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Abstract— Small mobile robots often have very limited com-
putational resources, but should still be able to navigate robustly
in spacious unknown environments. While local navigation
already requires high-resolution maps for obstacle avoidance
and path planning, the global navigation task should aim to
consume as little resources as possible but still enable the robot
to robustly find the way to important places. Inspired by models
of insect navigation, Augustine et al. [1] recently introduced
the LT-Map, a scalable data structure for homing based on
bearing-only landmark measurements. The robot memorizes
landmark configurations during its first traversal of a path and
uses them to navigate the same route again. The LT-Map uses a
tree structure to store the landmark views in the order of their
translation invariance. This paper introduces an improvement
of the LT-Map, the Translation Invariance Level Map (Trail-
Map). This novel data structure also stores the landmark views
in a hierarchical order of translation invariance, but is based on
lists of landmark views. Thus, it avoids redundancies that could
arise in the LT-Map and leads to a more consistent hierarchy.
The Trail-Map achieves significant memory savings and can be
created and pruned very efficiently what makes it attractive
to mobile robots with limited computational power. Simulation
results show that the Trail-Map data structure can save more
than 80% of memory compared to the LT-Map while achieving
the same path accuracy.

I. INTRODUCTION

A robot operating in an unknown environment must be
able to accurately model its close surroundings for ob-
stacle detection and avoidance, as well as for planning
and manipulation. High-resolution metric maps are widely
used for this local navigation task because they represent
geometric structure [2], [3]. Additionally, the robot has to
solve the global navigation task, which means it must be
able to navigate through the environment, especially to find
back to its starting position. In this context, metric maps
are also commonly used, either dense grid maps [4], [5]
or sparse landmark maps [6], [7]. Metric maps have the
advantage that they are human-readable. Dense grid maps
can represent the geometry of the environment, but their
accuracy depends on the chosen resolution, which is hard
to adapt to local environment conditions during runtime.
Further, since position estimation errors accumulate over
time, computationally expensive algorithms, for example
SLAM (Simultaneous Localization and Mapping), have to
be used for keeping the global maps consistent. Although
much work has been done on making SLAM computationally
tractable [7], [8], the computation costs still depend on the
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size of the map and, hence, will grow unbounded as the map
extends.

As a counterpart to metric maps, topological maps model
the environment as a graph, where the nodes represent
distinct places that are connected by edges. Topological
maps represent the connectivity between places very well,
are compact representations of the environment, and al-
low for efficient path planning. Several works use hybrid
maps [9], [10], which use local metric maps as nodes and
the coordinate transformations between the submaps as edge
information. By doing so, the global resolution and, hence,
the computational requirements for maintaining the global
map, is greatly reduced.

For tasks in spacious environments and for robots with
limited resources it is important that the global map can
be maintained with low cost and can adapt to the available
memory. In particular, planetary rovers have only very re-
stricted computational power, but also other small mobile
robots such as micro aerial vehicles (MAVs) are limited
in their computational hardware due to payload restrictions.
Thus, a map for these robots must be scalable in terms of
memory and in terms of computation costs. In many cases,
the creation of a global metric map is not one of the mission
objectives. The robot only needs to be able to traverse
between meaningful workspaces, the exact routes for getting
there are not relevant. Hence, the robot can use an internal
representation of the world that only contains the information
that are essential for the robot to find its way. Such an internal
map does not have to be Cartesian. By combining local
metric navigation for obstacle avoidance with a global non-
metric navigation, the robot would be able to autonomously
move through complex, unknown environments.

Animals and humans are in general neither able to accu-
rately sense metric information, nor to build correct Cartesian
maps, but they can robustly find their ways through large-
scale environments. Especially the navigational toolkit of
insects performs remarkably well. Experiments with desert
ants and bees show that they can memorize visual infor-
mation of the environment [11], [12]. Hence, appearance
based navigation techniques have been developed, where
the robot memorizes images or special image properties
in a topological map during a training phase and then
navigates by matching the stored information with the current
view [13], [14], [15], [16]. However, these approaches do not
offer a proper scaling method, either.

Aiming at a scalable topological representation of the
environment, Augustine, Mair, et al. [1], [17] introduced the
LT-Map (Landmark-Tree Map) for homing based on bearing-



only landmark observations. Landmark views are organized
in a tree where slowly changing, translation invariant land-
marks are located towards the top of the tree while translation
variant landmarks are located in the leaves. The LT-Map
can be scaled by pruning the tree and, thus, discarding the
information about quickly changing landmarks. However, the
drawback of the tree is that the resulting map structure highly
depends on the order in which the landmarks are observed.
Inspired by the LT-Map concept, we propose a novel
data structure, the so-called Translation /nvariance Level
Map (Trail-Map), which tries to circumvent these effects
by using a list structure instead of a tree. The Trail-Map
better represents the degree of translation invariance of the
landmarks and, hence, enables more effective pruning in case
of memory shortage. As the experiments reveal, this comes
with the benefit of significantly more efficient maps. In the
presented cases the Trail-Map only requires about a third
of the memory as occupied by an LT-Map for the same
environment. After pruning, memory savings of more than
80% can be achieved, while also saving computation time.
This paper is organized as follows. Section || will briefly
introduce the LT-Map concept and will show the shortcom-
ings of this approach. In Section the Trail-Map and its
implementation are described. Section will compare the
performance of the Trail-Map and the LT-Map in terms of
runtime, memory and navigation accuracy. Finally, Section [V]
will conclude this paper and give an outlook on future work.

II. THE LT-MAP DATA STRUCTURE

Since the Trail-Map data structure presented in this paper
is closely related to the LT-Map, this section will briefly
restate the idea behind the LT-Map concept. A more detailed
description of the LT-Map is given by [17].

The LT-Map was inspired by works on insect navigation,
in particular the snapshot model of [18]. This model stores
the configuration of the surrounding landmarks in a snapshot.
For navigation, the insect moves in a direction to align
the currently perceived landmark configuration with the
snapshot. This enables them to traverse a previously visited
path without metric distance information and without having
an explicit metric representation of the route.

In the LT-Map, a viewframe is defined as a unique con-
figuration of landmark views that corresponds to a distinct
location in space. A landmark view (LVﬂ is given by the
landmark’s descriptor and the unit vector pointing in the
direction of the landmark. An external compass allows the
rotational alignment of different viewframes.

The LT-Map is created during a mapping phase. A robot
equipped with an omnidirectional sensor moves through the
world, either autonomously or remotely controlled by an
operator. It acquires new viewframes whenever the dissimi-
larity measure §; between the current landmark configuration
and the previously acquired viewframe exceeds a specified

'We will make use of the term landmark view (LV) in this paper to
avoid confusion with the actual landmarks. In the original publication of
the LT-Map the term landmark is used for the combination of a landmark’s
descriptor and its unit vector.

threshold. The dissimilarity measure was computed as the
average deviation of the landmark configurations between
two viewframes weighted by a Pseudo-Huber cost function.
Thus, the density of the viewframes depends on the local
landmark configuration: In areas with only few close land-
marks, the viewframes will be further apart than in areas with
many nearby landmarks. That leads to an implicit adaption
of the map resolution to the local conditions.

The main idea behind the LT-Map is to build up a tree
structure instead of storing a list of viewframes containing
all LVs. In that tree, LVs which do not change significantly
between consecutive viewframe positions are shared between
these viewframes. As a result, the LVs are sorted by their
degree of translation invariance. LVs which do not change
over many viewframes are on a higher level in the tree and
correspond to translation invariant objects. LVs which change
significantly from viewframe to viewframe are in the leaves
and lower nodes of the tree. These LVs correspond to close
objects, which are translation variant. Viewframes can be
retrieved from the tree by following the path from a leaf to
the root node and collecting the LVs of all visited nodes.

During the navigation phase, the robot tries to follow the
previously recorded path by moving in the direction that
matches the currently perceived viewframe with the next
goal viewframe from the LT-Map. The navigation vector h
is computed by the secant method of the difference vector
model [19] as
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where 1, are the unit landmark vectors in the current view and
l; are the unit landmark vectors of the goal view. Here, the
sum of the difference vectors is normalized by the number
of landmarks NV in the viewframe.

The LT-Map data structure is claimed to be memory effi-
cient because LVs that stay constant over several viewframes
are only stored onc When the angle towards a landmark
changes more than a given threshold, a new LV is stored with
the new landmark descriptor, what allows stable matching.
Furthermore, the LT-Map data structure is scalable. When
the robot runs out of memory, the leaves of the tree can
be pruned. This means, that local information is discarded
but the translation invariant, global information is preserved.
Hence, the robot will not follow the original path exactly,
but it will still be able to find its way. Only the probability
of the robot to get lost increases with pruning.

A. Shortcomings of the LT-Map

Fig.|l| shows an example of a landmark tree created by the
original LT-Map algorithm. The angle threshold for creating
a new LV was set to dungle = 1°. When viewing the tree in
Fig. [I] in more detail, we can see that some LVs are split
into different nodes although their bearing angle difference
is smaller than the assumed threshold of 1°. For example,
the nodes 6 and 7 both contain the LV Lo with angles of

2The next section will show that this claim does not always hold.



21.3° and 21.9°, respectively. Furthermore, the LV L3 is
split between nodes 7 and 8, and the LV L, is split between
nodes 7 and 9, although their angle differences are smaller
than the threshold. Hence, the intuition that landmarks whose
bearings change slowly (translation invariant) always appear
in the upper levels of the tree and landmarks with quickly
changing bearings (translation variant) are located in the
lower levels, is not always correct. This behavior is caused
by the structure of the tree. A LV is only shared by more
than one viewframe if the viewframes also share all higher-
level LVs. Since the angles of LVs L3 and L4 change from
viewframe 3 to 4, the lower LV L5 is not considered. That
means, it is not even checked whether the bearing of Lo
has changed at all. Hence, the height of the LVs in the tree
does not give reliable information on the level of translation
invariance. For this reason, the pruning operation is likely to
preserve information of volatile landmarks while discarding
information of stable, translation invariant landmarks.
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Fig. 1.
their angle when inserting them into the tree. The nodes are numbered for
referencing. VF: viewframe

Example of an LT-Map: The nodes contain the landmarks L; with

Hence, a tree does not seem to be the optimal data
structure for the viewframe map concept, because it does not
reflect the structure of an ideal viewframe map. A tree always
represents a hierarchy of information and does not permit
overlaps between neighboring branches. For the viewframe
map, such overlaps are required. For this reason, a data
structure different from a tree is better suited for representing
the levels of translation invariance.

III. THE TRAIL-MAP

To come up with an alternative data structure for the
viewframe map problem, let us have a look at Fig. [2|
which shows a path through a simplified environment with
three landmarks. When we assume an angle threshold of
Oangle = 45° for mapping, each landmark spans eight sectorsﬂ
visualized by the colored lines. Within each sector, the corre-
sponding landmark is perceived with a bearing difference of
at most 45°. A new viewframe is acquired when the angle
of at least one landmark changes more than Jange. Hence,
every time the robot leaves a landmark sector, it acquires
a new viewframe. In this environment, a viewframe region
is defined by the intersection of three specific landmark

3Please note that for the sake of simplicity and without loss of generality
we set the angle intervals to full 45° intervals in this example instead of
letting the angle intervals start individually at the bearing the landmark is
perceived first.

sectors. The first three viewframe regions of the robot path
are highlighted in Fig. 2] When crossing a sector border, the
robot also observes a new LV. The LVs of the three different
landmarks are visualized by the colored path segments.
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Fig. 2. Intuitive illustration of viewframe mapping. VF 1-3: highlighted
first three viewframes. L;: Landmarks with sectors

When traversing the path, the robot observes several LVs,
but only one LV changes with the acquisition of each new
viewframe. Hence, the robot should rather store the observed
LVs instead of the single viewframes which redundantly
contain many LVs. This was also the key idea behind
the LT-Map. Fig. [3] illustrates the observed LVs and the
corresponding viewframe numbers.
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Fig. 3. From the LVs to the Trail-Map representation (step 1)

To make the viewframe map scalable in terms of memory,
we want to introduce a hierarchy of how translation invariant
each LV is. For this, the LVs are ordered by the number
of viewframes they span. LVs that span many viewframes
have a higher level of translation invariance than LVs that
span only a few viewframes. LVs which span the same
number of viewframes should be at the same level in the
hierarchy. Fig. 4] shows the hierarchically ordered LVs. The
level number gives the number of viewframes that each of
the contained LVs spans. Level 4 does not exist since no
LV spans exactly 4 viewframes. The resulting structure is
the key idea of the translation invariance level map (Trail-
Map). Now, when the robot runs out of memory, the LVs in
the lower levels can be deleted without discarding stable and
important long-term information.
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Fig. 4. From the LVs to the Trail-Map representation (step 2)

Similar to the density of the viewframes, the degree of



translation invariance and, hence, the pruning operation, also
adapt to the local landmark distribution. For regions with
only far landmarks, LVs in a specific level might span a
much longer metric distance than LVs of the same level in
regions with close landmarks. As a result, after pruning there
will still be more viewframes in regions with a high landmark
density than in regions with only distant landmarks.

A. Data Structure Implementation

To represent the structure of the translation invariance lev-
els without memory overhead, we chose to use a combination
of linked lists. On the top level, there is a list of translation
invariance levels, which is ordered by the level number. Each
level contains a linked list of LVs in the order they have
been observed by the robot. A landmark view (LV) in this
list consists of the landmark’s descriptor, its ID, its bearing
as unit vector, and the number of the viewframe when it was
added to the list. The viewframe number is required for the
extraction of single viewframes from the data structure.

Trail-Map

Open List
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Fig. 5.
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Memory representation of the Trail-Map

Algorithm 1: Appending a viewframe to the Trail-Map
Input : viewframe V F'; trail M ap; openList
Output: trail Map; openList

1 if ltrail M ap.GetHighestLevel.IsEmpty then
2 L trail M ap.addLevel;

3 foreach [ in openList do

4 foreach f in V F.LandmarkViews do

5 if f.descriptor matches [.descriptor then

6 if | f.angle-l.angle| < Jangle then

7 trail M ap(l.getLevel].remove(l);

8 trail M ap(l.getLevel+1].append(l);

9 open List.updatePointerTo(l);

10 else

11 open List.removePointerTo(l);
12 trail Map[1].append(f);

13 open List.appendPointerTo( f);
14 V F.remove(f);

15 found:=true;

16 | break;

17 if !found then

18 | openList.removePointerTo(l);

19 foreach f in V F LandmarkViews do
20 L trail Map[1].append(f);
21

open List.appendPointerTo( f);
Fig. ] illustrates the memory representation of the Trail-
Map data structure. Algorithm [I] gives pseudo-code for

creating this list of landmark view lists. In the beginning,
the Trail-Map contains only one level: level 1. Furthermore,
there is an open list which always contains references to the
landmarks that the robot observed in the previous step. The
open list is also empty initially. When the robot observes the
first viewframe, all LVs of the features in the viewframe are
added to level 1 and references to all these LVs are stored
in the open list (lines 19-21). When the robot observes the
next viewframe, level 2 is created (lines 1-2) and all LVs
of the open list are compared to the features in the current
viewframe (lines 3-5). If a landmark in the open list is also
present in the current viewframe, and if its angle is within
the angle threshold, then the LV is removed from its current
level and appended to the end of the next higher level (lines
7-8). The reference to that LV in the open list is updated
(line 9). If the angle of the landmark has changed more than
the specified threshold, then the new LV is added to level 1,
the reference to the old LV in the open list is deleted and
the reference to the new LV is added at the end of the open
list (lines 11-13). If a landmark in the open list cannot be
found in the current viewframe, then its reference is deleted
from the open list (line 18). All landmarks of the current
viewframe that were observed for the first time are added
to level 1 and their references are appended to the open list
(lines 19-21). By repeating this procedure for each newly
acquired viewframe, we achieve the following properties for
the Trail-Map:

1) The level each LV is stored in corresponds to the
number of viewframes for which the LV did not change
its angle by more than the specified threshold fangie.

2) The references in the open list are always ordered by
the number of the corresponding landmark’s level.

3) The LVs in the single levels are ordered by the
viewframe number they were first observed at.

Compared to the LT-Map, the Trail Map has some advan-
tages:

e Intuitive: The resulting structure of the Trail-Map cor-
responds to the expected hierarchy of the LVs.

e Non-redundant: A landmark view is stored only once
as long as the landmark’s bearing does not change
significantly.

o Efficient: The Trail-Map operations, especially the map
pruning, are faster (ref. Section [[V-B).

As a disadvantage, the retrieval of the viewframes from
the Trail-Map has become more difficult. While for the LT-
Map, only the paths from the leaves to the root node have
to be traversed, full lists must be searched when looking
for a specific viewframe number in the Trail-Map. However,
since the lists are sorted, this search can be implemented
efficiently. Furthermore, for general navigation it is not
required to extract specific viewframes, but in most cases the
viewframes are retrieved in the same or in reverse order of
their visit. This stepwise retrieval can be solved with minimal
costs due to the sorted structure of the lists that emerges
from the construction algorithm. That means, when having
retrieved one viewframe, to get the next or the previous



viewframe one only has to increment or decrement an iterator
on each level list and check whether the sum of the level
number and the insertion frame number of that LV fits to
the number of the viewframe to be retrieved. This procedure
is repeated until the newly acquired viewframe contains at
least one different LV than the previous one. Furthermore,
viewframes with too few LVs are discarded to allow robust
navigation.

When landmarks are occluded or cannot be detected
in some images, translation invariant landmarks would be
inserted in lower levels due to Algorithm [T} To prevent this,
landmarks which are not visible in some images and reappear
at the same bearing angle should be inserted such as they
were observed all the time. To do this, LVs which disappear
in the next viewframe, are held in the open list and marked as
waiting. They are only deleted from the open list, when they
have not been observed for more than a specified number
of viewframes or when they are observed at a significantly
different angle. In case they are detected again at an angle
within the angle threshold, they are moved up to the level
where the landmark would have been if it had been visible
all the time.

The same landmark configuration that resulted in the
example LT-Map in Fig. |l| gives the Trail-Map structure
depicted in Fig. [6] This structure contains 31 LVs as com-
pared to 33 in the LT-Map. Furthermore, a new LV is only
inserted when the angle changes significantly, irrespective
of how the other LVs in the same viewframe behave. Thus,
inconsistencies as pointed out for the LT-Map do not occur.
When pruning the map in Fig. [§|by one level, the viewframes
1 and 2, and 5 and 6, respectively, will be regarded as
one viewframe by the viewframe retrieval algorithm, because
they contain the same LVs.
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Fig. 6. Resulting Trail-Map

IV. PERFORMANCE COMPARISON OF THE TRAIL-MAP
AND THE LT-MAP

A. Memory and Navigation Performance

To compare the performances of the Trail-Map and the LT-
Map, we created a simulation environment consisting of 100

uniquely identifiable landmarks spread randomly within an
area of 200 x 200 units. A path starting at (0, 0) with a length
of about 130 units was defined by ten different waypoints
(see Fig. [8). The simulated robot with an omnidirectional
landmark sensor was lead along this path and recorded
viewframes. A new viewframe was acquired as soon as one
landmark changed its angle by more than Jange. compared
to the last recorded viewframe. We chose this measure for
viewframe dissimilarity to prevent that a high number of
distant landmarks suppresses the bearing changes of local
landmarks, what might happen by calculating an average
angle deviation of the landmarks as proposed in [17]. The
smaller the value of Jange, the higher the resolution and,
hence, the accuracy and the memory requirements of the
resulting map. The value of Jang. should be higher than
the resolution of the bearing sensor and should be chosen
according to the required path accuracy. Since usually no
high accuracy is required for the traversal between different
workspaces, higher thresholds should be preferred for the
benefit of less memory. In these simulations, we chose
5angle = 5°.

We used the secant method as previously stated in Eq. [I]
for calculating the navigation vector direction. However, the
length of the navigation vector was adapted to the local land-
mark configurations. For Apax < dangle the navigation vector
length was increased, for Apa > 20age it Was decreased,
where Ap.x is the maximum change of a landmark angle
between two navigation steps.

Thus, in regions with nearby landmarks, the single naviga-
tion steps were smaller than in regions with landmarks that
were far away. We simulated no noise, outliers, or occlusions,
because the basic behavior of both approaches should be
compared. Based on the recorded viewframes, the simulated
robot should navigate along the same path using the LT-Map
and the Trail-Map at different pruning levels. To ensure that
the goal point can always be reached with a good accuracy,
the last viewframe acquired at the goal point was never
pruned. The simulation was run 100 times with different
isotropic landmark configurations for each pruning level and
the landmark configuration was randomly changed after each
run. The path error is computed as the area between the
learning and the navigation trajectory.

Fig.[7]visualizes the statistics of the simulation results. One
of the most noticeable things is that the full LT-Map contains
3315 LVs on average while the Trail-Map requires 1278
LVs, which is only 38.5% (ref. Fig. Ma)). That shows, that
the Trail-Map data structure is much more memory efficient
because LVs are not stored redundantly.

When pruning the Trail-Map, the number of LVs reduces
quickly. In contrast, when pruning the LT-Map, in the begin-
ning only a few deep branches are affected. This shows, that
the LT-Map is not as well-balanced as the Trail-Map.

The path error resulting from the full LT-Map is somewhat
smaller than the path error of the full Trail-Map, as shown in
Fig. [/(b). The reason for that is the already mentioned fact
that the LT-Map often includes LVs again with their current
angle, because higher-level LVs have changed, although the
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lower LVs have not exceeded the threshold d,ngle yet. Hence,
in the LT-Map the landmark angle resolution is on average
higher than duge = 5°, what results in a more accurate
navigation path. What should be noted for interpreting the
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data in Fig. /] is the fact that for the 100 simulated land-
mark configurations, not all resulting LT-Maps had the same
height. That means, after pruning 20 levels or more, only a
fraction of the created LT-Maps could be considered in the
calculation of the mean, because many LT-Maps had no LVs
left. The same applied to the resulting Trail-Maps, because
not all Trail-Maps had more than 30 levels. Furthermore,
the standard deviations of the number of LVs in the LT-Map
grow very big when pruning many levels, because the LT-
Map contains the most LVs towards the root of the tree. The
standard deviations of the number of LVs in the Trail-Map
show opposite behavior because in the Trail-Map most LVs
are located in the lower levels. We are aware of the fact, that
the distributions of the path error and the number of LVs are
not always Gaussian, but we use the standard deviations in
the error bar plots to give an impression of how much the
different values vary.

The most remarkable plot is Fig. 8] which illustrates
the average behavior of the path error depending on the
percentage of remaining LVs. The navigation performance

of the LT-Map degrades quickly. The path error of the LT-
Map exceeds the minimum path error of the Trail-Map after
pruning about 10% of the LVs. In contrast, the Trail-Map
can be pruned to about 50% of the original number of LVs
without significant loss of path accuracy. This advance in
performance of the Trail-Map is remarkable, keeping in mind
that the 100% mark corresponds to 3315 LVs for the LT-
Map, but only to 1278 LVs for the Trail-Map. Comparing
the number of required LVs to achieve a path error of about
€ = 77, the LT-Map requires 2938 LVs, while the Trail-
Map only needs 546 LVs on average. That means a memory
saving of more than 80%. Considering path errors of about
e = 160, the Trail-Map saves about 90% of LVs compared
to the LT-Map.

Fig. [0 shows the navigated paths for different pruning
levels for one example environment. The resulting Trail-
Map contains 38 levels in this case, the lowest being 1
and the highest being 50. The tree of the LT-Map has a
maximal height of 26. Fig. Ofa) and Fig. [I0fa) show the
navigated paths using the full LT-Map and the full Trail-
Map, respectively. The accuracy of the followed trajectories
is approximately similar in this example. However, when the
LT-Map is pruned to the number of landmarks of the full
Trail-Map, the navigated path already degrades significantly
(see Fig.[O(e)). As Fig.[0[f) shows, with 600 LV the resulting
path of the LT-Map has only very few viewframe locations
left, hence, the accuracy decreases noticeably. In contrast,
when the Trail-Map is pruned to the same proportion of its
original size (see Fig.[I0[(d)), viewframes are still spread over
the whole path. Even with as few as 153 LVs (which is 11%
of the original number), the path is still followed well.

When comparing the navigation trajectories of the LT-
Map and the Trail-Map using only the last viewframe
(Fig. [9(h) and Fig. [[0(h)), it becomes obvious that the LT-
Map navigation track is a nearly direct path to the goal point,
while the Trail-Map track still goes through intermediate
viewframes. The reason for this is, that in the Trail-Map the
last viewframe still contains the information about the levels
of each LV. LVs of the higher levels produce intermediate
viewframes which are reached first. Later, LVs in the lower
levels create refined viewframes that finally lead to the goal
position. This kind of information is lost when pruning the
LT-Map tree.

B. Runtime Performance

To show the computational efficiency of the Trail-Map, we
compared the runtimes of our Trail-Map implementation and
the original implementation of the LT-Map. Both maps were
implemented in C++ and compiled with the same compiler
and flags. Runtimes are measured on a 2.67 GHz CPU. We
used the simulation environment and path described in the
previous section and created environments with 100 up to
5000 randomly distributed landmarks spread within the range
of 200 x 200 units. The recorded viewframes were imported
into the C++ programs and the runtimes for creating full
maps from the recorded viewframes, for map pruning and
for viewframe retrieval were measured.
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According to Algorithm [} a viewframe is added to the
Trail-Map in O(N?) with N being the number of LVs
per viewframe. The worst case complexity of the LT-Map
creation is also O(IN?), but since the landmark comparison
with the previous viewframe can stop as soon as a LV
changes significantly, the best case complexity of creating the
LT-Map is O(V). Since N stays constant during the mapping
phase, the runtime for map creation does not grow with the
map. As Fig. |11 shows, the Trail-Map can be created faster
than the LT-Map when the viewframes do not contain more
than about 1000 LVs, what is sufficient for most applications.

Additionally, the Trail-Map can be pruned magnitudes
faster than the LT-Map. Especially when pruning only one
level, the LT-Map needs to traverse the full tree to find the
leaves which have to be pruned, while only one level list
has to be deleted from the Trail-Map. For 5000 LVs per
viewframe, pruning takes up to 350 ms for the LT-Map, but
less than 1 ms for the Trail-Map. For 1000 LVs, the LT-Map
can be pruned in 30 ms, the Trail-Map in 70 ns.

Furthermore, the retrieval of the viewframes from the
created Trail-Maps is faster than from the LT-Maps because,
although the number of LVs per viewframe is the same,
the LT-Maps contain more LVs than the Trail-Maps, due to
redundancies.
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Fig. 11. Map creation time comparison of LT-Map and Trail-Map

V. CONCLUSION

In this paper, we presented the Trail-Map, a novel data
structure for range-free homing. The Trail-Map is closely
related to the LT-Map, in particular it borrows the idea to
order landmarks hierarchically by their level of translation in-
variance. This allows discarding the least important landmark
views in case of memory shortage. However, in comparison
to the LT-Map, the structure of the Trail-Map is better suited
for viewframe-based navigation and hence consumes much
less memory. Additionally, it can be pruned stronger without
significant loss of accuracy. Precisely, more than 80% of
memory can be saved in our experiments compared to the
LT-Map, while also saving computation time.

On top of a local navigation scheme for obstacle avoid-
ance and local planning, the Trail-Map enables global nav-
igation in unknown environments where the robot has to
traverse previously visited paths again, for example when
returning to its starting position. The proposed navigation
scheme adapts to local landmark configurations by creating
more viewframes in areas with close landmarks and less
viewframes in areas with far landmarks. It does not aim at

a very high navigation accuracy but at robustly following a
path with as little memory and computational costs as pos-
sible. The Trail-Map can be created and pruned efficiently,
what makes it well suited for mobile robots with limited
hardware resources, such as planetary rovers or MAVs.
Next, we are going to evaluate the performance of the
Trail-Map with natural landmarks in real-world experiments.
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