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Abstract
The extraction of accurate information from repeat-pass airborne multi-baseline (MB) synthetic aperture radar (SAR)
data stacks requires a very careful phase calibration to compensate for residual baseline errors. Focusing on tomo-
graphic applications, in this paper we experiment a two-step phase calibration algorithm which is independent of the
nature of scattering and can operate with an arbitrarily low number of images. In a first step, the baseline errors with
respect to the master acquisition are estimated by means of a multisquint processing carried out for each single base-
line with respect to the master acquisition. In a second step, the residual phase errors are compensated by means of a
coherent optimization based on the minimization of the entropy of the tomographic profiles. The effectiveness of this
two-step procedure is tested with MB airborne data sets acquired at different frequencies over forest and ice scenarios.

1 Introduction

SAR Tomography combines coherently (amplitude and
phase) MB SAR data in order to estimate the distribu-
tion of the backscattered power along the third dimen-
sion, i.e. the height [1]. In the last years, several experi-
ments have been carried out to analyze the effectiveness
of tomographic techniques in the retrieval of the verti-
cal structure of volumes like forests or ice. The funda-
mental prerequisite for any tomographic inversion is that
the platform position of each track relatively to the mas-
ter track is known with a precision much better than the
system wavelength. However, such precision cannot be
achieved by the on-board navigation instruments of air-
borne platforms, and the MB data stack is corrupted by
phase errors induced by the resulting baseline errors. As
a consequence, an accurate MB phase calibration has to
be carried out prior to the tomographic focusing.
When single-baseline data are available, an effective so-
lution has been proposed in [2], and considers multi-
squint processing to estimate the higher-order baseline er-
rors followed by the detection of their linear and constant
components by means of an external DEM. In the case of
MB data, several calibration approaches have been pro-
posed exploiting either stable scatterers [3, 4] or the char-
acteristics of the scattering in the third dimension in terms
of a full tomographic profile [5, 6] or of the location of its
phase center [7]. The latter category of methods has sev-
eral advantages: does not need to detect particular scat-
terers, can be applied to any natural scenario, can handle
single polarization data, and it has been shown in [6] to
lead to consistent tomographic reconstructions even with
a low number of tracks, until the limit case of a dual-
baseline acquisition.
In terms of performance, the minimization of the tomo-
graphic spectral entropy was shown in [6] to be able to
reconstruct the vertical scattering profiles with at least the
90% accuracy, and to yield radiometric fidelity, a funda-
mental requirement for the 3-D characterization of vol-

umes and their dynamics [8]. However, this minimization
is a highly non-linear non-convex problem and needs a
very careful initialization of the calibration phases. As it
is shown in this paper, a way to obtain good initial cal-
ibration phases is to use the multisquint processing pro-
posed in [2] with respect to the master acquisition. Later
on, the phase calibration is refined jointly for all the base-
lines by minimizing the entropy of the tomographic spec-
tra calculated in a number of cells distributed on an uni-
form grid in the range-azimuth plane. The performance
of this two-step procedure, termed ‘MuSE’ (Multisquint
and Spectral Entropy optimization) in the following for
simplicity, is shown in this paper with reference to tomo-
graphic applications for MB airborne data sets acquired
over forest and ice scenarios.

2 Basics of MuSE
LetK be the number of SAR images constituting the MB
stack, and (x, y, z) the along-track (i.e. azimuth), the
horizontal parallel to ground-range, and the vertical di-
rections, respectively. For an airborne platform, the kth
baseline error ∆Bk(r, x), k = 1, . . . ,K−1, between the
master and the kth slave acquisition in the line of sight
(LOS) can be written as [2, 3]:

∆Bk(r, x) = ∆zk(x) cos θ(r, x)−∆yk(x) sin θ(r, x),
(1)

where ∆zk(x) and ∆yk(x) are the kth vertical and hor-
izontal baseline errors, respectively, θ(r, x) is the local
incidence angle and r is the slant-range coordinate. The
resulting phase error φk(r, x) is given by:

φk(r, x) =
4π

λ
∆Bk(r, x). (2)

In this paper, φk(r, x) are compensated by means of the
two-step MuSE optimization described in the following,
in which model (1) is deeply exploited.



The multisquint processing estimates ∂Bk(r, x)/∂x from
multiple azimuth sub-aperture interferograms between
the master and the slave image, and performs integration
by means of model (1) [2]. This operation outputs the
higher order terms ofBk(r, x), while the constant and the
linear components of the baseline errors can be estimated
by fitting again a model to the residual interferometric
phases at each baseline, after subtraction of the synthetic
interferogram generated from an external DEM [2]. It is
worth noting that the usage of an external DEM automat-
ically solves any roto-translation ambiguity of the coor-
dinate system, and any uncertainty about target elevation
is removed. We also remark that phase unwrapping is
not needed in practice. In the MuSE optimization, the
described multisquint and DEM fitting procedures have
to be repeated for all of the available baselines indepen-
dently.
After the multisquint processing has been carried out,
let {y(n)}Nn=1

1 be the K-dimensional MB complex
data vectors collected in N adjacent range-azimuth pix-
els composing the multilook cell under test. It is reason-
able to assume that the phase errors are very correlated in
range and azimuth, thus it results:

y(n) = y0(n)� exp {jε̄}, n = 1, . . . , N , (3)

where “�” denotes the Hadamard product, {y0(n)}Nn=1

are the perfectly calibrated data vectors, ε̄ is a K-
dimensional vector defined as ε̄ = [0, εT ]T in which ε
contains the K − 1 residual miscalibration phases to be
estimated and the 0 corresponds to the master image. Let
f(z) be the adaptive beam forming (i.e. Capon, ABF)
profile calculated from {y(n)}Nn=1 as a function of the
vertical height z in the interval of interest. It is known
that in absence of miscalibration f(z) shows remarkable
height super-resolution, sidelobe rejection and sharpness.
However, even the presence of small residual baseline er-
rors makes f(z) less sharp with higher sidelobe levels
and possible height mislocations of the imaged scatter-
ers [6, 8]. In the information theory, the sharpness of a
function can be expressed by means of the Renyi entropy,
which is defined as [6]:

S2[f(z)] = 2 ln

M∑
m=1

f2(zm)− ln

M∑
m=1

f4(zm), (4)

where zm are the heights at which the profile is sampled.
The higher S2[f(z)], the higher the entropy, and the lower
the sharpness. Consequently, ε can be estimated as:

ε̂ = arg min
ε
S2[f(z, ε)], (5)

in which the dependence of f(z) on ε has been made ex-
plicit for the sake of clarity.
Given the high non-linearity of the minimization prob-
lem (5), ε can be obtained in an iterative way through a
simple gradient descent solution. In formulas, the phase
error estimates at the `th step are:

ε̂(`) = ε̂(`−1) − γ∇S2(f, ε̂(`−1)), (6)

where γ is a real coefficient and ∇S2(f, ε̂(`)) is a (K −
1)-dimensional vector whose generic kth element corre-
sponds to the derivative of S2[f(z, ε)] with respect to
εk = [ε]k and calculated for ε̂(`−1)

k . The calculation of
∇S2(f, ε) can be carried out in closed form by exploit-
ing known formulas for the derivatives of real functions
of complex vectors [9].
Concerning the practical implementation of (6), a first
remark is in order about the choice of the coefficient γ
as a trade-off between the reduction of the number of it-
erations and the possibility to linearize S2(f, ε) around
ε̂
(`−1)
k . As no rules of thumb are available, a simple solu-

tion is to search in a small interval for the value of γ that
minimizes the entropy of the reconstructed profile. This
search can be carried out exhaustively on a coarse grid,
and the interval limits can be set empirically by analysing
a small number of pixels. A second remark regards the
number of independent looks N to be used. In this case,
a sensible choice is to set N as the minimum number
of looks that allows a reliable inversion of the MB co-
variance matrix in the calculation of ∇S2(f, ε̂(`−1)), but
at the same time keeping high the sensitivity of ABF to
the miscalibration residuals [8]. A third remark concerns
the selection of calibration points. Indeed, S2[f(z)] is
more sensitive to small variations of ε if the volume does
not occupy entirely the height interval in which S2[f(z)]
is evaluated. Therefore, reliable calibration pixels have
been selected by looking for a number of pixels for each
range line at constant azimuth with higher MB ensemble
coherence [3]. As a by-product, with this selection the
computational complexity reduces as well.
The iterative process (6) can be stopped when ε̂(`) does
not change sensitively from ε̂(`−1). Once a line at a fixed
azimuth x0 is completed, model (1) can be used to get
rid of estimation errors dependent on the specific tomo-
graphic profiles of the processed cells [6]. Let εrk be the
M -dimensional vector containing the phase errors at the
kth baseline estimated in the M cells along range. Model
(1) can be fitted in a least-square sense to εrk in order to
estimate the horizontal and vertical residual baseline er-
rors, obtaining the following solution:[

∆̂zk(x0)

∆̂yk(x0)

]
= (ATA)−1Aεrk, (7)

where A is a (M, 2)-dimensional matrix whose generic
row is:

[A]m,· = [cos θ(rm, x0),− sin θ(rm, x0)] (8)

for m = 1, . . . ,M . It is worth noting that the fitting
(7) can be carried out on the estimated phases directly
as far as no phase unwrapping is needed. This require-
ment is expected to be met as εrk contains only (possibly
small) residual phases after the multisquint processing.
Moreover, the need for estimating only two baseline error
parameters (∆zk(x0) and ∆yk(x0)) allows to reduce no-
ticeablyM , with a consequential reduction of the compu-
tational load. A coordinate thinning can also be operated

1From here on, the dependence on (r, x) is dropped for the sake of notation simplicity.



in the azimuth direction, as the baseline error is expected
to have a correlation length in the order of magnitude of
100m.

3 Experimental results

In this Section, experimental results are presented with
the objective of analysing the performance of MuSE in
phase calibration. Comparisons have been carried out
with the calibration method based on the detection of co-
herent scatterers (CS) of [3]. An airborne L-band data set
acquired in Spring 2009 by the DLR’s E-SAR platform
over the forest of Traunstein (Germany) has been pro-
cessed. The data set is composed by 7 images with nom-
inally uniform horizontal baselines between 0 and 30m.
The distribution of the detected CS is quite sparse, espe-
cially in the forested areas. On the contrary, MuSE could
be applied on a very dense and almost regular network of
calibration points.

(a) ABF - After CS calibration

(b) ABF - After multisquint and DEM fitting

(c) ABF - After MuSE

Figure 1: Traunstein data set: calibrated intensity slices,
normalized to the peak at each range. White lines: lidar
ground topography and top canopy height.

Fig. 1 shows three tomographic slices in the range-height
plane at the same azimuth coordinate calibrated with CS,
with multisquint and DEM fitting only, and with the com-
plete MuSE chain. Although in the three of them it is pos-
sible to locate scatterers in height consistently between
the ground and the canopy top, it is apparent the su-
periority of MuSE. Indeed, the MuSE calibration make
ABF recover its sidelobe (grating and not) suppression
and super-resolution capabilities. Moreover, forest and

ground layers look sharper. Comparing Fig. 1(b)-(c) it is
also worth noting that the joint MB entropy optimization
improves the calibration obtained by the multisquint and
DEM fitting applied in a repeated single-baseline fashion.
A way to quantify the goodness of calibration is to mea-
sure the level of radiometric linearity. In fact, for sin-
gle scatterers, a classical Fourier beamforming (here, BF)
and ABF estimate asymptotically the same signal power.
For this reason, bare areas have been selected2 for the
subsequent analysis. Fig. 2 shows the comparison be-
tween the peak intensities estimated with BF and ABF
in the bare areas for the HH channel, normalized by the
average power on the diagonal of the MB covariance ma-
trix. Imaging a single scatterer, it is reasonable to expect
that the normalized peak power is concentrated between
0.9 and 1, as it happens for BF. The ABF peak power
is very spread with the CS calibration, with an average
loss of 2.6dB. Conversely, the MuSE calibration is very
effective in recovering the radiometric fidelity. Indeed,
the BF and ABF peak power show a correlation higher
than 0.9 and an ABF radiometric loss around 0.7dB. It is
worth remarking that this loss can be further reduced by
means of a very small diagonal loading (without heav-
ily compromising height resolution) and/or by enlarging
the multilook cell. The same analysis can not in general
be replicated for multiple scatterers, as BF and ABF im-
age the same structure in different ways. This is in gen-
eral not a limitation for double compact scatterers spaced
apart in height more than one Rayleigh resolution inter-
val. Remarkably, in the Traunstein data set it has been
found that the radiometric loss of ABF with respect to
BF is around 1dB for both ground and canopy scatterer
after MuSE, against the 2dB after CS calibration. Similar
results have been obtained in the HV channels for both
bare and forested areas.
A better calibration should also allow a more accurate po-
larimetric TomoSAR imaging, reducing radiometric un-
balances between channels [8]. Fig. 3 shows the RGB-
coded (Pauli basis) polarimetric tomogram obtained with
the full-rank polarimetric ABF after MuSE in both L-
and P-band. As it is reasonable to expect, ground-trunk
interactions dominate the backscattered signal at P-band
in most of the forested areas. At L-band, instead, clear
canopy and ground signature can be well distinguished.
In this case, the radiometric performance has been eval-
uated by calculating the normalized Frobenius norm of
difference of the BF and ABF polarimetric matrices esti-
mated in correspondence of the peak of bare areas. This
difference amounts in average to less than 10% for MuSE
against the (not acceptable) 20% of the CS calibration.
To complete the analysis, we considered also an ice sce-
nario. In particular, experiments have also been carried
out with an E-SAR L-band data set acquired over the
Summit of Austfonna ice cap (Svalbard) during the Ice-
SAR 2007 campaign. In this case, the nominal horizontal
baselines are four and equal to 5, 10, 15 and 20m with
respect to the master acquisition. It is worth noting that
here number and density of the detected CS did not allow

2The selection has been carried out by masking out pixels with PolInSAR forest height higher than 5m.



a reliable MB phase calibration. In Fig. 4 a sample full-
rank polarimetric ABF tomographic slice is shown after
MuSE calibration. Reasonably, surface scattering is dom-
inant in near range, while a sub-surface volume appears
close to far range. Also in this case, phase calibration
through entropy minimization turned out to improve the
tomographic imaging in terms of a higher radiometric fi-
delity.

(a) After CS calibration (b) After MuSE calibration

Figure 2: Traunstein data set: comparison of the BF and
ABF normalized peak intensities in bare areas.

(a) ABF - L-band

(b) ABF - P-band

Figure 3: Traunstein data set: RGB-coded (R: HH-VV,
G: 2HV, B:HH+VV) full-rank polarimetric ABF tomo-
grams, same slice of Fig. 3.

Figure 4: Summit data set: RGB-coded (R: HH-VV, G:
2HV, B:HH+VV) full-rank polarimetric ABF tomogram
in the range-height plane.

4 Conclusions
In this paper, a two-step MB phase calibration algorithm
called MuSE has been proposed to compensate for base-

line errors in MB airborne data stacks. The experimental
analysis clearly demonstrated the effectiveness of MuSE,
especially in terms of recovery of height resolution, side-
lobe rejection and radiometric fidelity. The most impor-
tant feature of MuSE is that no MB-polarimetric scatter-
ing model is needed for calibration, which is carried out
over a dense regular grid of pixels independently of the
number of baselines. The MuSE calibration thus enables
a very accurate 3-D imaging, fulfilling the requirements
for analyses of the 3-D structure of complex natural envi-
ronments (like forests and ice) and of its changes.

References
[1] A. Reigber, A. Moreira: First Demonstration of Air-

borne SAR Tomography Using Multibaseline L-band
Data, IEEE Trans. on Geosci. and Rem. Sensing,
Vol. 38, No. 5, pp. 2142-2152, May 2000.

[2] A. Reigber, P. Prats, J. J. Mallorqui: Refined Esti-
mation of Time-Varying Baseline Errors in Airborne
SAR Interferometry, IEEE Geosci. and Rem. Sensing
Letters, Vol. 3, No. 1, pp. 145-149, Jan. 2006.

[3] K. Iribe, K. Papathanassiou, I. Hajnsek, M. Sato, Y.
Yokota: Coherent Scatterer in Forest Environment:
Detection, Properties and its Applications, Proc. of
IEEE Int. Geosci. and Rem. Sensing Symposium,
(IGARSS), Honolulu, Hawaii (USA), Jul. 2010.

[4] G. Gatti, S. Tebaldini, M. Mariotti D’Alessandro, F.
Rocca: ALGAE: A Fast Algebraic Estimation of In-
terferogram Phase Offsets in Space-Varying Geome-
tries, IEEE Trans. on Geosci. and Rem. Sensing, Vol.
49, No. 6, pp. 2343-2353, Jun. 2011.

[5] Y. Huang, L. Ferro-Famil, F. Lombardini: Improved
Tomographic SAR Focusing Using Automatic Base-
line Error Compensation, Proc. Of ESA PolInSAR
Workshop, Frascati, Italy, Jan. 2011.

[6] M. Pardini, V. Bianco, K. Papathanassiou, A. Iodice:
Phase Calibration of Multibaseline SAR Data Based
on a Minimum Entropy Criterion, Proc. of IEEE Int.
Geosci. and Rem. Sensing Symposium, (IGARSS),
Munich, Germany, Jul. 2012.

[7] S. Tebaldini, M. Mariotti D’Alessandro, F. Banda,
C. Prati: Tomographic-Quality Phase Calibration
Via Phase-Center Double Localization, Proc. of
IEEE Int. Geosci. and Rem. Sensing Symposium,
(IGARSS), Melbourne, Australia, Jul. 2013.

[8] F. Lombardini, M. Pardini: Experiments of
Tomography-Based SAR Techniques With P-Band
Polarimetric Data, Proc. Of ESA PolInSAR Work-
shop, Frascati, Italy, Jan. 2009.

[9] D.H. Brandwood: A Complex Gradient Operator and
Its Application in Adaptive Array Theory, IEE pro-
ceedings, Vol. 130, pts. F and H, no.1, Feb. 1983.


