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ABSTRACT  

In this work an eigenspace method for interference 
detection and mitigation is presented. Several problems 
arise when using the SVD-based algorithm in single 
antenna GNSS receivers, causing the impairment of the 
correlation matrix estimate. Solutions to the problems are 
proposed. The derived approaches are assessed by 
computer simulations. It is shown that detection and 
mitigation of wide-sense stationary narrow-band 
interference can be achieved with low complexity, while 
wide-band and/or non-stationary interferences require 
more degrees of freedom and thus more complexity. 

INTRODUCTION  

The rapid growth of the wireless telecommunication 
sector and consequently the high demand of spectrum 
assigned to the new services caused the frequency 
spectrum to be very crowded and quite saturated. Due to 
the very weak received signal power on ground of the 
Global Navigation Satellite Systems (GNSS) signals 
spurious harmonics from other systems can cause 
unintentional interference and, therefore, a serious 
problem to the reliable estimation of user position, 
velocity and time (PVT). Besides unintentional 
interference, more virulent intentionally radiated signals, 
called jammer, may knock out the GNSS receiver; this is 
especially the case when a jammer with high time-
frequency dynamic (e.g. Chirp-like jammer) affects the 
GNSS signal spectrum [1].   
To enhance robustness and reliability of the GNSS 
receiver, several interference detection and suppression 
methods, successfully integrated and fully operational in 
GNSS receiver, can be found in literature. They 
differentiate by the domain in which they operate and in 
which way they try to separate useful signals from 
interfering signals. We can distinguish between: time-
domain techniques, mostly based on ‘pulse blanking’ [2], 
frequency-domain techniques [3], time-frequency domain 
techniques, i.e. FDAF [4], space-domain techniques [5], 
space-time domain and space-frequency domain 
techniques [4],[6] and [7] and other orthogonal signal 
domain based techniques like Wavelet [3] or Karhunen-
Loève Transform (KLT) [8].  Up to now, space-time 



domain techniques are the most promising technique for 
mitigation of wide-band and high dynamic interferences. 
However, they make use of antenna arrays, which implies 
higher costs both for the antenna and the receiver 
hardware and, in general, does not always allow to fulfill 
SWaP (Space, Weight and Power) and form factor 
requirements coming from the relevant applications. 
Therefore, in this paper a novel method for interference 
detection and suppression is proposed which is free of 
aforementioned disadvantages. The method is based on 
singular value decomposition (SVD) and operates in 
digital domain at signal processing level before signal 
correlation. We demonstrate that this method can be 
easily adapted to be used in GNSS systems for radio 
frequency interference (RFI) detection and mitigation. 
The computational complexity of the whole system is 
scalable and can be designed to fit the hardware 
requirements. It is shown that a large number of degrees 
of freedom are needed to properly mitigate wideband RFI, 
while the algorithm works well even with a low number K 
(e.g. K = 4) when the RFI is narrowband and stationary. 

SIGNAL MODEL 

Let 𝐱[k] ∈ ℂN×1 denote the base-band signal collecting N 
time instances starting from time k, with 
elements x[k], x[k + 1], … , x[k + N − 1]. 
The received signal 𝐱[k] is assumed to be 

𝐱[k] = �𝐬l[k]
L

l=1

+ 𝐢[k] + 𝐧[k] (1) 

where L is the number of satellite signals impinging on 
the receiver antenna, 𝐬l[k] ∈ ℂN×1is the l-th satellite 
signal,  𝐢[k] ∈ ℂN×1 is a wide-sense stationary (WSS) 
interference and 𝐧[k] ∈ ℂN×1 is the additive zero-mean 
white Gaussian noise with variance σ2.  
The corresponding covariance matrix 𝐑 ∈ ℂN×N of the 
zero mean wide-sense stationary signal 𝐱[k] is  

𝐑[𝑘] = 𝐑 = E�𝐱[k]𝐱H[k]� (2) 

We now consider a collection of K realizations of the 
signal vector 𝐱[k], with starting time k ∈ [0,1, K − 1], and 
we form a data observation matrix 𝐗 ∈ ℂK×N, in canonical 
form, expressed in matrix notation as 

𝐗 = �

x[0] x[1] ⋯ x[N − 1]
x[1] x[2] ⋯ x[N]
⋮ ⋮ ⋱ ⋮

x[K − 1]   x[K] ⋯ x[K + N − 2]

�

=  �

𝐱T[0]
𝐱T[1]
⋮

𝐱T[K − 1]

� 

(3) 

We can approximate the correlation matrix using the 
sample correlation matrix 𝐑� ∈ ℂK×K as 

𝐑� = 𝐗𝐗H (4) 

The longer the observation time of the data matrix 𝐗 
(larger N) the better the estimation of the sample 
correlation matrix, and the higher the ratio between the 
principal eigenvalue of the interference space and those of 
the noise space.  

Singular Value Decomposition 

The sample correlation matrix 𝐑� can be factorized using 
the Eigen Value Decomposition (EVD) as follows 

𝐑� = 𝐕x𝚲x𝐕xT 
(5) 

given 

𝐕xT𝐕x = 𝐕x 𝐕xT = 𝐈N 
(6) 

where 𝐕x = [𝐯1x, 𝐯2x, … , 𝐯Kx] is the K × K orthonormal 
matrix of eigenvectors, and 𝚲x = diag(λkx) is the K × K 
diagonal matrix of eigenvalues [λ1x, λ2x , … , λKx ]. 
There is a strong relationship between the EVD and the 
SVD, applying the SVD to the data matrix 𝐗, we can 
factorize 𝐗 as 

𝐗 = 𝐕x 𝚽x 𝐔xT 
(7) 

where 𝐕x is the K × K orthonormal matrix of left singular 
vectors equal to the matrix of eigenvectors, 𝚽x =
[diag(φk

x) | 𝟎] where diag(φk
x) is the K × K diagonal 

matrix of singular values  [φ1x,φ2
x , … ,φK

x ], having the 
property φk = �λk, and  𝐔x is the N × N orthonormal 
matrix of right singular vectors. Hereafter we indicate 
with φk

s , φk
i  and φk

n the singular values belonging to 
signal, interference, and noise subspace respectively, 
descendingly ordered from the biggest (φ1) to the 
smallest one (φK). 
We assume each replica 𝐬l[k] having a signal power much 
smaller than the noise power, in general between 20 dB 
and 40 dB weaker. For the purpose of this work, we also 
assume that, in case an interfering signal is present, it 
applies that φk

n < φ1i  ∀ k ∈ [1, K]. We can summarize 
these assumptions as  

φ1s ≪ φk
n < φ1i          ∀ k ∈ [1, K] (8) 

Let us consider the interference subspace to be of rank 𝑃, 
with 𝑃 < K. In order to separate the interference subspace 
from the noise plus signal subspace, it is convenient to 
rewrite the SVD as in (9). 
  



Since the interference subspace has rank 𝑃 and (8) holds, 
we can approximate the equation in (9) substituting the 
left singular vector matrix of the signal 𝐕x, with the left 
singular vector matrix of the interference 𝐕i obtaining the 
decomposition in (10). Equation (10) reveals that 

�
𝐕i ≈ 𝐕x
𝚽x (𝑃) ≈ 𝚽i

(𝑃) + σ 𝐈(𝑃)

𝚽x (K−P) ≈ σ 𝐈(𝐾−𝑃)
 (11) 

Thus we can approximate singular vectors of the 
interference subspace with singular vectors resulting from 
the SVD of the input signal. 

INTERFERENCE DETECTION 

In this section we describe the interference detection 
problem and present the SVD-based detector. We address 
two issues arising when the algorithm is implemented in a 
GNSS receiver and propose different solutions to solve 
them.  

Detection problem 

Signal detection is based on the Neyman-Pearson lemma 
[11]. The Neyman-Pearson criterion maximizes the 
probability of detection (𝑃𝐷) by a given maximal value of 
probability of false alarm (𝑃𝐹𝐴). Hypothesis 𝐻0 as given 
in (12) is referred to as the simple (not composite) null 
hypothesis, and represent the case when the discrete time 
signal 𝐱[k] consists of only noise plus the “weak” satellite 
signals.  The alternative hypothesis  𝐻1 represents the 
case when an additive interference  𝐢[k] affects 𝐱[k]. The 
two mutually exclusive hypotheses can be written as 

𝐻0 ∶  𝐱[k] = �𝐬l[k]
L

l=1

+ 𝐧[k]

𝐻1 ∶  𝐱[k] = �𝐬l[k]
L

l=1

+ 𝐢[k] + 𝐧[k]

 (12) 

Depending on interference signal characteristics, different 
optimal or suboptimal estimators can be used. The 
generalized likelihood ratio test (GLRT) has been used 
here to determine the estimator functionality. It produces 
in general good detection performances and small loss 
comparing with an optimal estimator. While determining 

the probability density function (PDF) under 𝐻0, 
indicated as 𝑝(𝐱;𝐻0), can be an easy task, since the signal 
mainly consists of white Gaussian noise, determining 
𝑝(𝐱;𝐻1), the PDF under 𝐻1, can be very challenging and 
sometimes prohibitive. After fixing the 𝑃𝐹𝐴, we can 
determine the detection threshold 𝛾 from the probability 
density function 𝑝(𝐱;𝐻0), as follows 

𝑃𝐹𝐴 = � 𝑝(𝐱;𝐻0)𝑑𝑥
∞

𝛾

 (13) 

SVD-based detection 

SVD-based signal detection is largely used in cognitive 
radio networks to detect the presence of wireless signals 
[9].  
The test statistics is the principal singular value obtained 
after SVD factorization of the data matrix 𝐗. 
Since the singular values are descendingly ordered, the 
principal singular value corresponds to the largest 
singular value φ1x.  

T(x) = φ1x 

It is shown in [12] that if the K-variate sample correlation 
matrix 𝐑� , under 𝐻0 (null case), follows the standard 
Wishart distribution 𝑊𝑝(𝐈, N), φ1x follows a Tracy-Widom 
distribution 

φ1x ~ 𝑇𝑊𝛽�𝜇φ,𝜎𝜑� (14) 

where µφ and σφ are the centering parameter and the 
scaling parameter, respectively, defined as 

µφ = ��𝐾−1 2⁄ + �𝑁−1 2⁄ �
2

𝜎𝜑 = ��𝐾 −
1
2

+ �𝑁 −
1
2
�

⎝

⎛ 1

�𝐾 − 1
2

+
1

�𝑁 − 1
2⎠

⎞

1
3
 (15) 

We can now determine the detection threshold 𝛾𝑆𝑉𝐷 
inverting (13) and making use of the cumulative 
distribution function.  
 
 

𝐗 = �𝐕x(𝐾×𝑃)|𝐕x(𝐾×𝐾−𝑃)� �𝚽x
(𝑃) 𝟎
𝟎 𝚽x

(𝐾−𝑃) | 𝟎(𝐾×𝑁−𝐾)� � 𝐔x
T (𝑃×𝑁)

𝐔xT (𝑁−𝑃×𝑁)� (9) 

𝐗 ≈ �𝐕i
(𝐾×𝑃)|𝐕i

(𝐾×𝐾−𝑃)� �𝚽i
(𝑃) + σ 𝐈(𝑃) 𝟎

𝟎 σ 𝐈(𝐾−𝑃)
| 𝟎(𝐾×𝑁−𝐾)� � 𝐔i

T (𝑃×𝑁)

𝐔iT (𝑁−𝑃×𝑁)�

= 𝐕i(𝐾×𝑃)�𝚽i
(𝑃) + σ 𝐈(𝑃)�𝐔iT (𝑃×𝑁) + 𝐕i(𝐾×𝐾−𝑃)�σ 𝐈(𝐾−𝑃)�𝐔iT (𝐾−𝑃×𝑁) 

(10) 



Noise sample correlation matrix 

The data observation matrix in (3) collects data from one 
single sensor, the receiving single antenna. The K 
different realizations of the signal vector 𝐱[k] are in fact a 
time shift of the same realization. One row of the data 
observation matrix differs from the previous one by just 
one sample. This means the rows of 𝐗 are not 
independent. In the case that only the additive white 
Gaussian noise (AWGN) is present, we can express the 
sample correlation matrix 𝐑� = 𝐑�𝒏 in the following form 

𝐑�𝒏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎

2 𝑅𝑛0,𝑛1 𝑅𝑛0,𝑛2 ⋯ 𝑅𝑛0,𝑛𝐾−1

𝜎2 𝑅𝑛1,𝑛2 ⋯ 𝑅𝑛1,𝑛𝐾−1

𝜎2   ⋱ ⋮

⋯ ⋱ 𝑅𝑛𝐾−2,𝑛𝐾−1

𝜎2   ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (16) 

where 𝑅𝑛𝑖,𝑛𝑗 is the cross-correlation of the noise 
realization 𝑖 with the noise realization 𝑗. The diagonal 
elements of 𝐑�𝒏 have the property 

 𝑅𝑛0,𝑛∆ ≈ 𝑅𝑛1,𝑛∆+1 ≈ ⋯ ≈ 𝑅𝑛𝑛(∆) 

The result is a sample correlation matrix 𝐑�𝒏 which is not 
Wishart. This affects the statistical properties of the 
principal singular value defined in (14) and results in a 
signal detector with degraded performance. 
There are mainly two possibilities to avoid this problem. 
The first is to use K different sensors to collect the 
different realizations, the second is to collect the 
realizations spaced by a delay equal or greater than N, the 
length of the input signal vector. The first option is the 
less practicable as it proposes to extend the receiver by K 
receiving channels. The second option can be afforded 
without any additional cost, in this case the starting times 
k the realizations 𝐱[k] will be collected would become 

k ∈ [0, N + δ, … , (N + 𝛿)(K − 1)] 

Hereafter we call this type of data observation matrix the 
block-wise data observation matrix, indicated by 𝐗b. 

Satellite sample correlation matrix 

In (8) we have assumed the satellite signal power is far 
below the noise floor and consequently its eigenvalues to 
be much smaller than the eigenvalues of the interference 
subspace. This assumption is reasonable if the 
interference power is strong enough to enable the 
interference to be the principal, or dominant source in the 
eigenspace, or if we are using the block-wise data 
observation matrix 𝐗b. However, in case the interference 

power is not strong enough and/or there are several 
satellite signals in view, this assumption becomes weak.  
If we observe the sample correlation matrix under the 
assumption that the signals are uncorrelated among each 
other, we can write  

𝐑� = 𝐑�𝑠 + 𝐑�𝑖 + 𝐑�𝑛 (17) 

where 𝐑�𝑠 is the satellite sample correlation matrix, 𝐑�𝑖 the 
interference sample correlation matrix and 𝐑�𝑛 the noise 
sample correlation matrix. 
Neglecting the cross-correlation between the 
pseudorandom noise codes of the different satellite 
signals and in case the canonical data observation matrix 
in (3) has been used, we can approximate the satellite 
sample correlation matrix as 

𝐑�𝑠 =

⎣
⎢
⎢
⎢
⎡� 𝑅𝑠𝑠(0)

𝑆

𝑠=1
⋯ � 𝑅𝑠𝑠(𝐾 − 1)

𝑆

𝑠=1
⋱ ⋮

⋯ � 𝑅𝑠𝑠(0)
𝑆

𝑠=1 ⎦
⎥
⎥
⎥
⎤

 

where  𝑅𝑠𝑠(Δ) is the autocorrelation of the satellite signal 
𝑠 at time Δ. Assuming that the satellite signals have all the 
same modulation and power, we can write 

𝐑�𝑠 = S ∙ �
𝑅𝑠𝑠(0) ⋯ 𝑅𝑠𝑠(𝐾 − 1)

⋱ ⋮
⋯ 𝑅𝑠𝑠(0)

� (18) 

The resulting satellite correlation matrix has off-diagonal 
elements different than zero and are not negligible. The 
impairment of the signal correlation matrix 𝐑� due to the 
presence of the satellite signal results in a degradation of 
the interference detection and mitigation performance. In 
particular interference mitigation shall take into account 
the satellite sample correlation to properly perform 
mitigation. This will be discussed in more detail in the 
Interference Mitigation section. 

Estimation of noise power 

In order to separate the interference subspace from the 
noise plus signal subspace, a correct estimation of the 
noise power is required. Independently from the detection 
method used to determine the presence of an additive 
interfering signal in white Gaussian noise, the detection 
threshold has to be scaled by the noise power. We will 
consider the estimation of the noise power as a 
deterministic signal scaling the observation matrix. 
Recalling the power of a generic signal 𝐱[k] can be 
calculated as 



Wx =
1
K
�λnx
K

n=1

= tr(𝚲n) (19) 

While assuming that the interference subspace has rank P 
and (8) and (11) hold, we can calculate the interference 
power 𝑊𝑖 and the signal power 𝑊𝑥 as 

𝑊𝑖 =
1
𝐾

(𝑡𝑟(𝚲𝑖𝑃) − 𝑃𝜎2) 

𝑊𝑥 =
1
𝐾
�𝜆𝑥𝑘
𝐾

𝑘=1

=
1
𝐾
𝐸[𝑡𝑟(𝒙[𝑘]𝒙[𝑘]𝑇)] 

(20) 

The noise power 𝑊𝑛 = 𝜎2can be expressed as 

𝜎2 = 𝑊𝑥 −𝑊𝑖 = 𝑊𝑥 −
1
𝐾
𝑡𝑟(𝚲𝑖𝑃) +

𝑃
𝐾
𝜎2 

(21) 

Solving for 𝜎2 gives 

𝜎2 =
𝐾

𝐾 − 𝑃
𝑊𝑥 −

1
𝐾 − 𝑃

𝑡𝑟(𝚲𝑖𝑃) 
(22) 

Additionally an estimation of the rank of the interference 
subspace is needed. A simple way to estimate 𝑃 can be to 
count the number of signal eigenvalues exceeding the 
detection threshold 𝛾.  

INTERFERENCE MITIGATION 

The algorithm can be further enhanced to adaptively 
mitigate the detected interference. Mitigation is also based 
on eigendecomposition of the signal space.  
Knowledge about the signal eigenspace can be efficiently 
applied for interference mitigation in two ways. The first 
makes use of the knowledge about the signal’s principal 
components to obtain the coefficients of a transversal 
filter. The second makes use of the principal components 
to construct a projection matrix spanning the orthogonal 
complement domain with respect to the interference 
subspace. The first approach is more suitable for 
stationary interference, the filter’s coefficients can be 
calculated once and updated over a time period longer 
than the observation time. The second approach requires 
constant update of the projection matrix coefficients, this 
can be done block-wise or in a recursive way. The second 
approach is more computationally expensive, but has the 
advantage to be effective against both stationary and non-
stationary interference.     
In this work we focus on mitigation based on the 
projection matrix. 
 

 

 

Rank reduction filter 

Applying the Karhunen-Loève expansion the input data 
vector 𝐱[k] can be expressed as a linear combination of 
eigenvectors in the following form 

𝒙[𝑘] = �𝒗𝑛𝑥[𝑘]𝑐𝑛[𝑘]
𝑁

𝑛=1

 (23) 

where cn[k] are zero-mean, uncorrelated random 
variables defined by the inner product 

𝑐𝑛[𝑘] = 𝒗𝑛𝑥 𝑇[𝑘]𝒙[𝑘] 

We assume the principal components mainly containing 
the interference energy, in other words they represent the 
“eigensignals” or “natural modes” of the interference. We 
can then perform a rank reduction of the data observation 
matrix in order to mitigate the interference. We define the 
output data matrix 𝐘[k] as 

𝐘 = � 𝐯𝑘x[𝑘]𝐜𝑘[𝑘]
𝐾

𝑘=𝑃+1

= 𝐗 −�𝐯𝒌𝑥[𝑘]𝐜𝑘[𝑘]
𝑃

𝑘=1

= 𝐗 − ��𝐯𝑘𝑥[𝑘]𝐯𝑘𝑥 𝑇[𝑘]
𝑃

𝑘=1

�𝐗 

(24) 

and 

𝐲[𝑘] = 𝚷𝑇𝐘 (25) 

where ΠT = [1,0, … ,0] is the 1 × N top “pinning” vector. 
The new vector 𝐲[k] has rank N − P. The rank reduction 
in (19) can be also obtained via multiplication of the data 
observation matrix with a projector 𝐏𝐱⊥ spanning the 
orthogonal complement of the interference subspace. The 
projector is defined as 

𝐏𝒙⊥ = 𝐈 −�𝐯𝑘𝑥[𝑘]𝐯𝑘𝑥 𝑇[𝑘]
𝑃

𝑘=1

= 𝐈 − 𝐕x(𝑃)𝐕x
(𝑃) T (26) 

and the output signal vector can be obtained as  

𝐲[𝑘] = 𝚷𝑇𝐏𝒙⊥𝐗 = 𝐰𝑇[𝑘] 𝐗 (27) 

where 𝐰𝑇[𝑘] is coefficient vector of the transversal filter 
of length 𝐾 taps, as shown in Figure 1. 



 

Figure 1 Adaptive transversal filter 

Sample correlation matrix compensation 

As already discussed before, the satellite sample 
correlation matrix can affect the signal’s space and impair 
the interference subspace estimate. To weaken the impact 
of the satellite signals on the signal’s subspace, we can 
use an estimate 𝐑�𝑠 of the satellite sample correlation 
matrix 𝐑�𝑠 and compensate the signal correlation matrix 𝐑�  
as following 

𝐑�C = 𝐑�𝑠 + 𝐑�𝑖 + 𝐑�𝑛 − 𝐑�𝑠 
(28) 

An estimation of  𝐑�𝑠 can be obtained by computing 𝐑� 
under 𝐻0, for 𝑁 → ∞ the matrix 𝐑� becomes  

𝐑� ≈ �
𝜎2 + 𝑆 ∙ 𝑅𝑠𝑠(0) ⋯ 𝑆 ∙ 𝑅𝑠𝑠(𝐾 − 1)

⋱ ⋮
⋯ 𝜎2 + 𝑆 ∙ 𝑅𝑠𝑠(0)

� (29) 

Assuming all the satellite signals in view have the same 
modulation and the modulation is known, we can 
determine 𝑅𝑠𝑠(0) based on the values of the off-diagonal 
elements, obtaining an estimate for the satellite 
correlation matrix in (18).  

NUMERICAL RESULTS 

Numerical results have been obtained by numerical 
simulations; all simulations were performed in Matlab.  
If not otherwise specified numerical simulations report 
results using a data observation matrix with size 𝐾 = 4 
and 𝑁 = 2000. Simulations were performed using the 
parameters summarized in Table 1. 

Interference detection 

The interference detector’s performance has been 
evaluated using as test metrics the probability of 
detection 𝑃𝐷. The probability of false alarm 𝑃𝐹𝐴was set 
to 10−3. The SVD-based detector’s performance has been 
compared with the GLRT for the detection of a sinusoid 
[13], based on the FFT of the data observation matrix.  
 

Simulation parameters 
Sampling frequency 20 MHz 
Discriminator type E-L coherent 
Correlator space 0.5 chip 
Integration time 1 ms 
Satellite signal GPS-L1 C/A PRN1 
Average CN0 45 dB-Hz 
Chirp RFI Sweep 0-20 MHz within 20µs 
Sine-wave RFI  Carrier frequency 1.5 MHz 
DME RFI Single double pulse within 1ms, 

carrier frequency 1.5 MHz 
Band-limited RFI Bandwidth 2MHz cent. at 1.5MHz  

Table 1 Simulation parameters 

Figure 2 shows the performance degradation in case the 
noise correlation matrix’s distribution is not Wishart and 
has the form described in (16). Figure 3 shows the 
degradation caused by the presence of the satellite signals. 
In this case satellite signal’s CN0s were, on average, 
45dB-Hz. The figure shows also the improvement 
obtained using 𝐑�𝑠 compensation as indicated in (28). 
Figure 4 and Figure 5 show the performance in case of a 
single DME pulse interference, and a chirp-like 
interference, respectively. The graphs depict the different 
behavior of the two data observation matrix types, the 
canonical and the block-wise. In general the canonical 
provides better results for non-stationary, low duty cycle 
and intermittent interferences, while the block-wise 
approach provides better results for stationary 
interferences. The block-wise type has the advantage that 
the resulting 𝐑� under H0 has a Wishart distribution and is 
also unaffected by the presence of satellite signals. Figure 
6 and Figure 7 depict a comparison between the SVD-
based and the FFT-based detectors for a wideband 
interference (2MHz band-limited noise) and a sinusoid 
interference, respectively. As expected SVD-based 
provides better results in detecting wideband 
interferences, like band-limited noise, DME and chirp-
like RFIs, while the FFT-based approach is more 
indicated for narrow-band RFIs.    

 

Figure 2 𝑃𝐷 of Chirp interference – performance 
degradation for non-Wishart  𝐑�𝑛  



 

Figure 3 𝑃𝐷 of Chirp interference – Effect of satellite 
signals 

 

Figure 4 𝑃𝐷 of DME interference – Comparison between 
canonical and block-wise observation matrices 

 

Figure 5 𝑃𝐷 of Chirp interference – Comparison between 
canonical and block-wise observation matrices 

 

Figure 6 𝑃𝐷 of Band-limited interference (2Mhz 
bandwidth) – Comparison between SVD-based and FFT-
based detection 

 

Figure 7 𝑃𝐷 of Sine-wave interference – Comparison 
between SVD-based and FFT-based detection 

Interference mitigation 

Interference mitigation performance has been evaluated 
using two types of test metrics: the early-late 
discriminator jitter and the interference mitigation 
capability, the latter expressed as the amount of rejected 
interference power. The SVD-based mitigation has been 
compared with the mitigation using the frequency domain 
adaptive filter (FDAF) described in [4]. Simulation results 
have been obtained using an ideal receiver, processing 
floating point data and having an input signal dynamic 
range large enough to avoid clipping and overflow. 
Figure 8 and Figure 9 show the results after mitigation of 
a sine-wave. The sine-wave frequency has been selected 
to fall in between two adjacent frequency bins; this 
represents a worst-case, since it causes the maximum 
amount of spectral leakage. Using FDAF the receiver 
robustness could be increased by about 20dB, in this case 
the FFT-based technique’s performance was limited by 
the leakage effect. On the contrary, SVD-based algorithm 
does not suffer from the leakage problem and is able to 
optimally separate the interference from the signal 
subspace. In other words a perfect projector onto the 
orthogonal complement of the sine wave can be obtained. 

* 𝐑�𝑠 has been used  

* 𝐑�𝑠 has been used  

* 𝐑�𝑠 has been used  

* 𝐑�𝑠 has been used  



Figure 8 also reveals the improvement in tracking jitter 
and RFI mitigation when a canonical data observation 
matrix is used, compared with the block-wise approach. 
Figure 8 and Figure 9 show the results in case a DME 
interference is affecting the receiver. In this case the 
carrier frequency of the interference was besides the main 
lobe of the satellite signal spectrum. SVD-based 
mitigation was able to reject the DME interference and 
ensure tracking. Anyway it was necessary to compensate 
the sample correlation matrix as indicated in (28). This 
operation is crucial, and its effect can be seen in Figure 12 
and Figure 13. Figure 12 shows the transfer function 
𝐻(𝑓) of the equivalent transversal filter with coefficients 
𝐰𝑇[𝑘] as given in (27). The filter transfer function 
obtained without matrix compensation would filter out 
part of the satellite signal, since the algorithm would treat 
the signal subspace as part of the interference subspace. In 
contrast, using matrix compensation prior to the 
eigendecomposition would separate the satellite from the 
interference subspace and preserve the satellite signal. 
Figure 13 shows the resulting satellite signal after 
mitigation in time domain. Successful mitigation of the 
DME wide-band non-stationary signal could be achieved 
as long as the interference spectrum was not fully 
overlapping the main lobe of the satellite spectrum. 
Further simulations were conducted for different wide-
band interference sources, like chirp-like and band-
limited noise RFIs. In general mitigation of wide-band 
and non-stationary interferences requires additional 
degrees of freedom. In other words, for this kind of RFIs 
it is necessary to increase the number of realizations 𝐾 in 
order to enable the SVD-based algorithm to properly 
separate the signal from the interference subspace.    

 

Figure 8 E-L discriminator jitter after Sine-wave 
interference mitigation  

 

Figure 9 Rejected Sine-wave interference power after 
mitigation 

 

 

Figure 10 E-L discriminator jitter after DME interference 
mitigation 

 

Figure 11 Rejected DME interference power after 
mitigation 



  

Figure 12 Equivalent transversal filter response – 
improvement using the satellite correlation matrix 
compensation  

 

Figure 13 Satellite time signal after DME mitigation – 
improvement using the satellite correlation matrix 
compensation 

CONCLUSIONS 

In this work we have presented two methods, one for 
interference detection and one for interference mitigation, 
both making use of an eigendecomposition of the data 
space. Particular attention was paid to the form of the data 
observation matrix and how it can affect the algorithms. 
We have shown that interference mitigation suffers when 
the data observation matrix has overlapping rows 
resulting in a noise correlation matrix not following the 
usual Wishart distribution. In order to better separate the 
interference from the signal plus noise subspace we have 
proposed an approach making use of the estimate of the 
satellite sample correlation matrix.  
Using a software representation of a GNSS receiver it has 
been demonstrated that the usage of the SVD-based 
algorithms in single antenna GNSS systems are a 
powerful tool to detect interfering signals and increase the 
robustness of the receiver. The computational complexity 
is scalable and can fit the desired requirement. Increasing 
the degrees of freedom of the algorithm and the 
complexity of the hardware leads to a sensible 

improvement of the RFI mitigation performance against 
wideband and non-stationary RFI. The mathematical 
principle and its practical implementation have 
similarities with the ones proposed in [6] and [10]. Hence 
the derivation of the computational requirement made in 
[10] is also applicable for in this work proposed schemes. 
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