. 2.3, the following equations can be inferred:  

𝑡𝑎1 = −
𝑅0
𝑉𝑆
tan (

𝜃𝐻
2
) 

 

(2.11) 

 

𝑡𝑎2 =
𝑅0
𝑉𝑆
tan (

𝜃𝐻
2
) 

 

(2.12) 

 

𝑅(𝑡𝑎) = √𝑅0
2 + 𝑉𝑆

2𝑡𝑎2 
(2.13) 

 

2.1.4.2 – Range Chirp Signal 
  

 The pulse most often used in SAR systems is the linear frequency modulated, or “chirp” 

pulse [21]: 

 𝑠𝑟(𝑡𝑟) = 𝑟𝑒𝑐𝑡 (
𝑡𝑟

𝜏𝑝
) exp (𝑗𝜋𝑘𝑟𝑡𝑟

2) (2.14) 
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Where 𝜏𝑝 transmitted pulse length in seconds, 𝑘𝑟 is the range modulation rate in Hertz per 

second and 𝑡𝑟 is the range time. From equation (2.14) we have that the phase variation of the 

range chirp over the range time Φr(𝑡𝑟) is given by: 

 Φr(𝑡𝑟) = 𝑗𝜋𝑘𝑟𝑡𝑟
2 (2.15) 

 

And from equation (2.15) we can obtain the range frequency variation 𝑓𝑟(𝑡𝑟) :  

𝑓𝑟(𝑡𝑟) =
1

2𝜋
∙
𝑑Φ𝑟
𝑑𝑡𝑟

= 𝑘𝑟𝑡𝑟 (2.16) 

 

 Equation (2.16) makes clear the linear frequency modulation characteristic of the chirp 

signal and also shows that the frequency excursion during 𝜏𝑝 generates the bandwidth of the 

transmitted signal 𝐵𝑅 = |𝑘𝑟|𝜏𝑝.  

 The SAR images and SAR signal graphics of this section were simulated using the 

software IDL. The simulation parameters are listed in Table 2.1. 

 

Table 2.1 – SAR data simulation parameters 

Parameter Symbol Value 

Range distance 𝑅𝑜 500 m 

Wavelength  𝜆 0,23 m 

Antenna length in azimuth 𝐿𝑎 0,35 m 

Velocity of platform 𝑉𝑆 75 m/s 

Transmitted pulse duration 𝜏𝑃 10-5 m/s 

Range modulation rate 𝑘𝑟 -9.1012 s-2 

Transmitted pulse bandwidth 𝐵𝑟 90 MHz 

Speed of light 𝑐 3.108 m/s 

Pulse repetition frequency 𝑃𝑅𝐹 600 Hz 

 

Fig. 2.4 shows the simulated range chirp pulse, where Fig. 2.4 a) shows the range frequency, 

2.4 b) shows the range phase,2.4 c) shows the imaginary part of the signal and 2.4 d) the real 

part of the signal. 
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a) Frequency 

 

b) Phase 

 

c) Imaginary part 

 

d) Real part 

Figure 2.4 – Range Chirp pulse 

 

2.1.4.3 – Azimuth Chirp Signal 
  

 Equation (2.13) shows that, as the platform moves along the azimuth direction, the slant 

range distance 𝑅(𝑡𝑎) to the target varies. This slant range variation is called range cell migration 

(RCM):  

𝑅𝐶𝑀 = 𝑅(𝑡𝑎) − 𝑅0 = √𝑅0
2 + 𝑉𝑆

2𝑡𝑎2 − 𝑅0 (2.17) 

 

 Since the phase difference between transmitted and received waveforms due to two-way 

travel over the range 𝑅(𝑡𝑎) is [2]: 

 

Φa(𝑡𝑎) =
−4𝜋𝑅(𝑡𝑎)

𝜆
 (2.18) 
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This variation of the slant range distance causes an azimuth phase modulation, analog to the 

range chirp, called azimuth chirp. So the azimuth chirp signal is given by: 

 

sa(𝑡𝑎) = exp(𝑗
−4𝜋𝑅(𝑡𝑎)

𝜆
) (2.19) 

 

From equation (2.19) we can obtain the azimuth frequency 𝑓𝑎(𝑡𝑎) : 

 

𝑓𝑎(𝑡𝑎) =
1

2𝜋
∙
𝑑Φ𝑎
𝑑𝑡𝑎

=
−2𝑉𝑆

2𝑡𝑎

𝜆√𝑅0
2 + 𝑉𝑆

2𝑡𝑎2
=
−2𝑉𝑆sin [𝜃(𝑡𝑎)]

𝜆
 (2.20) 

 

And for a small processed azimuth beamwidth can be approximated to:   

 

𝑓𝑎(𝑡𝑎) ≈
−2𝑉𝑆

2𝑡𝑎
𝜆𝑅0

 (2.21) 

 

Which is linear modulated.  

Fig. 2.5 shows the simulated azimuth chirp signal, where Fig. 2.5 a) shows the azimuth 

frequency, 2.5 b) shows the azimuth phase, 2.5 c) shows the imaginary part of the signal and 

2.5 d) the real part of the signal. 
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a) Frequency 

 

b) Phase 

 

c) Imaginary part 

 

d) Real part 

 

Figure 2.5 – Azimuth Chirp pulse 

 

2.1.4.4 – SAR Raw Data of a point target 
 

From sections 2.1.4.2 and 2.1.4.3, and also knowing that the time delay for the point 

target signal is:  

𝜏 =
2𝑅(𝑡𝑎)

𝑐
 (2.22) 

 

The raw data signal of a point target is given by: 

 

𝑢(𝑡𝑎, 𝑡𝑟) = 𝑎𝑇𝑥(𝜃(𝑡𝑎))𝑎𝑅𝑥(𝜃(𝑡𝑎))⏟              
𝑡𝑤𝑜−𝑤𝑎𝑦 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑠(𝑡𝑎, 𝑡𝑟) + 𝑣(𝑡𝑎) 

 

 

(2.23) 
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𝑠(𝑡𝑎, 𝑡𝑟) = 

= 𝜎0 𝑟𝑒𝑐𝑡 (
𝑡𝑟 −

2𝑅(𝑡𝑎)
𝑐

𝜏𝑝
)exp(𝑗𝜋𝑘𝑟 (𝑡𝑟 − 

2𝑅(𝑡𝑎)

𝑐
)

2

)

⏟                                
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑢𝑙𝑠𝑒

∙
exp (

−4𝜋𝑅(𝑡𝑎)
𝜆

)

(4𝜋𝑅)2⏟          
𝐺𝑟𝑒𝑒𝑛′𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 

 

(2.24) 

 

Where 𝑣 is the thermal noise, 𝑎𝑇𝑥 is the transmitting antenna pattern, 𝑎𝑅𝑥 is the receiving 

antenna pattern, 𝑠 is the received waveform, 𝜎0 is the backscattering coefficient, the factor 

(4𝜋𝑅)2 is due to the attenuation on the propagation path between transmitter and target and due 

to the attenuation on the propagation path between target and receiver. Fig. 2.6 shows the 

simulated SAR raw data. 

 

Figure 2.6 – SAR Raw data 

 

2.1.5 – SAR Processing 
 

 To obtain a focused image, the raw data (Fig. 2.6) needs to be processed. In this section we 

will explore the processing of the raw data of a point target. The SAR Processor consists of three 

stages: range compression, range cell migration correction and azimuth compression.  

 

2.1.5.1 – Range Compression 
 

 The range compression is performed in range frequency domain by a matched filter. 

Since the range chirp is given by equation (2.14), the corresponding matched filter in range 

time domain is:  
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 𝐻𝑟(𝑡𝑟) = 𝑠𝑟
∗(−𝑡𝑟) = exp[−𝑗𝜋𝑘𝑟(−𝑡𝑟

 )2] (2.25) 

 

 From equation (2.24) and equation (2.16), the range filter in the range frequency domain 

is:  

𝐻𝑟(𝑓𝑟) = exp(𝑗𝜋
𝑓𝑟
2

𝑘𝑟
) (2.26) 

 

 So the range compression consists of four stages: fast Fourier transform (FFT) of each 

range line, calculation of range filter function, signal multiplication with range filter in 

frequency domain and finally the inverse fast Fourier transform (IFFT) in range. 

 Fig. 2.7 shows the simulated SAR data after range compression, where Fig. 2.7 a) shows the 

2-D range compressed SAR data Fig. 2.7 b) shows one range- line of the range compressed data. 

 

 

a) Range compressed SAR data 

 

b) Range compressed raw data 

(one range line) 
Figure 2.7 – Range compression 

 

2.1.5.2 – Range Cell Migration Correction 
 

 As shown in equation (2.17), the range distance to the target varies with the position of 

the radar along its track and this variation is called range cell migration (RCM). Therefore, the 

numbers representing the system impulse response are found in data memory along a curved 

locus 𝑅(𝑡𝑎) [21]. A processing algorithm must acces the data and aligne it in a single range 

cell, corresponding to 𝑅0, to later be compressed in azimuth along that trajectory. The 

processing algorithm is called range cell migration Ccrrection (RCMC). 

 From equation (2.22) the range time shift to perform RCM as function of the azimuth 

time is given by: 
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Δ𝑡𝑅𝐶𝑀𝐶(𝑡𝑎) = −(𝑅(𝑡𝑎) − 𝑅0) ∙
2

𝑐
= −(√𝑅0

2 + 𝑉𝑆
2𝑡𝑎2 − 𝑅0) ∙

2

𝑐
 (2.27) 

 

 From equation (2.27) and equation (2.20), the time shift as a function of the azimuth 

frequency is:  

Δ𝑡𝑅𝐶𝑀𝐶(𝑓𝑎) = −

(

 
 
 

𝑅0

√1 − (
𝜆𝑓𝑎
2𝑉𝑆

)
2

− 𝑅0

)

 
 
 

∙
2

𝑐
 (2.28) 

 

 From the property: 

 

𝑅𝐶𝑀𝑝ℎ𝑎𝑠𝑒 = −2𝜋 ∙ Δ𝑡𝑅𝐶𝑀𝐶(𝑓𝑎)  (2.29) 

   

𝑠(𝑡𝑟 − Δ𝑡𝑅𝐶𝑀𝐶) = 𝑆(𝑓𝑟)exp (𝑗 ∙ 𝑅𝐶𝑀𝑝ℎ𝑎𝑠𝑒 ∙ 𝑓𝑟) (2.30) 

 

where 𝑠(𝑡𝑟) is the signal in the range time domain and 𝑆(𝑓𝑟)is the signal in the range frequency 

domain. To perform RCMC the following stages have to be carried: FFT in azimuth, FFT in 

range, calculation of the phase for range time shift, multiplication of each range line with the 

linear phase function, IFFT in range and finally IFFT in azimuth. 

 Fig. 2.8 shows the simulated example of the SAR data after RCMC. 

 

 

 

Figure 2.8– SAR data after range cell migration correction 



26 

 

2.1.5.3 – Azimuth Compression 
 

 The azimuth compression is performed in azimuth frequency domain by a matched 

filter. Since the azimuth chirp is given by equation (2.19), the corresponding matched filter in 

azimuth time domain is: 

𝐻𝑎𝑧(𝑡𝑎) = sa
∗(−𝑡𝑎) = exp(𝑗

4𝜋𝑅(𝑡𝑎)

𝜆
) (2.31) 

 

 From equation (2.31) and equation (2.20), the azimuth filter in azimuth frequency 

domain is given by: 

𝐻𝑎𝑧(𝑓𝑎) = exp [𝑗
4𝜋

𝜆
∙ 𝑅0 ∙ √1 − (

𝜆𝑓𝑎
2𝑉𝑆

)
2

 ] (2.32) 

 

 So the azimuth compression consists of four stages: FFT in azimuth, calculation of the 

azimuth compression filter for each range position, multiplication of each azimuth line with the 

filter function and IFFT in azimuth.  

 Fig. 2.10 shows the simulated example of the SAR data after azimuth compression.  

 

Figure 2.9 – SAR data after azimuth compression 

 

2.1.6 – Limitation of Conventional SAR Systems 
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 Conventional single-channel SAR systems are restricted with respect to their imaging 

capability. For these systems, wide swath coverage and high azimuth resolution pose contradicting 

requirements.  

 Due to the reception of the radar echoes at different azimuth positions, the SAR signal 

in azimuth is naturally discrete. So in order to avoid azimuth ambiguities, the frequency in 

which the echoes are acquired (PRF) must obey the Nyquist-Shannon Sampling Theorem:  

 𝑃𝑅𝐹 > 𝐵𝐷 (2.33) 

 

Where 𝐵𝐷 is the frequency bandwidth of the signal, that we can obtain from equation (2.20):  

  

𝐵𝐷 =
4𝑉𝑆
𝜆
sin (

𝜃𝐻
2
) ≈

2𝑉𝑠θH
𝜆

=
2𝑉𝑆
𝐿𝑎

=
𝑉𝑠

𝛿𝑦𝑆𝐴𝑅
 (2.34) 

 

Combining Equation 2.33 and Equation 2.34, we have:  

𝑃𝑅𝐹 >
𝑉𝑆

𝛿𝑦𝑆𝐴𝑅
 (2.35) 

 

 Range ambiguities result from preceding and succeeding pulse echoes arriving at the 

antenna simultaneously with the desired return. In order to avoid the ambiguities required that 

the time of the reception of the earliest possible echo from any point in the swath due to a 

particular pulse transmission be later than the time of reception of the last possible echo from 

any other point due to transmission of previous pulse. If the near and far edges of the swath in 

the slant range are 𝑅′ and 𝑅" (Fig. 2.1 b), this requires that [2]:     

2𝑅”

𝑐
<
2𝑅′

𝑐
+ 𝑇𝑝 (2.36) 

 

Where 𝑇𝑝 =
1

𝑃𝑅𝐹
 is the time separation between two pulse transmissions. That implies that the 

swath width is bounded by: 

𝑊𝑆 = 𝑅" − 𝑅′ <
𝑐

2𝑃𝑅𝐹
 (2.37) 

 

Equation (2.37) shows that high PRF limits the swath width. Combining equation (2.37) and 

equation (2.35) we have:  
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𝑊𝑆
𝛿𝑦𝑆𝐴𝑅

<
𝑐

2𝑉𝑆
 (2.38) 

 

 Equation (2.38) shows the classical SAR systems limitation of mapping broad swaths 

with simultaneously high azimuth resolution. 

  

2.2 – Planar Array Antennas 
 

 Since this thesis is concerned with digital beamforming techniques, the topic of this 

section will be to introduce complex antenna pattern functions, which will be necessary for the 

formulation of digital beamforming theory. 

 The most used antenna type for SAR sensors are planar array antennas, and it is also the 

type of sensor used in the scope of this work. 

 As shown in Fig. 3.1, the elements are rectangular with dimensions 𝑎 and 𝑏 in 𝑥 and 𝑦 

directions respectively. They are spaced with a distance 𝑑𝑥 in the 𝑥-axis and 𝑑𝑦 in the 𝑦-axis. 

The number of elements and antenna length on the 𝑥 direction are respectively 𝑁𝑥 and 𝐷𝑥, 

analogously 𝑁𝑦 and 𝐷𝑦 on the 𝑦 direction. 

 

 

 

z

y

x

Dx

Dy

dy

dx

a

b

PDN
 1

 

Figure 2.10 – Planar array antenna 

 

 The individual element patterns are [22]:  



29 

𝑎𝑛(𝜃, 𝜑) = 𝑘√
𝑎𝑏

𝜋
 𝑠𝑖𝑛𝑐 (𝑘

𝑎

2
sin 𝜃 cos𝜑) 𝑠𝑖𝑛𝑐 (𝑘

𝑏

2
sin 𝜃 sin𝜑)×

×exp(𝑗𝑘𝑑𝑥𝑛 sin 𝜃 cos𝜑) exp(𝑗𝑘𝑑𝑦𝑛 sin 𝜃 sin𝜑) 

 

(2.39) 

 

Where 𝑑𝑛 is the 𝑥 coordinate of the center of the element, and 𝑘 the wavenumber, where: 

 

𝑘 =
2𝜋

𝜆
 (2.40) 
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3 – Multi-Channel SAR Systems 

 

 As seen in section 2.1.6, to obtain high azimuth resolution a broad antenna beam is 

required (equation 2.34), what raises the need of a high PRF in order to sample the signal 

adequately and avoid azimuth ambiguities (equation 2.35), but the high PRF limits the swath 

width (equation 2.37). To overcome this limitation, a solution is to employ multiple channels, 

undersample the signal and use digital beamforming techniques to combine the multiple 

channels signals to suppress the azimuth ambiguities. 

 In this chapter we will see the digital beamforming (DBF) concept and also some digital 

beamforming techniques for azimuth ambiguities suppression and also for SNR optimization. 

 

3.1 – Digital Beamforming Concept 
 

 As we saw, the high PRF limits the swath width (equation 2.37). One possibility to 

overcome this restriction is to transmit a signal using a single transmitting element with a broad 

beam and to record the received echoes with multiple receivers [23]. 

 Each channel is associated with a different complex far field pattern 𝑎𝑖 associated and 

the raw signal of each channel is individually amplified, down-converted and digitized. As seen 

in equation (2.23) and again shown in equation (3.1), each channel raw signal is given by: 

𝑢𝑖 = 𝑎𝑖𝑠 + 𝑣 (3.1) 

Then beamforming via digital electronics is applied to reconstruct the high resolution image by 

processing and combining the individual receiver signals by means of weights, resulting on the 

DBF raw signal: 

𝑢𝐷𝐵𝐹 = 𝒘
𝑇𝒖 (3.2) 

Where 𝒘 is the vector of weights and 𝒖 the vector consisting of the raw data signal of the 

individual channels, defined respectively by: 

𝒘 = [ 1  2… 𝑁𝑐ℎ]
𝑇
 (3.3) 

𝒖 = [𝑢𝟏 𝑢𝟐…𝑢𝑵𝒄𝒉]
𝑻

 (3.4) 
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In this thesis, a planar array antenna is employed, where the aperture is split on receive into 

multiple sub apertures. Fig. 3.1 shows a schematic of a multi-channel receiver with planar array 

antennas.  

A A A A
D D D

 𝟏  𝟐     

D

Digital beamforming

 

Figure 3.1 – Multi-channel receiver 

 

3.2 – Digital Beamforming in Azimuth 
 

 To apply DBF in azimuth, a set of channels in this direction is used to reconstruct a 

single high gain signal subjected to certain constraints [23]. 

 In this work, it is used as sensor an array of planar antennas, as depicted in Fig. 3.1, with 

the y-axis of the array aligned with the azimuth flight path, and as transmitting element it is 

used a single rectangular antenna.  

 Each channel is associated with a different complex pattern function 𝑎𝑖(𝜃, 𝜑), where 𝑎𝑖 

here is the two-way pattern. The patterns 𝑎𝑖 can be represented by the array manifold: 

 

𝒂(𝜃, 𝜑) = [𝑎1(𝜃, 𝜑)…𝑎𝑁𝑐ℎ(𝜃, 𝜑)]
𝑇
 (3.5) 
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 Where 𝑁𝑐ℎ is the number of digital channels. Given that, the raw signals at each range 

time 𝑡𝑟 and azimuth position 𝑦  

 

𝒖(𝑦, 𝑡𝑟) = [𝑢1(𝑦, 𝑡𝑟)…𝑢𝑁𝑐ℎ(𝑦, 𝑡𝑟)]
𝑇
 (3.6) 

 

would be: 

𝒖(𝑦, 𝑡𝑟) = 𝒂(𝜃𝐷 , 𝜑𝐷)𝒔(𝑦, 𝑡𝑟) + 𝒗 (3.7) 

 

 

where 𝒗 represents the vector of white Gaussian noise and the direction (𝜃𝐷 , 𝜑𝐷), the direction 

of the source of the signal s. Since the topic is related to DBF in azimuth, it is considered the 

signals only over the spatial azimuth variable y, and the coordinate 𝜃 refers to the azimuthal 

plane (𝜑 = 90°). So, according to equation (2.24) and neglecting the backscattering coefficient, 

since it is a constant and won’t influence the DBF process, the received signal for a point target 

would be simply the green’s function, independent of the range time: 

 

𝑠(𝑦) = 𝑔(𝑦) =
exp (

−4𝜋𝑅(𝑦)
𝜆

)

(4𝜋𝑅(𝑦))
2  (3.8) 

 

So the received signals analyzed are reduced to: 

 

𝒖(𝑦) = 𝒂(𝜃𝐷)𝑠(𝑦) + 𝒗 (3.9) 

 

 

 Before applying the beamforming concepts, it is necessary to transform the signals into 

the azimuth wavenumber domain. The transformation is necessary because targets in different 

azimuth positions respond with different wavenumbers for a single azimuth position of the 

sensor, but signals of the two different targets are aligned with respect to the azimuth 

wavenumber when transformed to the frequency domain. So first, in order to form the high 

resolution image, each channel is reconstructed in the wavenumber domain on a grid with a 

high wavenumber sampling rate 𝐾𝑦
′ .  

 A way to relate space, represented by 𝜃, and azimuth wavenumber 𝑘𝑦 is: 

 

𝑘𝑦 = −2𝑘 sin 𝜃 (3.10) 
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Where k is the wavenumber as described by equation (2.40). The relation between the azimuth 

wavenumber 𝑘𝑦 and Doppler frequency  𝑓𝑦 , and between the azimuth sampling wavenumber 

𝐾𝑦 and PRF are: 

𝑘𝑦 = 2𝜋
𝑓𝑦
𝑉𝑆
 

 (3.11) 

 

𝐾𝑦 = 2𝜋
𝑃𝑅𝐹

𝑉𝑆
 

 (3.12) 

 

Where 𝑉𝑆 is the platform’s velocity. Since the PRF or 𝐾𝑦 limits the swath width, it has to be 

chosen as low as possible, and this lower bound is given by the diffraction limit of the array. 

 

𝐾𝑦 ≥ 4𝑘 sin(
𝜃3𝑑𝐵𝑎𝑟𝑟𝑎𝑦

2
) (3.13) 

 

Where 𝜃3𝑑𝐵𝑎𝑟𝑟𝑎𝑦 is the azimuth half-power beamwidth of the total receiver array. 

 The ith received raw-signal in the reconstructed grid with sampling rate 𝐾𝑦
′  is given by: 

 

𝑈𝑖(𝑚Δ𝑘𝑦) =
Δ𝑦

𝑉𝑆
∑𝑢𝑖(𝑦(𝑛Δy)) exp[−𝑗𝑘𝑦(𝑚Δ𝑘𝑦)𝑦(𝑛Δ𝑦)]

𝑁−1

𝑛=0

               

𝑘𝑦 ∈ [−
𝐾𝑦
′

2
,
𝐾𝑦
′

2
] 

(3.14) 

 

Where Δ𝑘𝑦 is the wavenumber sampling increment: 

 

Δ𝑘𝑦 =
2𝜋

𝑌
 (3.15) 

 

 

Where 𝑌 is the complete analyzed azimuth path length. So we have that: 

  

𝑁 =
𝑌

Δ𝑦
 (3.16) 

 

𝑀 =
𝑌

Δ𝑦′
 (3.17) 
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Δ𝑘𝑦 =
𝐾𝑦
′

M
 (3.18) 

 

where N is the number of samples of the undersampled channel signals and M is the number of 

samples of the reconstructed signal. 

 Since each channel is undersampled, ambiguous spectrums appear shifted by multiples 

of the sampling wavenumber 𝐾𝑦 as shown in Fig. 3.2.   

|𝒖  |

 

  

|    |
  

𝟐

 ′ 

𝟐

 

Figure 3.2 – Wavenumber domain representation of sampled signal 

 

 What is also shown in Figure 3.2 is the fact that the signals in wavenumber domain are 

modulated by the envelope of the azimuth antenna patterns. 

 It is enough to choose the sampling increment rate 𝐾𝑦
′  equal to the signal wavenumber 

bandwidth since no new information would be acquired by using a higher rate. So, from 

equations (2.34) and (3.12): 

𝐾𝑦
′ = 4𝑘 sin (

𝜃3𝑑𝐵𝑒𝑙𝑒𝑚𝑒𝑛𝑡
2

) (3.19) 

 

 Now, after the reconstruction, the individual channel spectra are combined for each 

wavenumber using DBF techniques by means of weights, choosing the weights to fulfill the 

application’s necessity:  
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𝑈𝐷𝐵𝐹(𝑘𝑦) = 𝒘
𝑇(𝑘𝑦) (𝑘𝑦) (3.20) 

 

3.2.1 – LCMV Beamformer 
 

 From equation (3.20), to form the DBF signal, the individual channel signals are 

combined by means of weights and those weights are chosen according to the application’s 

necessity. The principle of LCMV beamformer is to suppress the ambiguities while it minimizes 

the noise power. On this subsection, it will be shown how to obtain the weight vector that fulfill 

both constraints when applied on DBF. 

 We have that:  

𝑈𝑖(𝑘𝑦) = [𝑎𝑖 (𝑘𝑦𝐷)⋯𝑎𝑖 (𝑘𝑦−1) 𝑎𝑖 (𝑘𝑦1)⋯ ] [𝑆(𝑘𝑦𝐷)⋯𝑆(𝑘𝑦−1) 𝑆(𝑘𝑦1)⋯ ]
𝑇
+ 𝑣𝑖 

(3.21) 

 

 

 (𝑘𝑦) = [𝑆 (𝑘𝑦𝐷
)⋯𝑆(𝑘𝑦−1) 𝑆(𝑘𝑦1)⋯ ]

𝑇

 (3.22) 

 

 

where the index 𝐷 is associated to the signal of interest and the others are associated to the 

ambiguous signals. The angle 𝜃 is associated to the wavenumber 𝑘𝑦 via equation (3.10). So we 

have that: 

 

  (𝑘𝑦) = (𝑨 + 𝒗)(𝑘𝑦) (3.23) 

 

 

where 𝑨 is the array response matrix:  

 

𝑨 = [𝒂 (𝑘𝑦𝐷)⋯𝒂 (𝑘𝑦−1) 𝒂 (𝑘𝑦1)⋯ ]  ∈  ℂ 
𝑁𝑐ℎ×𝑁𝑑𝑖𝑟 (3.24) 

 

 

where 𝑁𝑑𝑖𝑟 is the number of ambiguous directions to be suppressed. So from equations (3.20) 

and (3.23) the resulting DBF signal is:  

 

 𝐷𝐵𝐹(𝑘𝑦) = (𝒘
𝑇𝑨 + 𝒘𝑇𝒗)(𝑘 ) (3.25) 
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 From equation (3.25), we have that to suppress ambiguities while keeping the signal of 

interest, the following constraint must be respected: 

  

(𝑨𝑇𝒘)(𝑘𝑦) = 𝒄 (3.26) 

 

𝒄 = [1 0⋯0] ∈  ℂ𝑁𝑑𝑖𝑟×1 (3.27) 

 

 When Equation 3.26 is applied to a certain 𝑘𝑦, locally it is created the beam: 

  

𝒘𝑇𝒂(𝑘𝑦𝐷) (3.28) 

  

That has a maximum at the analyzed wavenumber 𝑘𝑦 and nulls on the corresponding ambiguous 

directions, that are shifted by multiples of the azimuth sampling wavenumber 𝐾𝑦. 

 The maximum number of directions that can be suppressed is limited by the number of 

channels, where 𝑁𝑑𝑖𝑟
  maximum is 𝑁𝑐ℎ

 − 1. 

As the expected resulting power of the noise is given by: 

   

𝑃𝑣(𝑘𝑦) = 𝒘
𝑇 𝒗𝒘

∗ (3.29) 

 

 

where  𝒗 is the noise covariance matrix: 

 

 𝒗 = ℰ{𝒗(𝑘𝑦)𝒗
𝐻(𝑘𝑦)} (3.30) 

 

where ℰ{∙} denotes expectation value and {∙}𝐻 conjugate complex transpose. The weighting 

vector for LCMV beamformer is then obtained by minimizing equation (3.29) subjected to the 

constraint of equation (3.26). Its closed form solution is given by: 

   

𝒘∗(𝑘𝑦) = ( 𝒗
−1𝑨(𝑨𝐻 𝒗

−1𝑨)−1𝒄)(𝑘𝑦) (3.31) 

 

3.2.2 – MVDR Beamformer 
 

 MVDR beamforming is not concerned with the suppression of ambiguities. Its objective 

is to minimize the noise power while it keeps the signal of interest. 
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 From equation (3.25) we have that to keep the signal of interest the following constraint 

has to be respected:  

𝒂𝑇 (𝑘𝑦𝐷)𝒘 = 1 (3.32) 

 

So the weighting vector for MVDR beamformer is obtained by minimizing equation (3.29) 

subjected to the constraints of Equation (3.32). Its solution is given by: 

 

𝒘∗(𝑘𝑦) = (
 𝒗
−1𝒂

𝒂𝐻 𝒗−1𝒂
) (𝑘𝑦) (3.33) 

 

When equation (3.32) is applied to a certain 𝑘𝑦, locally is created the beam: 

  

𝒘𝑇𝒂(𝑘𝑦𝐷) (3.34) 

 

That has a maximum at the analyzed wavenumber 𝑘𝑦 but no constraints are applied to the 

position of the nulls.  

We can see from Equations 3.31 and 3.33 that to obtain the DBF weighting vector, it is 

required the knowledge of the array manifold and the noise covariance matrix. 
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4 – Estimation of Array Manifold and Noise 

Covariance Matrix 

 

As seen previously on section 3.2 (equations 3.31 and 3.32), Digital Beamforming 

Techniques require precise knowledge of the array complex patterns and noise covariance 

matrix. But for spaceborne radars, antenna pattern measurements are difficult to deploy from 

space and a priori measured or analytically calculated patterns are subjected to changes due to 

calibration errors and other factors that may degrade the array. So an alternative of knowing a 

priori the antenna patterns is to estimate them from the data. Some previous work show methods 

of estimating the magnitude of antenna patterns from data [18,19,20], but no previous work was 

done so far to estimate the complex antenna pattern. In section 4.1, a method to estimate the 

array manifold from a point target SAR data, as well as the uncertainties that affects the methods 

performance, shall be discussed. So, the next step to drop the requirement of a priori information 

to apply DBF techniques, is to estimate the Noise Covariance Matrix from the data, which is 

approached on section 4.2. 

  

4.1 – Complex Pattern Estimation Based on Strong Point 

Target 
  

For this section, the simulated acquisition set up is the same as the one explained in 

subsection 2.1.4.1 and depicted in Fig. 2.3.  

 There is a sensor moving along the azimuth direction, that we called y, and there is a 

point target that was assumed to be fixed on the azimuth zero position. This target is on exactly 

cross distance of 𝑅0 from the sensor.  For each azimuth position of the sensor, there is an angle 

𝜃 associated, that is the angle of the target off broadside, that is zero when the sensor and the 

target are exactly on the same azimuth position. 

 From equations (2.23) and (3.8) , for a strong point target (or a transponder) at 𝑦0, the 

azimuth SAR signal for the 𝑖𝑡ℎ channel is given by: 

 

 𝑢𝑖(𝑦) = 𝜎𝑜 ∙ 𝑎𝑖(𝑦, 𝑦0) ∙ 𝑔𝑖(𝑦, 𝑦0) + 𝑣𝑖(𝑦) (4.1) 
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Where 𝑣𝑖 is an additive noise, 𝜎𝑜 is the backscatteting coefficient of the target, 𝑎𝑖 is the two-

way antenna pattern of the channel and 𝑔𝑖 is the Green’s function, that is given by:  

𝑔𝑖(𝑦, 𝑦0) =
exp (

−4𝜋𝑅(𝑦, 𝑦0)
𝜆

)

(4𝜋𝑅(𝑦, 𝑦0))
2  (4.2) 

 

The simulation parameters are listed on Table 4.1. 

 

Table 4.1 – Complex Patterns estimation simulation parameters 

Parameter Symbol Value 

Range distance 𝑅𝑜 1,4 km 

Wavelength  𝜆 0,24 m 

Signal to Noise Ratio SNR 10 dB 

Number of array elements on the 𝑥 direction Nx 1 

Number of array elements on the 𝑦 direction Ny 2 

Array elements dimension on 𝑥 direction a 0,022 m 

Array elements dimension on 𝑦 direction b 0,4 m 

Spacing between array elements  in the 𝑦-axis and dy 0,4 m 

Antenna length on 𝑦 direction Dy 0,8 m  

Speed of light 𝑐 3.108 m/s 

 

Fig. 4.1 shows the simulated example of the azimuth noisy signal of one of the channels, where 

Fig. 4.1 a) shows the magnitude of the signal and Fig. 4.1 b) shows the real part of the signal. 

 

a) Magnitude of noisy signal 

 

b) Real part of noisy signal 

Figure 4.1 – Noisy signal 
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Now, given equation (4.1), a method consisting of three steps to estimate the complex antenna 

patterns is given bellow. 

   

4.1.1 – First Step of Pattern Estimation 
 

 A first step to estimate the patterns would be to construct the Green’s function from an 

estimate of the range history and then eliminate it from the signal. Ideally the range history is 

given by equation (2.13), so to construct the Green’s function it is enough to apply equation 

(2.13) into equation (4.2). 

 Then an estimate of the complex antenna pattern can be derived eliminating the high 

frequency part of the signal, the Green’s function, as: 

 

 𝑎𝑖̂(𝑦, 𝑦0) =
𝑢𝑖(𝑦)

𝑔𝑖(𝑦,𝑦0)
=

𝑣𝑖(𝑦)

𝑔𝑖(𝑦,𝑦0)
+ 𝜎𝑜 ∙ 𝑎𝑖(𝑦, 𝑦0) (4.3) 

 

Then we would have a noisy estimate of the pattern. The backscattering coefficient can be 

neglected because it is a constant and it is identical for all channels, so it doesn’t affect the 

beamforming.  

 Fig. (4.2) shows the simulated example of the estimated noisy pattern for one channel, 

where Figure 4.2 a) shows the magnitude of the pattern and Figure 4.2 b) shows the real part of 

the pattern. 

 

a) Magnitude of noisy pattern 

 

b) Real part of noisy pattern 

Figure 4.2 –Noisy pattern 
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4.1.2 – Second Step of Pattern Estimation 
  

Now that the Green’s function was eliminated from the signal, which is the part of the 

signal broad in all the frequency domain, to eliminate the noisy and obtain a smooth pattern 

function estimate it may be done the Fourier Transform of the noisy estimated pattern and then 

apply a low pass filter to eliminate part of the noise. The bandwidth of the low pass is 

determined empirically, observing the spectrum of the pattern to determine which bandwidth 

would be appropriate.  

Fig. 4.3 shows the simulated example of the Fourier transform of the noisy estimated 

pattern of one channel and Fig. 4.4 shows the Fourier Transform of the pattern after low pass 

filter. 

 

Figure 4.3 – Fourier transform of noisy pattern 

 

Figure 4.4 – Fourier transform of pattern after low pass filter 
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4.1.3 – Third Step of Pattern Estimation 
  

The last step to obtain an estimate of the pattern is to do the inverse Fourier Transform 

of the low pass filtered spectrum. 

 Fig. 4.5 shows the simulated example of the comparison between the estimated and the 

analytical patterns for one channel, where the pattern in black is the estimated pattern and the 

pattern in red is the analytical pattern. Fig.4.5 a) shows the magnitude of the patterns and Fig. 

4.5 b) shows the real part of the patterns. 

 

 

a) Magnitude of patterns 

 

b) Real part of patterns 

Figure 4.5 – Comparison between Analytical and Estimated patterns 

 

 

4.1.4 – Uncertainties in the Green’s Function 
 

The estimate of the Green’s function plays the key role in the estimation of the complex 

pattern functions. It is constructed from an estimate of the objects range history. Therefore, the 

estimate of the Green’s function takes the form: 

 

 

𝑔𝑖̂(𝑦, 𝑦0) =
exp (

−4𝜋𝑅̂(𝑦, 𝑦0)
𝜆

)

(4𝜋𝑅̂(𝑦, 𝑦0))
2  (4.4) 

 

From a modelling approach, the estimate of the range history 𝑅̂(𝑦, 𝑦0) is interpreted as 

the true range history and an additive error Δ𝑅(𝑦, 𝑦0): 
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 𝑅̂(𝑦, 𝑦0) = 𝑅(𝑦, 𝑦0) + Δ𝑅(𝑦, 𝑦0) (4.5) 

 

Inserting equation (4.5) into equation (4.4) yields to: 

 

𝑔𝑖̂(𝑦, 𝑦0) =
exp (

−4𝜋𝑅(𝑦, 𝑦0)
𝜆

)

(4𝜋𝑅(𝑦, 𝑦0))
2 ∙

exp (
−4𝜋Δ𝑅(𝑦, 𝑦0)

𝜆
)

1 +
2Δ𝑅(𝑦, 𝑦0)
𝑅(𝑦, 𝑦0)

+
Δ𝑅(𝑦, 𝑦0)2

𝑅(𝑦, 𝑦0)2

 (4.6) 

 

Assuming that  𝑅 ≫ Δ𝑅 , we have that: 

 
𝑔𝑖̂(𝑦, 𝑦0) ≈ 𝑔𝑖(𝑦, 𝑦0) ∙ exp (

−4𝜋Δ𝑅(𝑦, 𝑦0)

𝜆
) (4.7) 

 

From equation (4.7) we see that if the range error is considerably smaller compared to the range 

history, then the estimated Green’s function is given by the correct Green’s function multiplied 

by a phasor, that leads to a phase error on the estimated Green’s function , that will be reflected 

on the phase of the estimated complex patterns (equation 4.3), but the magnitude of the 

estimated patterns may not be affected. If the error Δ𝑅(𝑦, 𝑦0) is constant with azimuth, the 

phasor is a multiplying constant that will lead to just a constant shift of the estimated patterns’ 

phase, that might not have influence on the DBF process. However, if Δ𝑅(𝑦, 𝑦0) is azimuth 

dependent then the phase errors on the estimated pattern won’t be constant and might influence 

the DBF process and suppression of ambiguities. The influence of errors on the Range history 

estimate, consequently on the Complex patterns estimate and on the DBF process will be 

analyzed in chapter 5. 

 

4.1.5 – Noise Influence 
 

 Another factor that affects the estimation of the patterns is the noise. Fig. 4.5 shows 

simulated results of the effect of noise on the magnitude of the estimated patterns, where it 

presents the mean absolute error (Equation 4.8) according to the SNR of the signal used to 

estimate the complex pattern. The result is intuitive, that higher the SNR, lower the errors. The 

influence of the SNR on the DBF process and suppression of ambiguities will be further 

analyzed on chapter 5. The patterns mean absolute error is given by: 
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𝛿(𝑆𝑁𝑅) =  

∑ |â − 𝑎|

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (4.8) 

 

where â is the estimated pattern, 𝑎 the analytical pattern and 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 the number of samples. 

 

 

Figure 4.5 – Pattern estimation’s sensitivity to noise 

 

4.2 – Estimation of Noise Covariance Matrix 
 

 The next step to drop completely the requirement of a priori information to apply DBF 

techniques, is to estimate the Noise Covariance Matrix from the data, where it is given by: 

 

 𝒗(𝑖, 𝑗) = ℰ{𝒗 𝒗𝑗
∗} (4.9) 

 

Where 𝒗  is the noise for a given channel  . 

As the noise is a random variable and assuming that the noise of the individual channels 

are independent,  𝒗 is ideally a diagonal matrix, where: 

 𝒗(𝑖, 𝑗) = 0  ,  𝑖 ≠ 𝑗 (4.10) 

 𝒗(𝑖, 𝑗) = σ
2(𝒗 ) (4.11) 

  

A first way to estimate the Noise Covariance Matrix is to estimate it from noise-only 

measurements, when no signal is transmitted and only noise is measured. Then we have: 

 𝒗(𝑖, 𝑗) = ℰ{𝒗 𝒗𝑗
∗} =

∑ 𝑣𝑖𝑣𝑗
∗

𝑁

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (4.12) 
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Or, for a signal with low SNR, which is typically the case for SAR signals, the noise 

covariance matrix can be approximated by the channel covariance matrix, so it can be estimated 

directly from the signal: 

 𝒗(𝑖, 𝑗) ≈  𝒖(𝑖, 𝑗) = ℰ{𝒖 𝒖𝑗
∗} =

∑ 𝑢𝑖𝑢𝑗
∗

𝑁

𝑁
 (4.13) 

 

The estimation of noise covariance matrix and their application on the DBF process will be 

shown in chapter 5. 

 

5 – Simulated Results of DBF Using Estimated 

Patterns and Noise Covariance Matrix 

 

In this chapter simulated complex patterns and noise covariance matrices were estimated 

from SAR data applying the methods explained in chapter 4. Later, the estimated array 

manifolds and noise covariance matrices have been applied to the computation DBF weight 

vectors (equations 3.31 and 3.32), weight vectors that were used to combine multi-channel 

signals and obtain a final image with ambiguities suppressed or SNR optimized. 

As explained previously in chapter 3, the signal is transmitted using a broad beam and 

then the echo is recorded with multiple receivers. As each channel is undersampled, azimuth 

ambiguities appear on positions with the corresponding Doppler frequency is equal to multiples 

of  the PRF. So first the individual channel’s signals are reconstructed in the wavenumber 

domain on a common grid with high sampling rate 𝐾𝑦
′ . Then the individual channels’ spectra 

are combined by means of weights calculated by DBF techniques for each wavenumber using 

the estimated antenna patterns. At last, the resulting signal is retransformed to the time domain 

and azimuth compressed to obtain the focused image. 

In this section all the simulated signals, the ones used to estimate the complex patterns 

and also the ones that were combined by DBF techniques to form the final signal, were 

simulated using the following parameters: 
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Table 4.1 – DBF simulation parameters 

Parameter Symbol Value 

Range distance 𝑅𝑜 5 km 

Wavelength  𝜆 0,031m 

Pulse Repetition Frequency PRF 125 Hz 

Reconstruction wavenumber sampling rate 𝐾𝑦
′  27,9 𝑚−1 

Velocity of platform 𝑉𝑆 90 m/s 

Number of array elements on the 𝑥 direction Nx 1 

Number of array elements on the 𝑦 direction Ny 9 

Array elements dimension on 𝑥 direction a 1,8 m 

Array elements dimension on 𝑦 direction b 0.2 m 

Spacing between array elements  in the 𝑦-axis and dy 0,4 m 

Antenna length on 𝑦 direction Dy 1,8 m  

Speed of light 𝑐 3.108 m/s 

 

 According to Equations 2.33 and 2.34, the minimum PRF required to avoid azimuth 

ambiguities is 800.5 Hz, so indeed each channel is undersampled. According to equations (3.10) 

and (3.11), the minimum PRF so that the signal can be reconstructed on the DBF process is 

92.6 Hz, so it was chosen 125Hz to have some margin. 

  As there are 9 channels, the maximum number of ambiguities that can be suppressed is 

8. As the ambiguities appear on frequencies multiples of the PRF, from equations (3.10) and 

(3.11), considering the target at the azimuth position 0, the 8 first ambiguities appear at the 

azimuth positions of ±108.5 m, ±217.1 m, ±326 m and ±435.4 m. 

 The reconstruction sampling wavenumber 𝐾𝑦
′  was chosen according to equation (3.17), 

what gives us according to equation (2.34) an azimuth resolution of 22.5 cm. 

  

5.1 – DBF- Range error free and Noiseless case 
 

In this subsection all the simulated signals, the ones used to estimate the complex 

patterns and also the ones that were combined by DBF techniques to form the final signal, were 

simulated without noise so that some properties of DBF are made clear. 
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Fig. 5.1 a) shows the normalized compressed azimuth SAR signal of a point target 

reconstructed using MVDR beamforming. The red lines mark the first the first four left and 

right azimuth ambiguities. We can see that this DBF technique doesn’t suppress the 

ambiguities. But when LCMV is applied (Fig. 6.1 b), we can see that the eight first ambiguities 

are suppressed. 

On Fig. 5.2, a zoom of the LCMV signal of Fig. 5.1 b) is shown, so we can see that the 

resolution corresponds to the expected, around 22cm. 

Fig. 5.3 a) shows the pattern after applying MVDR pointing at the zero Doppler 

frequency, obtained according to equation (3.32). Again we can see that no concern regarding 

the suppression of ambiguities is made. On Fig. 5.3 b) the pattern pointing at the zero Doppler 

frequency for the LCMV DBF is shown and we can see that there are nulls placed on the 

direction of the first eight ambiguities. 

 

a) MVDR DBF 

 

b) LCMV DBF 

Figure 5.1 – Magnitude of focused point target signal reconstructed using DBF 

 

Figure 5.2 – Zoom of magnitude of focused point target signal reconstructed using LCMV DBF 
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a) MVDR DBF 

 

b) LCMV DBF 

Figure 5.3 –DBF patterns for center Doppler frequency 

 

5.2 – DBF Using Estimated Patterns and Estimated 

Covariance Matrix 
 

In this subsection, the complex patterns were estimated from low noise signals, with 10 

dB SNR, since low noise is required for accurate pattern estimate, while the signals that were 

combined by DBF and from where the noise covariance matrices were estimated had -8 dB 

SNR, that is realistic since usually SAR raw signals have low SNR.  

Fig. 5.4 and 5.5 show simulated examples of estimated noise covariance matrices in dB 

where the terms are normalized by the maximum value. In Fig. 5.4 the estimation was made 

from noise only measurements and in Fig. 5.5 the estimation was made directly from the signals. 

The matrix applied on the DBF process was the one of Fig. 5.5. 
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Figure 5.4 – Noise Covariance Matrix estimated from noise measurements 

 

Figure 5.5 – Noise Covariance Matrix estimated from the signals 

 

We can see that both estimated matrices are approximately diagonal, the diagonal 

elements are about 20 dB higher than the other elements. 

Also we notice that the diagonal elements have the same value, what is expected because 

the channels have the same SNR. What is also possible to notice is that the matrices estimated 

by the two different methods are similar to each other. 

In Fig. 5.6 the normalized compressed SAR signal of the point target for a single channel 

is shown. We can see the ambiguities and that they are modulated by the envelope of the two-
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way pattern. When MVDR DBF is applied, shown on Fig. 5.7 a), we can see that the main 

signal is maximized and that there is an improvement of about 15 dB in terms of SNR. Finally, 

when the LCMV DBF is applied, shown on Fig. 5.7 b), the ambiguities are suppressed. 

 

Figure 5.6 – Magnitude of focused noisy point target signal of a single Chanel 

  

 

a) MVDR DBF 

 

b) LCMV DBF 

Figure 5.7 – Magnitude of focused noisy point target signal reconstructed using DBF 

 

5.3 – DBF- Presence of Range History Estimate Errors and 

Noiseless Case 
 

This section investigates the effect of Range history estimate errors on the construction 

of the Green’s function (Equation 4.7) and consequently how those errors reflects on the 
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estimated patterns (Equation 4.3). Later, those estimated patterns are applied on DBF process 

to see the effect of those patterns errors on the suppression of ambiguities.  

The first case considered is the one where the range error is azimuth dependent, as 

shown in Fig. 5.8. The range error is more or less random but smooth, simulating for example 

the vibration of the sensor and the maximum range error is equal to the wavelength 

(Δ𝑅𝑚á𝑥(𝑦, 𝑦0) = 𝜆). Fig. 5.9 shows the simulated example of the comparison between the 

estimated and the analytical patterns for one channel, where the pattern in black is the estimated 

pattern and the pattern in red is the analytical pattern. 

 

Figure 5.8 – Azimuth dependent range error 

 

Fig. 5.9 a) shows that the estimation of the magnitude of the patterns was not affected 

by the range error, as expected from equation (4.7). Although, from Fig. 5.9 b) we notice that 

azimuth dependent range errors, even if small compared to the range history (in this case smaller 

than 𝜆 causes significant phase errors on the estimated patterns. This happens because, on the 

phase of the error phasor on equation (4.7), the range error Δ𝑅(𝑦, 𝑦0) is normalized by 𝜆, so a 

range error 𝜆 4⁄  is enough to cause a phase error of  𝜋 rad.  
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a) Magnitude 

 

b) Phase 

 

c) Imaginary part 

 

d) Real part 

Figure 5.9 – Comparison between Analytical and Estimated patterns with azimuth dependent errors 

 

Fig. 5.10 a) shows when those patterns with phase errors are applied on MVDR DBF. 

The main signal is still maximized and we can see the ambiguities. But when LCMV DBF is 

applied (Fig. 5.10 b), we see that the ambiguities no longer are well suppressed, due to the phase 

errors on the estimated patterns. 
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a) MVDR DBF 

 

b) LCMV DBF 

Figure 5.10 – Magnitude of focused point target signal reconstructed using DBF applying 

patterns with azimuth dependent phase errors 

 

Now, considering the range error constant in azimuth, where the estimated range history 

has a fixed range error equal to one sixth the wavelength (Δ𝑅 (𝑦, 𝑦0) = 𝜆/6), as shown in Fig. 

5.11, we have from equation (4.7) that the error is a constant phasor multiplying the estimated 

patterns, so the patterns’ magnitude estimate shouldn’t be affected and the phase error is 

constant with azimuth, reflecting in just a phase shift on the patterns’ phase estimate. Fig. 5.12 

shows the simulated example of the comparison between the estimated and the analytical 

patterns for one channel, where the pattern in black is the estimated pattern and the pattern in 

red is the analytical pattern. As expected, Fig. 5.12 a) shows that the estimate of the magnitude 

of the patterns was not affected by the range error and Fig. 5.12 b) shows that the constant range 

error leads to a constant shift on the phase of the estimated patterns, in this case 2𝜋/3 rad. Since 

the error is a constant phasor multiplying the estimated patterns, and it is the same for all the 

channels, it shouldn’t affect the DBF process. Indeed, when observing Fig.s 5.13 a) and 5.13 

b), when those estimated patterns were applied on MVDR and LCMV DBF respectively, there 

are no differences from the error free case, depicted on Fig. 5.1. 
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Figure 5.11 – Constant range error 

 

a) Magnitude 

 

b) Phase 

 

c) Imaginary part 

 

d) Real part 

Figure 5.12 – Comparison between Analytical and Estimated patterns with constant phase error. 
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a) MVDR DBF 

 

b) LCMV DBF 

Figure 5.10 – Magnitude of focused point target signal reconstructed using DBF applying 

patterns with constant phase errors 

 

5.4 – Noise Influence on the DBF Process 
 

The objective of this subsection is to analyze the effect that the noise level on the 

estimation of the patterns have on the suppression of ambiguities. 

First, the signals that were combined by DBF to form the final signal had no noise, so 

that the effect of the noise on the estimated patterns were clearly shown. Fig.  5.11 a) to Fig. 

5.11 d) shows when complex patterns estimated, from signals with SNR of 15 dB , 10dB, 5dB 

and 0 dB respectively were applied on LCMV DBF. 

Those figures show the expected, that the performance degrades with the decrease of 

the SNR. But the acceptable level of SNR is particular of each application, because it depends 

on the subapertures length on the frequency domain, that is, on how much noise can be 

eliminated by the low pass filter on the estimation process and the performance also depends 

on the SNR of the signals being reconstructed. 

On Figures 5.12 a) and 5.12 b) are depicted the cases where the signals being combined 

by DBF have 15 dB of SNR and the patterns applied were estimated from signals of 5 dB and 

0 dB of SNR respectively. We can see that the patterns estimated from 5 dB SNR signals are 

when applied on DBF are effective on suppressing the ambiguities under the noise flor, but 

when the patterns are estimated from 0 dB signals, the ambiguities are not suppressed under the 

noise. 
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a) 15 dB 

 

b) 10 dB 

 

c) 5 dB 

 

d) 0 dB 

Figure 5.11 – Magnitude of focused point target signal reconstructed using DBF applying 

patterns estimated from noisy signals. 

 

 

a) 5 dB 

 

b) 0 dB 

Figure 5.12 – Magnitude of focused point target signal reconstructed using LCMV DBF 
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6– Multichannel Demonstrator Experiments 

In this section results from an experiment of a multichannel demonstrator with planar array are 

shown in order to explain how the complex patterns estimation works in practice.  

 

6.1 – Experiment set up 
 

The hardware of the experiment consisted of a reconfigurable radar system, depicted on Fig. 

6.2, combined to a receiving planar array and a single transmitting element as depicted on Fig. 

6.3. The support of the antenna system was attached to a wagon, travelling on a rail on velocity 

of 0.1 m/s and the target, a corner reflector, was placed on a sand field at an unknown distance 

from the rail, as depicted on Fig. 6.1. 

v=0,1 m/s
r0

Corner
reflector

 

Figure 6.1 – Experiment set up 

 

On the demonstrator, the chirp signal is generated using an arbitrary waveform generator 

(AWG) and converted to the X-band using a mixer and analog signal generator (PSG). Then 

the signal is filtered, amplified and transmitted. At the receiver side, the echoes are received, 

amplified by a low noise amplifier (LNA), down converted and individually digitized. 
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Figure 6.2 – Reconfigurable radar system 

 

 The receiving array was composed by four microstrip planar antennas on the azimuth 

direction, and a single transmitting element, with the same characteristics as the receiving 

elements (Fig. 6.3). 

2,5 cm

10 cm
22 cm

 

Figure 6.3 – Planar antennas system 

 

6.2 – Range History Estimation 
 

The first step necessary to estimate the complex patterns is to estimate the range history from 

the data for each channel. Fig. 6.4 shows the raw signal for the first channel. The next step is to 

range compress the signal, where the compressed signal is depicted in Figure 6.5. After that, 

for each azimuth position it is detected the range position of the highest power point, and those 
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points are placed in a Cartesian plane. At last, given that equation (2.13) can be approximated 

by a parabola, a parabola is fit on those points and the zero azimuth position is set corresponding 

to the position of minimum range distance, assumed to be the objects azimuth position. The 

final estimated range position for the first channel is depicted on Fig. 6.6. 

 

 

Figure 6.4 – SAR raw data 

 

Figure 6.5 – Range Compressed  SAR data 
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Figure 6.6 – Estimated Range Position 

 

6.3 – Azimuth Signal Extraction 
 

The next step is to extract the azimuth signal of each channel. For that, for each channel the raw 

data is range compressed, then it is done the RCM correction using the range history estimated 

on subsection 6.2 and at last it is selected the range line of the highest signal. Fig. 6.7 shows the 

signal of the first channel after RCM correction is done and Fig. 6.8 a) and 6.8 b) shows 

respectively the magnitude and real part of the azimuth signal of the first channel. 

 

Figure 6.7 – RCM corrected SAR data 
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a) Magnitude 

 

b) Real part 

Figure 6.8 – Azimuth signal 

 

6.4 – Complex Pattern Estimation 
 

 

6.4.1 – Elimination of Green’s Function from The Signal 
 

As explained previously on section 4, the first step to estimate the complex patterns is to 

reconstruct the Green’s function and then eliminate it from the signal. For that, the range history 

estimated on subsection 6.2 is applied on equation (4.2), leading to the estimated Green’s 

function 𝑔̂(𝑦, 𝑦𝑜) and then the azimuth signals of each channel, extracted on section 6.3, are 

divided by the estimated Green’s function, leading to noisy estimated patterns. Figs.6.19 a) and 

6.9 b) shows respectively the absolute noisy pattern estimate for channel 1 and the real part of 

the noisy pattern estimate for the same channel.   

 

a) Magnitude 

 

b) Real part 

Figure 6.9 – Noisy pattern 
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6.4.2 – Low Pass Filtering 
 

Now the next step is to reduce the noise from the estimated patterns. For that, it is done 

the Fourier Transform of the noisy patterns and then it is applied a low pass filter. Fig. 6.10 

shows the Fourier Transform of the noisy estimated pattern for the first channel and Fig. 6.11 

shows the pattern after low pass filtering.  

 

Figure 6.10 – Fourier Transform of the noisy estimated pattern 

 

Figure 6.11 – Fourier Transform of the noisy estimated pattern after low pass filtering 



63 

           

6.4.3 – Inverse Fourier Transform 
 

At last, to obtain the final estimate, it is done the Inverse Fourier Transform. Fig. 6.12 

shows the absolute estimated (blue) and analytical (Orange) patterns superposing the magnitude 

of the estimated noisy patter only for the first channel, since the result of magnitude of the 

estimated patterns is very similar for all the channels, and Fig. 6.13 shows the real part of the 

estimated patterns of the four channels. 

We can see differences between the estimated and analytical patterns due to 

experimental uncertainties such as: the sensor path was unknown, the wagons velocity was not 

really constant, the corner reflector is not a perfect point target, the azimuth position of the 

target was unknown and also the experiment was done in a windy day, causing the sensors 

vibration.   

 
Figure 6.12 – Magnitude of patterns 
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a) First channel 

 

b) Second channel 

 

c) Third channel 

 

d) Fourth channel 

 

Figure 6.13 – Comparison between noisy, analytical and estimated patterns 
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7 – Conclusion and Future Work 

 

In order to provide a posteriori knowledge based beamforming method, that is, to enable 

DBF techniques to be effectively applied without prior information of the sensors antenna 

patterns and the channels noise covariance matrix, this thesis develops methods of estimating 

the complex azimuth antenna patterns from the data and also to estimate the channels noise 

covariance matrix from the data. 

With respect to the estimate of the azimuth antenna patterns, the method based on a 

strong point target showed through simulations to be robust regarding the SNR variation, and 

since it is done in the time domain, it is possible to use undersampled data to estimate the 

patterns. On the other hand, it is very sensitive to errors on the range history estimate, that 

results in phase errors on the estimated patterns. Another complication of the method would be 

the requirement of a point target at each range position to estimate the complex patterns 

dependent of both 𝜃 and 𝜑 coordinates.  

Next, the simulated patterns and noise covariance matrix were applied with DBF 

techniques to suppress ambiguities and optimize the image SNR. Then it was clear the effect 

that the phase errors from the estimated patterns had on the performance of DBF and 

suppression of ambiguities. Also, it was shown the depreciation of the DBF performance with 

the decrease of the SNR of the signals employed on the patterns estimation. 

Finally, the method of estimating the complex array manifold from a point target SAR 

data was applied on practice, through a multi-channel demonstrator experiment using a corner 

reflector. Again, it is shown the methods high dependence of the targets range history. 

The suggested future work is to conduct more robust experiment with Terra SAR-X 

(spaceborne radar) and a transponder, where the knowledge of the range history is more precise, 

in order to prove the methods effectiveness. Another suggestion is to investigate patterns 

estimation techniques based on distributes targets, where the estimate is done in Doppler 

domain from the signal covariance matrix, which properties are approached on [24]. 
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