Global Air Traffic Modeling for Climate Assessment of Routing Strategies

Leading Graduate School Program on Global Safety
Tohoku University-DLR Workshop

October 14 2014, Institute of Fluid Science, Tohoku University

Hiroshi Yamashita,
Volker Grewe, Patrick Jöckel, DLR-Oberpfaffenhofen
Martin Schaefer, Bundesministerium fuer Verkehr
Florian Linke, DLR-Hamburg
Daisuke Sasaki, Kanazawa Institute of Technology
Shigeru Obayashi, Tohoku University
Contents

• Backgrounds
• Research objectives
• Overview of AirTraf
 – Flow chart of AirTraf
 – Geometry definition of trajectory
• One day test simulation with gc/wind optimum options
 – Comparison of flight trajectories
 – Trajectories explored through optimization (MUC to JFK)
 – Wind fields and trajectories (MUC to JFK)
 – Comparison of total flight time, fuel usage, NOx, H2O (one day)
• Summary
Global Air Traffic in 24 hours

https://www.youtube.com/watch?v=G1L4GUA8arY
Evolution of World Air Traffic 1940 to 2008

- World annual air traffic growth + 5 %/yr
- Air traffic will be double in the next 15 years

How to Reduce Climate Impact of Aviation Emissions?

• **Technological approach**
 - Aerodynamic changes
 - Blended body aircraft, Laminar flow control
 - More efficient engines
 - Alternative fuels
 - Liquid hydrogen, Bio-fuels

• **Operational approach**
 - Efficient ATM
 - Reduced time holding, More direct flight
 - NextGen(USA), SESAR(EU), CARATS(JP)
 - Efficient flight-profile
 - Continuous descent approach
 - **Climate-optimized routing**
Recent Studies on Climate-optimized Routing (1/2)

- "Wind-optimal routes reduce average fuel burn of actual routes by 4.4 % on Dec. 4, 2010."

 H. K. Ng, et al. 2011

- "Almost 45 % decrease in global contrail coverage is achieved by 6,000 ft down-shift of cruise altitude. However 6 % increase in Fuel burn"

 C. Fichter, et al. 2005
Recent Studies on Climate-optimized Routing (2/2)

• “…a reduction of cruise altitude will results in increased fuel consumption (CO2), counteracting the benefits gained by contrail avoidance and reduction of NOx impact.”

K. Gierens, et al. 2008

• “…the sole minimization of CO2 (fuel burn) does not lead to the minimum (total) climate impact.”

K. Alexander, et al. 2011
Practical Issues on Climate-optimized Routing

• What is the optimum route for total climate impact reduction?
 – Great circle: min. flight distance
 – Wind optimum: min. flight time
 – Min. CO2 (Fuel-use)
 – Min. NOx
 – Contrail avoidance
 – Etc…

• How effective is the selected strategy for total climate impact reduction?
Research Objectives

• Develop new assessment platform: AirTraf
 - Global airtraffic model coupled to Climate-chemistry model

• Simulate global air traffic on routing strategies
 - Trajectory optimization (horizontally and vertically)
 - Local atmospheric conditions
 - Long-term simulation

• Clarify the reduction potential on aviation climate impact
Overview of AirTraf Chemistry

Base Model
Climate Chemistry Model EMAC
P. Jöckel 2010

Submodels
Aviation data base:
- ICAO engine emission
- BADA aircraft model
- One day flightplan

Optimizer:
- Genetic algorithms
 J. H. Holland 1975, D. Sasaki, 2009

Emissions:
- Total energy model
- DLR fuel flow method

Emis sions Optimizer GA
AirTraf
Air traffic simulation

Contrails
Potential impact
P, T, ρ, Wind, etc.
Chemistry

Aviation data base

EMAC
Atmospheric Chemistry Model

- Flight trajectories
- Global emission fields
 (NOx, H2O, fuel use, flight distance)
Flow Chart of AirTraf (1/2)

- Flight plan inputs
 - City pairs, timetable, aircraft/engine
- Decomposition of trajectories
- Departure check
 - Calculate trajectory
 - Calculate emissions along trajectory
 - Fly aircraft
 - Gather global emission fields
- Arrival check

Trajectory optimization

Options
0: Great circle (min. distance)
1: Wind (min. flight time)
2: NOx
3: H2O
4: CO2 (Fuel-use)
5: Contrail avoidance
6: Climate cost functions

Genetic algorithms

Flow Chart of AirTraf (1/2) Trajectory optimization

Init. memory

Time loop

Wind

GC

NOx

Arr.

Dep.
Flow Chart of AirTraf (2/2)

Init. memory

- Flight plan inputs
 - City pairs, timetable, aircraft/engine
- Decomposition of trajectories
- Departure check
 - Calculate trajectory
 - Calculate emissions along trajectory
 - Fly aircraft
 - Gather global emission fields
- Arrival check

Time loop

Emission calculation
- NOx, H2O, Fuel use

Total Energy model
- DLR Fuel Flow method
Geometry Definition of Trajectory

- Control points consist of design variables: **location: 6, altitude: 5**
- Control points express arbitrary trajectories for city pairs
- Evaluate flight time along trajectories (if wind optimum case)

Example: MUC to JFK
One Day Test Simulation

EMAC/AirTraf
ECHAM5 Resolution : T21/L19
Calculation term : 1 day (JAN.01.1978–JAN.02.1978)
Waypoints : 61
Options : GC, Wind optimum
Flight altitude : FL290, 330, 370, 410 (GC)
 FL290 – 410 (Wind optimum)

Aviation data base
Flight plan : 1,840 (FRA/MUC)
Aircraft type : A330-301
Engine type : CF6-80-E1-A2 Jet Engine×2
Flight speed : M = 0.82

Optimizer
Design variables : 6 (location), 5 (altitude)
Generation : 50
Population : 50
Comparison of Flight Trajectories

GC with winds, FL330

Wind optimum, b/w FL290-410

FRA/MUC
Trajectories Explored through Optimization (MUC to JFK)

50 population × 50 generation = 2500 traj.

Wind optimum, b/w FL290-410
Comparison of Wind Fields and Trajectories (MUC to JFK)

- **u [m/s]**
 - FL290: Wind
- **v [m/s]**
 - FL290: Wind

- gc(FL330)
- gc(FL290)

- JFK
- MUC

- Latitude, deg
 - Range: 20° to 80°
- Longitude, deg
 - Range: -100° to 100°
Comparison of Flight Time (MUC to JFK)

Flight time, s

- Wind opt
- GC290
- 330
- 370
- 410

(12.5 min)

End

50 population × 50 generation
= 2500 evaluations

Number of function evaluations

Flight time, s

27000
27500
28000
28500
29000

27600
27800
28000
28200
28400

0 500 1000 1500 2000 2500
Flight Time Reduction by Wind-optimum Option (Global, One Day)

Positive values Max +106 s

<table>
<thead>
<tr>
<th>GC290</th>
<th>330</th>
<th>370</th>
<th>410</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.4 %</td>
<td>−2.6 %</td>
<td>−3.3 %</td>
<td>−3.7 %</td>
</tr>
</tbody>
</table>
Fuel Usage of One-day Global Air Traffic

Kg(fuel)/box/s
Comparison of Total Flight Time, Fuel, NOx, H2O (Global, One Day)
Summary

• New assessment platform AirTraf is under development to simulate global air traffic and assess routing strategies

• AirTraf can simulate global air traffic correctly with gc/wind optimum options

• One day test simulation was implemented
 - Optimizer could find superior trajectories in most city pairs
 - 0.4 to 3.7 % total flight time reduction by wind optimum option
 - Trade-off between total flight time and total fuel usage (= total NOx, H2O emissions)