

"Start-Stop Phenomena and Strategies for PEM Fuel Cells", 11.12.2014, Freiburg, Germany

Start-Stop Test Procedures on the PEMFC Stack Level **Different Approaches from the EU-funded Project Stack-Test**

J. Mitzel^a, F. Nygaard^b, S. Veltzé^b, S. Rosini^c, J. Hunger^d, A. Kabza^d, I. Alecha^e, C. Harms^f, P. Piela^g, S. Araya^h, G. Tsotridisⁱ, T. Jungmann^j, B. Guicherd^k

ø

0000

÷

FT

Fig. 1: General setup for Start-Stop testing

^a German Aerospace Center (DLR), 70569 Stuttgart, Germany

- ^b Technical University of Denmark, 4000 Roskilde, Denmark
 Atomic Energy Commission (CEA), F-38 054 Grenoble, France
- Centre for Solar Energy and Hydrogen Research Baden-Württemberg, 89081 Ulm, Germany
- e CIDETEC, Fuel Cell Unit, 20009 Donostia-San Sebastián (Gipuzkoa), Spain
- ^f NEXT ENERGY EWE Research Centre for Energy Technology, 26129 Oldenburg, Germany

General approach

- Degradation phenomena should be restricted to Start-Stop effects.
- Stack temperature is maintained to the nominal temperature in order to avoid effect of a thermal cycling

Data Post Processing:

Start-Stop degradation rate can be calculated based on:

Voltage during nominal load phase ≻

Polarization curves BoT and EoT ⊳

Procedure 1: Simulation of automotive Start-Stop

Test Procedure:

- 1. Run the stack in reference conditions at nominal current during 10 minutes.
- 2. Decrease load from nominal current to 0 A.
- 3. Decreases the pressure from nominal pressure to ambient for anodic and
- cathodic compartment. 4. Stop H₂ flow and maintain min. air flow until average cell voltage is lower than 100 mV. During this time, resistive load should be
- applied in order to decrease time to OCV. 5. Fix hydrogen flow to the start flow until average cell voltage tends to OCV $(U_{OCV} > 0.9 V).$
- 6. Increase the pressure from ambient to reference pressure at anode and cathode side.
- 7. Repeat step 1

Approach:

- Procedure near to automotive application.
- Anodic compartment filled with air during stop phase without nitrogen flush.
 - Main stressor hydrogen/air boundary included in the test. >
 - Safety problem due to the formation of explosive hydrogen/air mixture.
- Resistive load decreases time of high, corrosive cathode potential \rightarrow Can be removed for AST tests

Option:

2 shut-off valves at stack inlet and outlet.

→ Eliminate the influence of the test bench volume for H₂.

Start Nominal cond 1=0A U_{stack} =: U_{ocuref} Pruel, Pox = ambient conditions q_{fue}≓0Lmin⁻¹ q_{ox}=q_{ox.mi} Resistive load (R = R.S) ¥ Uav,cell < 100 mV I=0 A ¥ q_{fue}≓ q_f Ustack = Upcv pruel, pox = Nominal cond 1=1 t≥t_{test} No U_{cell i} ≤ 0.3 V

- 9 Industrial Chemistry Research Institute, 01-793 Warsaw, Poland
- ^h Aalborg University, Department of Energy Technology, 9220 Aalborg East, Denmark ⁱ European Commission, DG Joint Research Centre (JRC), Institute for Energy and Transport
- (IET), 1755 LE Petten, The Netherlands Fraunhofer Institute for Solar Energy Systems ISE, 79110 Freiburg, Germany
- k Symbio Fcell, 75017 Paris, France

Procedure 2: Laboratory Start-Stop

Test Procedure:

- 1. Run the stack in reference conditions at nominal current during 10 minutes.
- 2. Decrease load from nominal current to 0 A. 3. Decreases the pressure from nominal
- pressure to ambient for anodic and cathodic compartment and stop reactant media flows
- 4. Nitrogen flush at anode- and cathode compartment to reduce the minimum cell voltage to < 100 mV / load toggling during this time (e.g. 1A -> 0A -> 1A) or applying of resistive load in order to decrease time to OCV.
- 5. Set air flow to equivalent 40% of max. stack load and increase pressure at cathode-side to about 1.1-1.15 kPaabs (faster air diffusion to anode side, cell voltages tend to come near 0V).
- 6. Set also hydrogen flow to equivalent 40% of max. stack load (cell voltages tends to OCV).
- 7. Increase the pressure from ambient to reference pressure at anode and cathode side.
- 8. Repeat step 1.

Approach:

- Procedure adapted to safety regulations in typical laboratories.
- Nitrogen flush minimizes air content on anode side. Main stressor hydrogen/air boundary excluded in the
 - test.
- > No safety problem. Resistive load decreases time of
- high, corrosive cathode potential → Can be removed for AST tests

Get involved

All test module and program documents are available and feedback is most welcome: http://stacktest.zsw-bw.de/

Acknowledgement

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant n° 303445.

p_{fuel}, p_{ox} = ambient conditions q_{fuel} = q_{ox} = 0 L min' $q_{N2,a} = q_{N2,c} = q_{min}$ ¥ Resistive load (R = R.S) ¥ cell < 100 mV ¥ I = 0 A ¥ q_{ox} = 0.4 q_{ox,max} _k = 1.1-1.5 kPa_{ab} ¥ uel = 0.4 g ark = Uory p_{fuel}, p_{ox} = Nominal cond. * t ≥ t_{tes} Ň U_{cell i} ≤ 0.3 ¹

Start

I = 0 A U_{stack} =: U_{oc}

Nominal cond.

End of test Fig. 4: Flow chart for laboratory Start-Stop

