
Automatica 50 (2014) 3030–3037
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

A matrix nullspace approach for solving equality-constrained
multivariable polynomial least-squares problems✩

Matthew S. Hölzel a, Dennis S. Bernstein b

a University of Bremen and the German Aerospace Center (DLR), 28359 Bremen, Germany
b University of Michigan, Ann Arbor, MI 48109, USA

a r t i c l e i n f o

Article history:
Received 12 July 2013
Received in revised form
18 July 2014
Accepted 22 July 2014
Available online 28 October 2014

Keywords:
Identification algorithms
Least squares
Multivariable polynomial

a b s t r a c t

We present an elimination theory-based method for solving equality-constrained multivariable
polynomial least-squares problems in system identification.Whilemost algorithms in elimination theory
rely upon Groebner bases and symbolic multivariable polynomial division algorithms, we present an
algorithm which is based on computing the nullspace of a large sparse matrix and the zeros of a scalar,
univariate polynomial.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

As system identification stretches the boundaries of optimal es-
timation toward ever more complicated scenarios, that is, with
nonlinearities present and under non-Gaussian noise assumptions,
the optimization problems that need to be solved also begin to
push the available solvers to their limits. For instance, it is easy to
construct scenarios for which the log-likelihood function of amax-
imum likelihood method or the objective function of a prediction-
error method are highly nonconvex (Box, Jenkins, & Reinsel, 2008;
Brockwell & Davis, 2006; Ljung, 1999; Pintelon & Schoukens, 2001;
Speyer & Chung, 2008; Wang & Garnier, 2012). In our view, this
is a growing problem, since properties such as the estimate’s vari-
ancemight only be valid for the globalminimizer (ormaximizer) of
the optimization problem (Box et al., 2008; Ljung, 1999; Pintelon &
Schoukens, 2001), although many optimization methods will only
guarantee thatwe find a localminimizer (Nocedal &Wright, 2006).
A common shortcut is to solve a regularized or relaxed version of
the true optimization problem (Ho & Kalman, 1966), although this
approach may inadvertently introduce additional minimizers.

✩ This work was supported in part by a NASA ASP Fellowship. The material in
this paper was not presented at any conference. This paper was recommended
for publication in revised form by Associate Editor Alessandro Chiuso under the
direction of Editor Torsten Söderström.

E-mail addresses: hoelzel@uni-bremen.de (M.S. Hölzel), dsbaero@umich.edu
(D.S. Bernstein).

http://dx.doi.org/10.1016/j.automatica.2014.10.039
0005-1098/© 2014 Elsevier Ltd. All rights reserved.
In this paper, we present a global method for solving a class of
optimization problems that arise in system identification, specifi-
cally, equality-constrainedmultivariable polynomial least-squares
problems. Although this problem has been addressed by the al-
gebraic geometry community via elimination theory, all of the
available literature appears to revolve around Groebner bases and
symbolic multivariable polynomial division algorithms (Buch-
berger, 1985; Cox, Little, & O’Shea, 2007). Here we show how to
solve the same problem using linear algebra techniques. This line
of research is conceptually similar to the idea of solving univariate
polynomial problems using linear algebra techniques (Gohberg,
Lancaster, & Rodman, 2009; Holzel & Bernstein, 2011, 2012), al-
though we deal with multivariable polynomials, which require a
new set of machinery.

The method we introduce is based on computing the nullspace
of a large sparse matrix, and computing the zeros of a scalar, uni-
variate polynomial. We introduce a novel nullspace algorithm to
accomplish this goal, although any nullspace method (QR, SVD,
etc.) could easily be substituted in themain algorithm. In our view,
the main contribution of this paper is the formulation of these
multivariable optimization problems in a way for which stan-
dard tools such as nullspace computation methods and eigenvalue
solvers can be directly applied. In this way, advances in sparse
nullspace techniques can be easily and directly applied to this large
class of optimization problems. The method we present does not
rely on an initial guess, and will yield the set of local and global
minimizers to equality-constrained multivariable polynomial op-
timization problems when there exist a finite number of local and

http://dx.doi.org/10.1016/j.automatica.2014.10.039
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.10.039&domain=pdf
mailto:hoelzel@uni-bremen.de
mailto:dsbaero@umich.edu
http://dx.doi.org/10.1016/j.automatica.2014.10.039

M.S. Hölzel, D.S. Bernstein / Automatica 50 (2014) 3030–3037 3031
global minimizers. We demonstrate the algorithm on a nonlinear
ARX model identification problem.

2. Problem statement

Here we introduce the class of problems that our method
is capable of solving. In the next section we will present some
common optimization problems which fit into this framework.

First, we introduce some definitions:

• A monomial e in x1, . . . , xn is a product of the form

e = xα1
1 xα2

2 · · · xαn
n (1)

where α1, . . . , αn are nonnegative integers.
• The total degree of the monomial e is the sum α1 + · · · + αn.

Specifically, we write

deg(e) = α1 + · · · + αn. (2)

• A polynomial f in x1, . . . , xn is a finite linear combination of
monomials in x1, . . . , xn, that is,

f =

k
i=1

aiei (3)

where k is a finite positive integer, a1, . . . , ak are scalars, and
e1, . . . , ek are monomials in x1, . . . , xn.

• If f is a polynomial in a single variable, for instance, if f is a
polynomial in x1, then f is called a univariate polynomial.

• The set of polynomials in x1, . . . , xn with coefficients a1, . . . , ak
∈ R is denoted by R[x1, . . . , xn].

• If a1, . . . , ak are all nonzero and e1, . . . , ek are unique, then the
total degree of f is max(deg(e1), . . . , deg(ek)). Specifically, we
write

deg(f) = max (deg (e1) , . . . , deg (ek)) . (4)

Now, using these definitions we can precisely formulate the
problem statement:

Problem 1. Given g1, . . . , gℓ, h1, . . . , hm ∈ R[x1, . . . , xn], where
g1, . . . , gℓ have total degrees less than or equal to s, and h1, . . . , hm
have total degrees less than or equal to t ,

minimize
x=(x1,...,xn)

g2
1 (x) + · · · + g2

ℓ (x)

s.t. h1(x) = · · · = hm(x) = 0.
(5)

�

The first step we will take toward solving this problem is to make
it look more like a linear matrix problem. To accomplish this, we
introduce some notation:

Notation. Let x = (x1, . . . , xn) ∈ Rn and let s denote a positive
integer. Then

x⊗s , x ⊗ x ⊗ x ⊗ · · · ⊗ x
1 2 3 · · · s

where⊗ represents the Kronecker product, that is, x⊗s is the result
of repetitively applying the Kronecker product s − 1 times to the
vector x. �

Example 1. Let x =

x1, x2

T and s = 2. Then
1
x

⊗2

=

1, x1, x2, x1, x21, x1x2, x2, x1x2, x22

T
where we can see that the vector


1, xT

⊗2 contains every
monomial in x1, x2 of total degree less than or equal to 2. �
The observation of Example 1 is generalized with the following
fact:

Fact 1. For every x = (x1, . . . , xn) ∈ Rn and every positive integer
s, the vector


1, xT

⊗s contains every monomial in x1, . . . , xn of
total degree less than or equal to s. Hence for every polynomial gi ∈

R[x1, . . . , xn] with total degree less than or equal to s, there exists
Gi ∈ R1×(n+1)s such that

gi = Gi


1
x

⊗s

. (6)

�

Finally, using Fact 1, we can reformulate Problem 1 into an
equivalent, more matrix-like form:

Problem 2. Given G ∈ Rℓ×(n+1)s and H ∈ Rm×(n+1)t ,

minimize
x=(x1,...,xn)

G

1
x

⊗s

2

2

, s.t. H

1
x

⊗t

= 0m×1. (7)

�

Remark. Consider Problem 2, where G1, . . . ,Gℓ ∈ R1×(n+1)s de-
note the rows of G, and H1, . . . ,Hm ∈ R1×(n+1)t denote the rows of
H , that is,

G ,

G1
...
Gℓ

 ∈ Rℓ×(n+1)s , H ,

H1
...

Hm

 ∈ Rm×(n+1)t . (8)

Then Problem 2 is equivalent to Problem 1, where for every i ∈

[1, ℓ] and j ∈ [1,m], the polynomials gi and hj are given by

gi = Gi


1
x

⊗s

, hj = Hj


1
x

⊗t

. (9)

�

2.1. Special cases

To help the reader get a better grasp of the types of problems
covered by Problems 1 and 2, we show two common problems
which can be cast in this framework.

2.1.1. Equality-constrained linear least-squares
Consider the equality-constrained linear least-squares prob-

lem:

minimize
x∈Rn

G̃x − b̃
2
2

s.t. H̃x = d̃. (10)

Then letting

G ,

−b̃, G̃


, H ,


−d̃, H̃


(11)

we have that (10) is equivalent to Problem 2, where s = t = 1, and
G and H are given by (11).

2.1.2. Equality-constrained bilinear least-squares
Consider the equality-constrained bilinear least-squares prob-

lem:

minimize
v∈Rp,w∈Rq

Gvv + Gww + Gvw


v ⊗ w


− b

2
2

(12)

s.t. Hvv + Hww + Hvw


v ⊗ w


= d.

3032 M.S. Hölzel, D.S. Bernstein / Automatica 50 (2014) 3030–3037
Then letting

x ,

vT , wT T (13)

P ,

Ip, 0p×q


⊗

0q×(p+1), Iq


(14)

G ,

−b, Gv, Gw, GvwP


(15)

H ,

−d, Hv, Hw, HvwP


(16)

we have that (12) is equivalent to Problem2,where s = t = 2, n =

p + q, and G and H are given by (15) and (16), respectively.

2.2. Problem 2 is fundamentally nonlinear

The purpose of transforming Problem 1 into Problem 2 was to
obtain a problem that looked more like a standard linear matrix
problem. Unfortunately, we may have done too good of a job.
Specifically, examining Problem 2, it may be tempting to think that

when s = t or H = 0, we can simply replace the vector

1
x

⊗s
with

a vector θ , and to instead solve the problem

minimize
θ

∥Gθ∥
2
2 , s.t. Hθ = 0m×1. (17)

However, although finding all of the minimizers of (17) may be
computationally easy, in general the solutions θ of (17) will not be

exactly decomposable into the form

1
x

⊗s
. The two exceptions are

when Problem 2 is linear, and when the minimizer of Problem 2
has a zero cost function, that is,G


1
x

⊗s

2

2

= 0. (18)

The fact that solving (17) is generally not an alternative to solving
Problem 2 is demonstrated with the following example:

Example 2. Let s = t = 2 and let x be a scalar, that is, n = 1. Then
1
x

⊗s

=

1, x, x, x2

T
. (19)

Furthermore, let

b ,

2, 3, 4


(20)

G ,

−bT , I3


(21)

H ,

9, −1, −1, −1


. (22)

Then solving (17) for θ , we find that

θ = β

1, 2, 3, 4

T (23)

where β is an arbitrary scalar in R.
Next, note that the constraint equation of Problem 2 reads:

9 − 2x − x2 = 0. (24)

Hence x = −1 ±
√
10, and therefore, from (19), θ must be of the

form

θ =

1, −1 ±

√
10, −1 ±

√
10, 11 ∓ 2

√
10
T

. (25)

However, since there is no β for which (23) is equivalent to (25),
it follows that Problem 2 has a different minimizer than (17).
Specifically, Problem 2 is fundamentally nonlinear, and cannot be
replaced by the optimization problem (17). �

3. Necessary conditions of optimality

Here we develop the Lagrangian necessary conditions of opti-
mality for Problem 2. Much like in the linear case, we will solve
Problem 2 by finding the set of solutions of the necessary condi-
tions of optimality. However, first we introduce somemorematrix
notation:

Notation. Let p and q be positive integers, and let u = (u1,
. . . , upq) ∈ Rpq. Then

unvec

u, p, q


,

u1 up+1 · · · u(q−1)p+1
...

...
...

up u2p · · · upq

 (26)

vec

unvec


u, p, q


,

u1, . . . , upq

T
. (27)

�

We will also find the following fact useful (Bernstein, 2009):

Fact 2. Let p̃, p, q, and q̃ be positive integers. Also, let u ∈ Rpq, V ∈

Rp̃×p, and W ∈ Rq×q̃. Then

vec

V · unvec


u, p, q


· W


=

W T

⊗ V

vec

u

. (28)

�

The necessary conditions of optimality are summarized in the
following lemma:

Lemma 1. Consider Problem 2, where s and t are positive integers,
x ∈ Rn,G ∈ Rℓ×(n+1)s , and H ∈ Rm×(n+1)t . Also, let

η , n + m + 1 (29)

r , max(2s − 1, t) (30)

G̃ ,


I(n+1)

0m×(n+1)

⊗2s

vec

GTG


(31)

H̃ ,


I(n+1)

0m×(n+1)

⊗t

⊗


0(n+1)×m

Im


vec

H


(32)

D̃ ,


G̃

0(ηr+1−η2s)×1


+


H̃

0(ηr+1−ηt+1)×1


. (33)

If x is a minimizer of Problem 2, then there exists λ ∈ Rm such that

D

1
x
λ

⊗r

= 0(n+m)×1 (34)

where λ = (λ1, . . . , λm) is a vector of the Lagrange multipliers, and
D ∈ R(n+m)×ηr is given by

D ,

0(n+m)×1, In+m

 ˜̃D (35)

˜̃D , unvec


r+1
i=1


Iηi−1 ⊗ Pηr−i+1,η


D̃, η, ηr


. (36)

Proof. First, let λ ,

λ1 · · · λm

T denote the vector of Lagrange
multipliers, and let

u ,

1, xT , λT T , y ,


xT , λT T .

Then from Fact 2, the unconstrained portion of the cost (the first
term in (7)) is given by

Junc =

1, xT

⊗2s vec

GTG


=


u⊗2s

T
G̃

M.S. Hölzel, D.S. Bernstein / Automatica 50 (2014) 3030–3037 3033
where G̃ is given by (31). Thus the Lagrange function is given by

Λ = Junc + λTH

1
x

⊗t

= Junc +


1, xT

⊗t
⊗ λT


vec

H


= Junc +

1, yT

⊗(t+1) H̃

=

u⊗(r+1)T D̃

where H̃ and D̃ are given by (32) and (33), respectively. Next,
differentiating Λ with respect to u, we find that

∂Λ

∂u
=

r+1
i=1


u⊗(i−1)

⊗ Iη ⊗ u⊗(r+1−i)T D̃.

Therefore, from the definition of the Kronecker permutation
matrix (see Bernstein, 2009, p. 448):

Pηr−i+1,η


Iη ⊗ u⊗r−i+1


= u⊗r−i+1

⊗ Iη

we have that

∂Λ

∂u
=


u⊗r

⊗ Iη
T r+1

i=1


Iηi−1 ⊗ Pηr−i+1,η


D̃.

Finally, viewing the summation term as a vectorization, and
‘‘unveccing’’ the right-hand side, we have that

∂Λ

∂u
=

˜̃Du⊗r

where ˜̃D is given by (36). Specifically, the Jacobian with respect to
y is given by

∂Λ

∂y

T

= Du⊗r

where D is given by (35). Therefore, setting the Jacobian equal to
zero, we have (34). �

4. Elimination theory

Elimination theory deals with removing variables from systems
of multivariable polynomial equations, such as the set of neces-
sary conditions (34). This is normally accomplished through the
use of Groebner bases with respect to some type of lexicographic
ordering (Cox et al., 2007). However, while the theory is quite
powerful, to the knowledge of these authors, all of the algorithms
available for computing Groebner bases revolve around symbolic
iterative multivariable polynomial division algorithms. Here we
will attempt to perform the same basic function of elimination the-
ory (removing variables from systems of multivariable polynomial
equations) numerically.

Definition. Let d1, . . . , dp ∈ R[y1, . . . , yq] have total degrees less
than or equal to r , let D ∈ Rp×(q+1)r , and let z = (z1, . . . , zq) ∈ Cq.
Then

(i) z is a zero of d1, . . . , dp if

d1(z) = · · · = dp(z) = 0 (37)

in which case, we say that zi is a partial i-zero of d1, . . . , dp.
(ii) z is an r-zero of D if

D

1
z

⊗r

= 0p×1 (38)

in which case, we say that zi is a partial (r, i)-zero of D. �
Theorem 1. Let d1, . . . , dp ∈ R[y1, . . . , yq] and let i ∈ [1, q].
If there exist a finite number of partial i-zeros of d1, . . . , dp, then
there exist ai,1 . . . , ai,p ∈ R[y1, . . . , yq] and a nonzero univariate
polynomial ci ∈ R[yi] such that

p
j=1

ai,jdj = ci. (39)

Furthermore, if zi ∈ C is a partial i-zero of d1, . . . , dp, then ci(zi)
= 0.

Proof. The result (39) is a direct result of the Hilbert’s well-known
Nullstellensatz (Cox et al., 2007). �

Corollary 1. Let y ∈ Rq,D ∈ Rp×(q+1)r , and i ∈ [1, q]. If there exist
a finite number of partial (r, i)-zeros of D, then there exist a positive
integer bi, a nonzero A ∈ R(q+1)bi×p, and a nonzero Ci ∈ R1×2(bi+r)

such that 
1, yT

⊗bi AD

1
y

⊗r

= Ci


1
yi

⊗(bi+r)

. (40)

Furthermore, if zi ∈ C is a partial (r, i)-zero of D, then

Ci


1
zi

⊗(bi+r)

= 0. (41)

Proof. Corollary 1 is a direct result of Theorem 1, where the
polynomial notation has been replaced with Kronecker notation
using Fact 1. �

Theorem 1 and Corollary 1 show that when there exist a finite
number of partial zeros, we can always find a nonzero univariate
polynomialwhich is in the range of the original set ofmultivariable
polynomials. This is beneficial since once the equation set is
reduced to a univariate polynomial, we can solve for all of the
solutions using standard polynomial root solvers, after which we
can combine the partial zeros to determine all of theminimizers of
our original optimization problem, namely, Problem 2.

4.1. Computing the zeros

Here we introduce an algorithm that uses Corollary 1 to
compute the partial zeros of our set of necessary conditions (34),
after which we show how to compute all of the zeros of (34).

First, note that from (40):


1, yT

⊗bi AD

1
y

⊗r

=

1, yT

⊗(bi+r)

DT

⊗ I
(q+1)

bi


vec

A


(42)

which, for most matrices A, is a polynomial in y1, . . . , yq, although
from Corollary 1 we know that there exists at least one bi and A for
which (42) is a nonzero univariate polynomial in yi.

Next, note that vectors of the form

1, yT

⊗(bi+r) contain
redundant monomials. For instance, in Example 1, the only
monomials that are not redundant are 1, x21, and x22. The matrix
∆q,bi+r is defined to be a binary matrix which combines redundant
entries of a vector of this form into a vector with all of the unique
monomials in y1, . . . , yq. Specifically, if a polynomial di is given by

di =

1, yT

⊗(bi+r) DT
i (43)

then all of the unique terms of di are expressed in the vector

d⃗i , ∆q,bi+rdiag


1, yT
⊗(bi+r)


DT
i . (44)

For instance, if q = bi + r = 2 and

Di =

1, 2, 3, 4, 5, 6, 7, 8, 9


(45)

3034 M.S. Hölzel, D.S. Bernstein / Automatica 50 (2014) 3030–3037
then

∆2,2 =


1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1

 (46)

di = 1 + 6y1 + 10y2 + 5y21 + 14y1y2 + 9y22 (47)

d⃗i =

1, 6y1, 10y2, 5y21, 14y1y2, 9y22

T
. (48)

Finally, note that all of themonomials in yi, such as 1, yi, y2i , . . . ,
can be extracted from


1, yT

⊗(bi+r)using the diagonal matrix:

Ψq,bi+r,i , diag


1, 01×(i−1), 1, 01×(q−i)
⊗(bi+r)


. (49)

Furthermore, the vector

e ,

1, yT

⊗(bi+r)

I − Ψq,bi+r,i


(50)

contains all of the monomials in y1, . . . , yq, excluding the mono-
mials in yi. Hence a matrix A for which (42) evaluates to a nonzero
univariate polynomial in yi, is one for which

∆q,bi+r


I − Ψq,bi+r,i


DT

⊗ I
(q+1)

bi


vec

A


= 0 (51)

and

∆q,bi+rΨq,bi+r,i


DT

⊗ I
(q+1)

bi


vec

A


≠ 0. (52)

The only remaining issue is to determine bi. However, this is solved
by incrementing bi until a feasible solution is found.

Algorithm 1. Let D ∈ Rp×(q+1)r and i ∈ [1, q]. Also, assume that
there exist a finite number of partial (r, i)-zeros of D. Then the
following algorithmyields a setZi which contains the partial (r, i)-
zeros of D, that is, if zi ∈ C is a partial (r, i)-zero of D, then zi ∈ Zi.

(1) Set bi = 0.
(2) Increment bi by 1.
(3) Compute a basis V ∈ Rp(q+1)bi×ν for the nullspace of

∆q,bi+r


I − Ψq,bi+r,i


DT

⊗ I
(q+1)

bi


. (53)

(4) If V is empty (ν = 0), or

∆q,bi+rΨq,bi+r,i


DT

⊗ I
(q+1)

bi


V = 0 (54)

return to step 2.
(5) Set

C =


Ψq,bi+r,i


DT

⊗ I
(q+1)

bi


V
T

(55)

where C is a matrix of coefficients for a set of univariate
polynomial equations in yi, that is,

C

1
y

⊗(bi+r)

=

c1
...
cν

 (56)

where c1, . . . , cν ∈ R[yi].
(6) Compute the set Z1 of zeros of c1 using a univariate

polynomial root solver.
(7) Set j = 1 and Zi,1 = Z1.
(8) Increment j by 1.
(9) Compute the set Zj of zeros of cj using a univariate polynomial
root solver.

(10) Set Zi,j = Zi,j−1 ∩ Zj.
(11) If j < ν and Zi,j is not an empty set, return to step 8.
(12) Return Zi , Zi,j, where Zi denotes a set which contains the

partial (r, i)-zeros of D. �

Remark. From Theorem 1 and Corollary 1, we are guaranteed
that there will exist a nonnegative bi and a nonzero C in Algo-
rithm 1. �

Remark. Once a nonzero C has been determined in Algorithm 1,
there are several ways of determining the set Zi. An alternative
method is to choose a univariate polynomial ci in (56), compute
the zeros of ci, and choose one of the zeros zi of ci. Then zi ∈ Zi if
c1(zi) = · · · = cν(zi) = 0. In this way, looping over all of the zeros
of ci, we could determine the set Zi. �

Next, we put together a simple algorithm for determining all
of the local and global minimizers of Problem 2. Note that usually
we do not explicitly need to know the Lagrange multipliers, and
hence we do not need to use Algorithm 1 to determine the partial
zeros of the necessary condition equations (34) corresponding to
the Lagrange multipliers.

Algorithm 2. Consider Problem 2 and the necessary conditions of
optimality for its solution (Lemma 1). Furthermore, assume that
there exist a finite number of minimizers of Problem 2. Then the
following algorithm yields the set Z of local and global minimizers
of Problem 2.

(1) Set i = 0.
(2) Increment i by 1.
(3) Apply Algorithm 1 to D, yielding the set of partial solutions

Zi.
(4) Let ξi denote the number of elements of Zi.
(5) If i < n, return to step 2.
(6) Construct the set P of all of the ξ1ξ2 · · · ξq combinations

possible by choosing one element from each Zi.
(7) Set j = 0 and Z = {}, the empty set.
(8) Increment j by 1.
(9) Choose an element of y ∈ P and remove y from P .

(10) If y is a t-zero of H , add y to the set Z.
(11) If j < ξ1ξ2 · · · ξq, return to step 8.
(12) Return Z, where Z denotes the set of local and global

minimizers of Problem 2. �

5. Sparse nullspace calculation

By far, the most computationally expensive step in Algorithm 1
is the computation of the nullspace of (53), which is particularly
difficult since (53) has p(q + 1)bi columns. Therefore if the
problem requires a large bi (which is unknowable a priori), then
the dimensions can become very large very fast. However, (53)
also becomes sparse as bi increases, as evidenced by the product
DT

⊗ I(q+1)bi in (53). Hence the practicality of Algorithm 2, and thus
the solvability of Problem 2 using the present non-Groebner-based
approach revolves around our ability to compute the nullspace of
large space matrices reliably.

Unfortunately, computing the nullspace of a large sparsematrix
is not a straightforwardmatter, since themost numerically reliable
methods, the singular value and QR decomposition, are typically
infeasible from a memory and computation point of view. This
is primarily because the nullspace in both of these algorithms
is orthogonal, and hence the sparsity of the original matrix is
typically not passed along to the nullspace. Here we propose an
alternative method for computing the nullspace of large sparse
matrices. First, consider the following fact:

M.S. Hölzel, D.S. Bernstein / Automatica 50 (2014) 3030–3037 3035
Fact 3. Let A ∈ Rℓ×k and a = (a1, . . . , ak) ∈ R1×k, where a is
nonzero and j denotes the index of the largest element of a, that is,

|aj| , max (|a1|, . . . , |ak|) . (57)

Also, let

d ,

a1/aj


, . . . ,


aj−1/aj


∈ R1×(j−1) (58)

e ,

aj+1/aj


, . . . ,


ak/aj


∈ R1×(k−j) (59)

f ,

d, e


∈ R1×(k−1) (60)

U ,

 Ij−1 0(j−1)×(k−j)
−d −e

0(k−j)×(j−1) Ik−j


∈ Rk×(k−1) (61)

and let V ∈ R(k−1)×ν be a basis for the nullspace of AU. Then

(i) U is a basis for the nullspace of a.
(ii) V ′ , UV is a basis for the nullspace of A′ ,


a
A


.

(iii) The singular values of U are given by

σ1 =


1 + ff T , σ2 = · · · = σk−1 = 1. �

Proof. First, since a is nonzero, the dimension of the nullspace of
a is k− 1. Furthermore, since rank [U] = k− 1 and aU = 01×(k−1),
it follows that U is a basis for the nullspace of a.

Next, suppose that y ∈ Rk is in the nullspace of A′. Then ay = 0
and Ay = 0. Furthermore, since U is a basis for the nullspace
of a, there exists w ∈ Rk−1 such that y = Uw. Finally, since
Ay = AUw = 0ℓ×1 and V is a basis for the nullspace of AU , there
exists z ∈ Rν such that w = Vz. Therefore if y is in the nullspace of
A′, then y is of the form y = UVz, that is, V ′

= UV is a basis for the
nullspace of A′.

Finally, recall that the singular values of U are the square roots
of the eigenvalues of UTU , where

UTU =


Ij−1 + dTd dT e

eTd Ik−j + eT e


= Ik−1 + f T f .

Hence if f = 0, then all of the k − 1 singular values of U are 1.
Otherwise,

UTUf T =


1 + ff T


f T

and hence one of the singular values is given by

1 + ff T , while

the remaining k − 2 singular values are given by 1. �

Remark. If a = 01×k, then the nullspace of A is the same as the
nullspace of


a
A


since the nullspace of 01×k is the k × k identity

matrix. �

Algorithm 3. Let A1, . . . , Aℓ ∈ R1×k and

A ,

A1
...
Aℓ

 . (62)

Then the following algorithm, based on Fact 3, yields a basis V for
the nullspace of A.

(1) Set i = 0, V1 = Ik, and ν1 = k.
(2) Increment i by 1.
(3) Set


b1 · · · bνi


= AiVi, where b1, . . . , bνi ∈ R.

(4) If b1 = · · · = bνi = 0, return to step 2.
(5) Determine the index j of the largest element of b1, . . . , bνi , that

is,

|bj| , max

|b1|, . . . , |bνi |


. (63)
(6) Set d, e, and U to be given by

d =

b1/bj


, . . . ,


bj−1/bj


(64)

e =

bj+1/bj


, . . . ,


bνi/bj


(65)

U =

 Ij−1 0(j−1)×(νi−j)
−d −e

0(νi−j)×(j−1) Iνi−j


. (66)

(7) Update the nullspace, that is, set Vi = Vi−1U and νi = νi−1 − 1.
(8) If i < ℓ, return to step 2.
(9) Return V = Vi, where V denotes a basis for the nullspace

of A. �

Remark. By examining the structure of U in Fact 3 and Algo-
rithm 3, we can see that, at each step of Algorithm 3, the nullspace
Vi ∈ Rk×νi of


AT
1 · · · AT

i

T is sparse. In particular, we have that

of nonzero entries of Vi ≤ νi (k − νi + 1) ,

where, in general, the bound is reached only if A is dense. Hence
the density of Vi is less than or equal to (k − νi + 1) /k. �

5.1. Lexicographic ordering

Further reduction in the computational complexity of Algo-
rithm 1 can be achieved by rephrasing our problem in terms of
a type of lexicographic ordering. Specifically, as demonstrated in
(43)–(48), there are, in general, redundant terms in vectors of the
form


1, xT

⊗s. These redundant terms artificially increase the
dimensions of the matrix that we need to compute the nullspace
of. The following table shows the size of


1, xT

⊗s, along with its
lexicographic size in parentheses, where x ∈ Rn:

n s = 2 s = 3 s = 4 s = 5
2 9(6) 27(10) 81(15) 243(21)
5 36(21) 216(56) 1296(126) 7776(252)
10 121(66) 1331(286) 14641(1001) 161051(3003)

Optimized implementations of the aforementioned algorithms
would save all of the internally computedmatrices in some type of
lexicographic ordering. However, like every algorithm, there will
always remain a practical limit on the size of problems that we can
solve.

6. Nonlinear ARX model identification

Consider the nonlinear ARX system:

yk = ayk−1 + buk + a2u2
k + abyk−1uk + acy2k−1 + vk (67)

where a, b, and c are unknown, u ∈ R denotes a known input,
y ∈ R denotes a measured output, and v ∈ R denotes an unknown
i.i.d. zero-mean Gaussian noise sequence with variance σ 2

v .
Furthermore, let u0, . . . , uN and y0, . . . , yN be measured, and let
a = 0.1, b = −1, c = −0.01, y0 = 0, N = 100

uk = exp(−0.007k2) + sin

k
2


− cos


k
3


.

Then the triple (a, b, c) can be estimated by solving Problem 2,
where n = 3, s = 2,H = 0, and

x ,

a, b, c


Gi ,


−yi, yi−1, ui, 01×2, u2

i , yi−1ui, y2i−1, 01×8


(68)

where Gi denotes the ith row of G ∈ RN×16. Specifically, using
a Python-based implementation of Algorithms 1–3, this takes ap-
proximately 0.7 s on the author’s computer.

Remark. Since Python is not a compiled language, a C or Fortran-
based implementation of the nullspace algorithm could see a
significant speed improvement. �

3036 M.S. Hölzel, D.S. Bernstein / Automatica 50 (2014) 3030–3037
Fig. 1. Mean and standard deviation of the global minimizers of Problem 2 for the
system (67) with several noise standard deviations σv , and 200 realizations of the
noise sequence v for each standard deviation.

6.1. Global and local minimizers

Algorithms 1–3 yield all of global and local minimizers of Prob-
lem 2. For example, when there is no noise (σv = 0) in the system
(67), and the rows of G in Problem 2 are given by (68), then there
is only one minimizer of Problem 2. Specifically, the global mini-
mizer is the exact triple (a, b, c) = (0.1, −1, −0.01). Hence Al-
gorithms 1–3 return one estimate: (â, b̂, ĉ) = (0.1, −1, −0.01) ±

1e−15.
When there is noise present (σv > 0), there can exist additional

local minimizers of Problem 2, in which case, Algorithms 1–3
will return more than one estimate. In this case, we can discern
which estimates correspond to the local and global minimizers
by evaluating the cost function at the estimates. Naturally, the
estimate with the lowest cost function is referred to as the global
minimizer, while the others are referred to as local minimizers.
Note that due to the presence of noise, the minimizing cost will
generally not be zero, and the global minimizer will generally not
be equal to the exact solution, that is, (â, b̂, ĉ)global ≠ (a, b, c).

To demonstrate this further, we consider several values of the
noise standard deviation in (67), and 200 realizations of the noise
sequence v for each standard deviation. For each realization of
v, we compute the minimizers of Problem 2 using Algorithms 1–
3. The mean and standard deviation of the estimates which
correspond to the global minimizers are shown in Fig. 1, along
with dotted lines indicating the exact (a, b, c). From Fig. 1, we can
see the variances of the global minimizers increasewith increasing
noise variance, as expected.

For some realizations of v, an additional local minimizer of
Problem 2 appeared. The mean and standard deviation of the esti-
mateswhich correspond to this localminimizer are shown in Fig. 2.
From Fig. 2, we can see that the local minimizer seems to reoccur
at approximately (â, b̂, ĉ) = (0, −1.11, −1.07). In Section 6.3, we
show that local optimization techniques could get stuck at this lo-
cal minimizer.

Finally, Fig. 3 shows the mean and standard deviation of the
cost function in Problem 2, evaluated at the global and local
minimizers. From Fig. 3, we can see that the global minimizer
cost increases with increasing noise variance, which demonstrates
Fig. 2. Mean and standard deviation of the local minimizers of Problem 2 for the
system (67) with several noise standard deviations σv , and 200 realizations of the
noise sequence v for each standard deviation. Note that in some cases, there was
only a global minimizer.

L
oc

al
 M

in
im

iz
er

 C
os

t
G

lo
ba

l M
in

im
iz

er
 C

os
t

Fig. 3. Mean and standard deviation of the cost function in Problem 2 evaluated at
the global and local minimizers shown in Figs. 1 and 2.

the accumulation of noise in the residuals. However, we can see
that the local minimizer cost has a systematic error since the cost
function does not approach zero with decreasing noise variance.
Note that the standard deviation of the cost of the local minimizers
appears to be zero. However, this is due to the logarithmic axis
and the fact that the standard deviation is much smaller than the
magnitude.

6.2. Groebner basis solution

Computing a Groebner basis for the Lagrange necessary condi-
tions of optimality of Problem 2 will return exactly the same so-
lutions that our method generated since they are both based on

M.S. Hölzel, D.S. Bernstein / Automatica 50 (2014) 3030–3037 3037
Fig. 4. Mean value of Problem 2 cost function evaluated at the minimizers
estimated by Levenberg–Marquardt when σv = 10−1 and the initial guess of â is
a0 = 0. The mean value is shown as a function of the initial guesses b0 and c0 .

the same principal. However, all of the Groebner-based implemen-
tations that these authors are aware of use symbolic multivari-
able polynomial division algorithms, which tend to be impracti-
cal for typical engineering problems. For instance, when trying to
solve the previous problem using the Groebner basis calculator in
Python’s SymPy, the algorithm did not converge after 10 min of
runtime (as opposed to the 0.7 s to run our algorithms, which are
written in uncompiled code). Hence we do not consider this to be
a feasible alternative.

6.3. Local optimization methods

There are a myriad of local optimization methods that we
could use to solve Problem 2, however, here we choose the Lev-
enberg–Marquardt implementation in Scipy’s Optimize package.
Unlike our methods, local optimization techniques require an ini-
tial guess of the solution. We use the initial guess of â = 0, while
allowing the initial guesses for b̂ and ĉ to be in the range [−5, 4].
Furthermore, we consider 200 realization of the noise sequence v
with standard deviation σv = 10−1.

Minimizing Problem 2 with the Levenberg–Marquardt algo-
rithm (and the rows ofG given by (68)), Fig. 4 shows themean value
of the cost function evaluated at the optimized values. From the
figure, we can see two distinct plateaus, where the lower plateau
corresponds to the average cost of the global minimizer, and the
higher plateau corresponds to the cost of the local minimizer. This
demonstrates that whereas Algorithms 1–3 always provided both
the local and global minimizers, local optimization methods are
strongly dependent on the initial guess, and could easily get stuck
at a local minimizer.

Remark. Algorithms 1–3 take approximately 0.7 s to run. The
Levenberg–Marquardt algorithm we used took approximately
0.007 s for a single case. However, since we considered a 10 × 10
grid of initial conditions for the Levenberg–Marquardt algorithm,
both methods required the same amount of time to complete. �
7. Conclusion

We presented an elimination theory-based method for solv-
ing equality-constrained multivariable polynomial least-squares
problems, that is, for determining all of the local and global min-
imizers when a finite number of them exist. Furthermore, we
showed that this problem amounts to computing the nullspace of a
large sparse matrix, and then computing the zeros of a scalar, uni-
variate polynomial.

8. Future work

Future work will focus on removing the assumption that there
exist a finite number of local minimizers, and providing a more
detailed analysis of the numerical properties of our nullspace
algorithm.

References

Bernstein, D. S. (2009). Matrix mathematics (2nd ed.). Princeton, NJ: Princeton
University Press.

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time series analysis: forecasting
and control (4th ed.). Wiley.

Brockwell, P. J., & Davis, R. A. (2006). Time series: theory and methods (2nd ed.). New
York: Springer-Verlag.

Buchberger, B. (1985). Groebner bases: an algorithmic method in polynomial ideal
theory. In N. K. Bose (Ed.), Multidimensional systems theory: progress, directions
and open problems in multidimensional systems.

Cox, D., Little, J., & O’Shea, D. (2007). Ideals, varieties, and algorithms (3rd ed.). New
York: Springer-Verlag.

Gohberg, I., Lancaster, P., & Rodman, L. (2009). Matrix polynomials. Philadelphia:
SIAM.

Ho, B. L., & Kalman, R. E. (1966). Effective construction of linear state-variable
models from input/output functions. Regelungstechnik, 14(12), 545–592.

Holzel, M.S., & Bernstein, D.S. (2011). SVD-based computation of zeros of
polynomial matrices. In IEEE conference on decision and control. Orlando, FL,
December (pp. 6962–6966).

Holzel, M. S., & Bernstein, D. S. (2012). From polynomial matrices to Markov
parameters and back: theory and numerical algorithms. Linear Algebra and its
Applications, 437, 783–808.

Ljung, L. (1999). System identification: theory for the user (3rd ed.). Upper Saddle
River, NJ: Prentice-Hall.

Nocedal, J., &Wright, S. J. (2006). Numerical optimization (2nd ed.). Springer-Verlag.
Pintelon, R., & Schoukens, J. (2001). System identification: a frequency domain

approach (1st ed.). New York: Wiley–IEEE Press.
Speyer, J. L., & Chung, W. H. (2008). Stochastic processes, estimation, and control (1st

ed.). Philadelphia: SIAM.
Wang, L., & Garnier, H. (Eds.) (2012). System identification, environmental modelling,

and control system design. Springer-Verlag.

Matthew S. Hölzel leads the Parallel Computing for
Embedded Sensor Systems Research group at the University
of Bremen, in collaboration with the German Aerospace
Center (DLR). He received a Ph.D. in Aerospace Engineering
from the University of Michigan, Ann Arbor in 2012.
His research interests are parallel computing, system
identification, and control.

Dennis S. Bernstein is a professor in the Aerospace
Engineering Department at the University of Michigan,
where he received his Ph.D. in 1982. His research interests
are in adaptive control and system identification. He is
the author of the reference work Matrix Mathematics
published by Princeton University Press. He was Editor in
Chief of the IEEE Control Systems Magazine from 2003 to
2011. He has advised more than 35 Ph.D. students.

http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref1
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref2
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref3
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref4
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref5
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref6
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref7
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref9
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref10
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref11
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref12
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref13
http://refhub.elsevier.com/S0005-1098(14)00420-8/sbref14

	A matrix nullspace approach for solving equality-constrained multivariable polynomial least-squares problems
	Introduction
	Problem statement
	Special cases
	Equality-constrained linear least-squares
	Equality-constrained bilinear least-squares

	Problem 2 is fundamentally nonlinear

	Necessary conditions of optimality
	Elimination theory
	Computing the zeros

	Sparse nullspace calculation
	Lexicographic ordering

	Nonlinear ARX model identification
	Global and local minimizers
	Groebner basis solution
	Local optimization methods

	Conclusion
	Future work
	References

