

Design of the DLR Hand Arm System: Benefit of Variable Impedance Actuators (VIA)

Sebastian Wolf

Institute of Robotics and Mechatronics, RMC,

DLR - German Aerospace Center

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institute of Robotics and Mechatronics research staff:~170 persons

Flight operation

Applied Remote Sensing Cluster

Atmospheric Physics

Space Operations Center

Microwaves and radar

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Communications and Navigation

Galileo Control Center

Outline

- → Motivation
- → Torque controlled robots
- ✓ What are Variable Impedance Actuators (VIA)
- → Performance of VIA robots
- → Reflexes
- → Conclusion
- ✓ VIA winter school

Motivation

- → Precision: necessary for fine manipulation
- → Sensitive: gentle interaction with the environment
- → High dynamics: fast and controlled movements
- → Robustness: design to reduce the risk of breaking down

Source: youtube.com Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft source: youtube.com

Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

Euron TechTransfer Award 2011 Slide 6

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft.

Slide 7 Sebastian Wolf > 19.11.2014

Space Driven Robot Development

Change of paradigm in robotics:

From large, rigid and position controlled to light-weight, compliant, and adaptable

Therefore we coined the name "Soft Robotics"

Zero gravity behaviour

Safety tests

Hardware - Soft Robot Concept

Hardware – VIA Classification

Vanderborght et al., Variable impedance actuators: A review, RAS, 2013

Hardware VSA Classification

Slide 13 Sebastian Wolf > 19.11.2014

DLR Hand Arm System

Anthropomorphic light weight robot:

- → size, kinematics, force and dynamics
 of human arm and hand
- variable stiffness in all joints
- → 26 DoF
- → 52 motors
- → 112 position sensors

Tendon driven fingers

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Antagonistic finger actuation

Variable stiffness arm actuators e.g. FSJ

Highly integrated electronics e.g. ILM25 motor module

The Hand Arm System is equipped with 3 types of Variable Stiffness Actuators:

- Antagonism (19 DoF Hand)
- BAVS Bidirectional Antagonism with Variable Stiffness Actuation (2 DoF wrist,1 DoF forearm-rotation
- FSJ Floating Spring Joint (4 DoF upper arm joints

SEA – Serial Elastic Actuator

- → one motor
- → fixed stiffness

Antagonistic Actuator

in der Helmholtz-Gemeinschaft.

Finger Actuation (FAS)

- Simple and small 7
- Few parts 7
- Compensates geometric inaccuracies 7

guide

winder

spring pulley

Friedl, W., Chalon, M., Reinecke, J. and Grebenstein, M., FAS A flexible antagonistic spring element for a high performance over, Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, 2011, pp. 1366-1372

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft.

Hand Design (Awiwi Hand)

- → 38 Motors drive 19 DoFs antagonistically
- Nonlinear spring mechanism in each tendon path
- \neg Robust to impacts
- → Adjustable stiffness
- Suitable for grasping objects made for the human

Markus, Grebenstein (2012) Approaching human performance: The functionality driven Awiwi robot hand. Dissertation, ETH Zurich

Reinecke et al., Experimental Comparison of Slip Detection Strategies by Tactile Sensing with the BioTac the DLR Hand Arm System, ICRA, 2014

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Bidirectional Antagonistic Actuator

- → 2 equally sized motors
- both motors push and
 pull (bidirectional)
- → Add both motor torques

Wrist and Forearm Actuation (BAVS)

- Motor torques sum up to 8 Nm 7
- Symmetric or asymmetric cam 7 disk design

symmetric circle shape

Friedl, W., Hoppner, H., Petit, F. and Hirzinger, G., Wrist and forearm rotation of the DLR Hand Arm System: Mechanical design, shape analysis and experimental validation, Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, IEEE/RSJ, 2011, pp. 1836-1842

antagonistic mode

2

3

Torque [Nm]

5

6

7

120-

100-

80-

60-

40

20

0

0

k [Nm/(rad)]

Adjustable Stiffness Actuator

Slide 22

Shoulder and Elbow Actuation (FSJ)

- ✓ One big joint motor for positioning
- ✓ One small motor for stiffness change
- → Serial setup

Max. torque	67 Nm
Drive speed	490°/s
Max. Stiffness	826 Nm/rad
Min. Stiffness	52 Nm/rad
Peak Input Power	1.3 kW
Weight	1.4 kg

Wolf, S., Eiberger, O. and Hirzinger, G., *The DLR FSJ: Energy based design of variable stiffness joints*, Robotics and Automation (ICRA), 2011 IEEE International Conference on, IEEE, 2011, pp. 5082 - 5089

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

The FSJ Mechanism

Wolf, S., Eiberger, O. and Hirzinger, G., *The DLR FSJ: Energy based design of variable stiffness joints*, Robotics and Automation (ICRA), 2011 IEEE International Conference on, IEEE, 2011, pp. 5082 - 5089

Types of VSAs of the DLR Hand Arm System

- Antagonism (19 DoF Hand):

-2 equivalent motors adjusting joint stiffness and position -in-tendon progressive spring mechanism

 BAVS - Bidirectional Antagonism with Variable Stiffness Actuation (2 DoF wrist,1 DoF forearm-rotation):
 -2 equivalent motors adjusting joint stiffness and position
 -Asymmetric cam disc shape
 -Redundant joint actuation

FSJ - Floating Spring Joint (4 DoF upper arm joints):
 -one big motor for joint positioning
 -one small motor to change the stiffness
 -one single spring

Hardware VDA Classification

Vanderborght et al., Variable impedance actuators: A review, RAS, 2013

Variable Damping Actuator (VDA)

- ✓ Variable damping (actuated)
- → Constant spring rate
- → Force AND torque sensors

CompAct Arm

M. Laffranchi, N. G. Tsagarakis and D. G. Caldwell, "A Variable Physical Damping Actuator (VPDA) for Compliant Robotic Joints," in International Conference on Robotics and Automation, Anchorage, Alaska, 2010.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 27 Sebastian Wolf > 19.11.2014

Active Damping for Variable Stiffness Actuators

- → Vibration damping
- Ensuring the achievement of the desired link position with motor position based control
- → Providing the desired stiffness property

Active Damping

Actuation of the DLR Hand Arm System:

DLR brushless DC ILM Drives & Harmonic drive gears

- → ILM 25 (ServoModules)
 - → Forearm actuation and stiffness actuators
 - \neg 44 Motors at 5 A, 24 V (hardware limit: 9 A) \Box 4,8 kW
 - \neg Power density > 15 mW/ mm² (electronics included)
 - → Full integration of electronics
 - → Position controller
 - → Motor controller
 - → Power electronics
 - → Communication Interface
- → ILM 50 (Arm joint actuation)
 - → Elbow and shoulder
 - ✓ Maximum input power 1.15 kW each

Demonstrations on:

- → Precision: necessary for fine manipulation
- → Sensitive: gentle interaction with the environment
- → High dynamics: fast and controlled movements
- → Robustness: design to reduce the risk of breaking down

Precision

- \neg Precise in movements and dynamics
- ✓ High resolution output and spring deflection sensors with rigid structure
- Known inertial properties for good dynamic models

Coordinated finger movement

Active damping control Petit et al., State feedback damping control for a multi

DOF variable stiffness robot arm, ICRA, 2011

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Sensitivity

- → Precise torque mesurement
- → Contact force control
- → Robust grasping of objects

Robust grasping

Control of contact force when grasping

Reinecke et al., Experimental Comparison of Slip Detection Strategies by Tactile Sensing with the BioTac the DLR Hand Arm System, ICRA, 2014

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Object manipulation

Performance

- \neg Store energy in the springs
- Use the spring energy in additional to motor torque as acceleration source

Acceleration by spring preload Friedl et al., FAS A flexible Antagonistic spring element

for a high performance over actuated hand, IROS, 2011

A

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Strike out trajectory DLR Robotics Symposium, Challenges in Robotics: Down to Earth, 2011

Throwing a Ball

Wolf, S. & Hirzinger, G., A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation, Robotics and Automation (ICRA), IEEE International Conference on, 2008, 1741-1746

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Mechanical Robustness

- Decoupling the link mass from motor mass
- → Avoid high peak torques during impact
- \neg Independent of control (always on)

Impact on finger

Under the stiffness joints, ICRA, 2011

Results / Evaluation

- → Impact Energy of 22 Joule
- → Joint limits of the passive deflection are not approached

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Task with Combined Requirements

- → Robust grasp
- ✓ Withstand impacts
- Requirement of mechanism precision
- → Oscillation excitation via bang-bang controller
- Machine learning approach for contact point control
- → Result: high accuracy & repeatability

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Enhance Robustness by Control

- \neg When passive elastic energy capacity is not sufficient
- → Enhance by active control
 - → Reactions
 - → Reflexes

Reactions

Active reactions:

Goal: Prevent spring from overload

Implementation:

Stiffness setup
 Motor position

 (Equilibrium position)

Characteristics: Activation only in critical situations

Different triggers: Deflection angle Energy capacity Percentage of max torque

Evaluation of reactions

- → Reaction trigger at 2° remaining spring deflection
- → 35.4 Nm preload by gravitation
- → 510 g steel ball
- → 2.3 J impact energy

Reaction in 1st axis of shoulder

Wolf et al., Towards a Robust Variable Stiffness Actuator, IROS, 2013

Slide 47 Sebastian Wolf > 19.11.2014

Reactions Video

reactions on an impact of a 510 g steel ball hitting the hand from 460 mm height

Wolf et al., Towards a Robust Variable Stiffness Actuator, IROS, 2013

Experimental Results

Wolf et al., Towards a Robust Variable Stiffness Actuator, IROS, 2013

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Human Motor Control

Common Properties

- Hierarchical Organization
- → Situation/Task dependent (reflex-reversal)
- → Irradiation principle (passive/active)
- → Maintenance of stability
- Action on joint level

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Markus Kühne, Reflexes in variable stiffness actuators, 2013

Slide 50 Sebastian Wolf > 19.11.2014

Actuator Model

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Markus Kühne, Reflexes in variable stiffness actuators, 2013

Reflex Test Setup

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Markus Kühne, Reflexes in variable stiffness actuators, 2013

Conclusion

VIA based robots promise to have:

- → Precision
- → Sensitive
- → High dynamics
- → Robustness
- → Enhanced performance by control

→ Supplementary sensor information helps

VIACTORS Variable Stiffness Joint Data Sheet

- Basis for the exchange of information of different VSAs
- Template and data sheets of the VIACTORS consortium:

www.viactors.org

qbmove – working principle

an open-source modular variablestiffness servo-actuator

Symmetric Agonist-Antagonist VSA

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

PPRIME, 19th November 2014, France

Slide 60 Sebastian Wolf > 19.11.2014

nominal torque [Nm]	0.6	1.3	6.0
nominal speed [rad/s]	3	7	10
VS range [Nm/rad]	[0.2 – 2]	[0.6 – 8]	[0.6 – 30]
rotation range [°]	+/- 90	+/-180	+/-180
electronics	100% Arduino Comp.	Custom	Custom
communication BUS	USB (with HUB)	RS485	RS485
daisy-chain	no	yes	yes

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

SAFE AND AUTONOMOUS PHYSICAL HUMAN-AWARE ROBOT INTERACTION

SAPHARI

organize the

NMMI &

VIA Winter School Rome, February 20-25, 2015

Programme:

Friday, Feb. 20th : School Saturday, Feb. 21st : School Sunday, Feb. 22nd: OFF Monday, Feb. 23rd: School Tuesday, Feb. 24th: School Wednesday, Feb 25th: Workshop Wednesday, Feb. 25th: Competition

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 62 Sebastian Wolf > 19.11.2014

q_{bmate}