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Abstract—Detecting and locating buildings in satellite images
has various application areas. Unfortunately, manually detecting
buildings is hard and very time consuming. Therefore, in the
literature several methods are proposed to automatically detect
buildings. These methods can be divided into two main groups. In
the first group, researchers used panchromatic or multispectral
information to detect buildings. In the second group, researchers
used DSM data to detect buildings. In this study, we propose two
novel methods to detect buildings by combining the panchromatic
and DSM data. The first method uses corner points extracted by
Harris corner detection method. These corner points are used
jointly with DSM data. Using a kernel based density estimation
method, possible building locations are detected. In the second
method, shadow of buildings are used in a similar way. We tested
both methods on WorldView-2 images and DSM data generated
from them.

Index Terms—Building detection; DSM; Kernel density esti-
mation

I. INTRODUCTION

Detecting and locating buildings in satellite images has
various application areas. Unfortunately, manually detecting
buildings is hard and very time consuming. Therefore, several
methods are proposed to automatically detect buildings in
the literature. These methods can be divided into two main
groups. In the first group, researchers used panchromatic or
multispectral information to detect buildings. In the second
group, researchers used DSM data to detect buildings.

Automatic building detection using panchromatic or mul-
tispectral images has been studied extensively. Here, it is
assumed that DSM data is not available. In our previous study,
we analyzed and summarized the literature on panchromatic
and multispectral image based building detection methods
[11]. Therefore, we will not review them here.

There are several works using DSM for building detection
and 3D reconstruction. Most of these studies use the height
information to remove non-building structures. Then, they
focus on the building shape and rooftop contours. Tournaire et
al. [13] used point processes on digital elevation models. They
calculated an energy function for fitting rectangles on buildings
based on the adequacy of objects and prior knowledge to
extract footprint of buildings. Ortner et al. [8] used two
interacting spatial point processes on DEM to fit rectangular
shapes on building segments. Brunn and Weidner [2] separated
buildings and vegetation areas using height and geometric

information on DSM data. After detecting buildings, they used
surface normals to extract rooftop geometries. Sirmacek et
al. [9] used DSM for detecting building ground floor shapes
using an active shape detection approach. Then, they used
derivative filters to extract roof ridge lines. This leads to
3D building reconstruction. Galvanin and Poz [6] proposed a
method for rooftop extraction. They used DSM data to detect
above ground objects. Therefore, they segmented DSM with
a recursive splitting technique and region merging process.
Awrangjeb et al. [1] proposed a method to separate buildings
and trees using DSM. They used height and width information
from DSM with a ground mask. They used the image entropy
and color information to remove trees. For change detection of
buildings we worked in previous studies on fusion approaches
of using DSM and multispectral data [12] and [3], while this
study is concentrating on single building extraction.

Most previous works assume that thresholding DSM pro-
vides sufficient information about the building shape. Un-
fortunately, using local thresholding for DSM data fails at
industrial areas where big buildings are closely located. In
these areas, the window size for local thresholding needs to
be very large. Also due to automatic DSM generation, some
unwanted outliers may occur. These are caused by matching
errors, temporal changes or applied interpolation techniques.
These also affect the building detection process in the negative
manner. As an example, closely located buildings in city areas
cause uncertainty on building edges. The main reason for this
is the applied interpolation technique which causes a loss of
sharpness. Buildings also do not have clear rooftop contours
because of the mentioned reasons. Sometimes a group of trees
may look like a building and there is no easy way to separate
them. However, the height information in DSM is still very
valuable.

The proposed methods in this study are an extension of
our previous works [11], [10]. There, we benefit from local
features and shadow information extracted from panchromatic
images. In local feature based method, we generate a vector
for each local feature. Each vector has a local position,
orientation, and weight. Based on their formation, for local
features generated from bright building corners, the vectors are
towards the building center. On the other hand, the generated
vectors for a dark building are away from building centers.
Both can lead to building detection. To do so, each local
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feature (vector) is used as an observation in non-parametric
kernel density estimation. Here, the kernel is taken as a
symmetric Gaussian function with a variable variance. Modes
of the estimated density indicate possible building locations in
the satellite image. In shadow based building extraction, the
multispectral information serves as a cue for possible nearby
building locations.

Our kernel density estimation based building detection
method works fairly well on most of the satellite images.
However, it may not work on images with complex building
structures. Besides, the closely located buildings also pose a
possible problem in detection. These problems occur mainly
from the interference from nearby trees, road edges, and
similar objects. In this study, we propose two novel methods
to overcome the mentioned problems. In both methods, we
effectively fuse the panchromatic information and DSM data.

In DSM data extraction, we benefit from the stereo image
pairs obtained from the WorldView-2 sensor. Detailed recon-
struction of objects from these images is possible with stereo
matching algorithms. Specifically, DSM used in this study is
obtained by the semiglobal matching algorithm [4]. In this
method, the similarity value for two images is computed in a
pixelwise manner. The matching cost between the image pixels
are computed as an energy minimization problem. Finally,
DSM is obtained by reprojecting the disparity image with
a desired grid spacing and cartographic projection. In the
following section, we start with explaining our local feature
based building extraction method. Then, we focus on the
shadow based building extraction.

II. CORNER POINTS AND DSM BASED BUILDING
DETECTION

In this section, we explain our local feature and DSM based
method in detail. We start with explaining the method. Then,
we provide a sample result on the application of our method.

A. Corner Points and DSM Data

In this study, we extract local feature points using Harris
corner detector [7]. Throughout the paper, we will call our
local feature points as corner points. After extracting corner
locations from panchromatic image, each corner location,
(xc, yc) is assumed to be in the center of a w × w window,
Is, on DSM. The highest point in this window, (xm, ym), is
obtained based on its elevation data as follows.

(xm, ym) = argmax(Is(x, y)) (1)

where,

xc − w/2 ≤ x ≤ xc + w/2

yc − w/2 ≤ y ≤ yc + w/2
(2)

Then, (xm, ym) is taken as a kernel formation location.
Before forming a kernel function, pre-elimination is done
using DSM data. If Is(xm, ym)− Is(xc, yc) < th, the height
difference between the maximum height point and the corner
point on Is, then (xm, ym) is not considered for kernel

formation. Here, we used symmetric Gaussian probability
density function for kernel density estimation as follows.

p(x, y) =
1√
2πσ

exp

(
− (x− xm)2 + (y − ym)2

2σ2

)
(3)

In our previous work, σ was a variable for a variable kernel
function [11]. Here, we choose σ = w/3 which gives enough
space for kernel formation. This method is applied to all corner
points, (xm(i), ym(i)), extracted. Summation of all kernel
densities gives the final density map as follows.

pmap(x, y) =
N∑
i=1

1√
2πσ

exp(A(x, y)) (4)

where

A(x, y) = − (x− xm(i))2 + (y − ym(i))2

2σ2
(5)

In Eqn. 4, N is the number of corner points. As in our
previous method, the formed density function can be used to
detect building centers in the region. The final density map
is multimodal since the number of buildings in the image
is unknown. Local maxima of pmap(x, y) indicate possible
building locations. To obtain a more reliable result, we also
perform a post-processing for eliminating some modes that are
below a minimum probability value.

B. Building Detection Examples

We summarized the local feature and DSM based build-
ing detection method in Fig. 1. In Fig. 1(a), corners on
the panchromatic image detected by the Harris detector are
labeled. Each corner point is assumed to be on DSM in a w×w
subwindow as shown in Fig. 1(b). The voting directions for
the corner points are given in Fig. 1(c). Finally, the obtained
kernel density map is given in Fig. 1(d).

We next take a sample test image given in Fig. 2. As can
be seen in this figure, buildings are closely located. Therefore,
DSM data or panchromatic image is not sufficient alone for
detecting buildings here. Moreover, buildings in this figure
have different shaped and colored rooftops. In Fig. 2, we also
provided the voting directions obtained by the corner and DSM
data. As can be seen here, they indicate possible building
centers.

We provide the kernel density map obtained from the first
test image in Fig. 3(a). We also provide the detected buildings
from this map in Fig. 3(b). As can be seen in this figure,
buildings are detected by our method.

We pick the second test image in Fig. 4. As can be seen
here, buildings are again closely spaced. Moreover, they have
different color and size. We first provide the kernel density
map in Fig. 4(a). Finally, we provide the detected buildings
in Fig. 4(b). As in the first test image, buildings are detected
fairly well in the second test image.
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(a) Corner points on panchromatic
image.

(b) Generated DSM.

(c) Voting directions. (d) Kernel density map.

Fig. 1. Local feature point method summary.

Fig. 2. Voting locations for the first test image.

(a) The kernel density map. (b) Detected buildings.

Fig. 3. Building detection results for the first test image.

(a) The kernel density map. (b) Detected buildings.

Fig. 4. Building detection results for the second test image.

III. SHADOW POINTS AND DSM BASED BUILDING
DETECTION

In the second method, we follow a similar strategy using
the shadow information extracted from panchromatic images.
In this method instead of using corner points, shadow points
are taken as local features. Then, they are jointly used with
DSM data for kernel density estimation.

A. Extracting Shadow Points

There are several methods on shadow detection on satellite
imagery. These include thresholding, classification, region
growing, segmentation, and 3D modelling. Some of the meth-
ods use multispectral data. Some use only gray scale images.
In this work, we used thresholding on panchromatic images.
Classical problem for this method is the proper selection of
the threshold value to best separate shadow and non-shadow
areas.

Bimodal histogram splitting method gives a very good
solution for threshold selection. In Fig. 5 we provide the
histogram of the first test image where bimodal behaviour is
seen. Dare [5] proposed that taking the mean of the two peaks
gives accurate threshold level for shadow extraction for such
histograms.

Fig. 5. Threshold selection for shadow extraction.

After thresholding, the image shadow and non-shadow areas
are labeled. Finally, we remove the small regions which have
less than 20 pixels in size. In Fig. 6, we provide the kernel
directions extracted from the extracted shadow pixels.

141



Fig. 6. Kernel directions using the shadow pixels extracted for the first test
image.

B. Building Detection

To detect buildings using shadow pixels, we apply the fol-
lowing steps. First, we select equally spaced points on shadow
areas. This step is shown in Fig. 7(a). As in the first method,
shadow points are assumed to be in the center of an w × w
window on DSM. This is shown in Fig. 7(b). As in Eqn. 1, the
maximum height index is obtained. Now, every shadow point
has a voting direction showing the possible building center as
shown in Fig. 7(c). Using Eqn. 3, a new symmetric Gaussian
kernel is formed. Repeating this process for every shadow
point and summing the kernel density gives the final kernel
density map. The final kernel density for our example is given
in Fig. 7(d). The final density map is multimodal and local
maxima of pmap(x, y) give the possible building locations.
Again, we do a post-processing for eliminating some modes
that are below a minimum probability.

We provide the building detection results using shadow
information on the same dataset. For the first test image, the
final kernel map is given in Fig. 8(a). Based on these, the
detected buildings are given in Fig. 8(b). We provide the kernel
map and the detected buildings for the second test image in
Fig. 9.

IV. TEST RESULTS

In this section, we test our building detection methods on
larger WorldView-2 images for quantitative results. DSM data
is generated from these images. The test images are acquired
from residential areas. they have various building types. Our
test images contain 94 buildings. These have different rooftop
shapes, colors, and heights. To note here, if a building is
detected more than once than we accept it as a true detection.
We provide the building detection results using corner and
shadow points in Figs 10 and 11 respectively.

We provide the test results (over 93 buildings) for our
methods in Table I. As can be seen in this table, using corner

(a) Shadow points on the panchro-
matic image.

(b) Generated DSM.

(c) Voting directions. (d) Kernel density map.

Fig. 7. Shadow points method summary.

(a) The kernel map. (b) Detected buildings.

Fig. 8. Shadow points method, building detection results for the first test
image.

(a) The kernel map. (b) Detected buildings.

Fig. 9. Shadow points method, building detection results for the second test
image.
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Fig. 10. Building detection results from the residential area using corner
points.

Fig. 11. Building detection results from the residential area using shadow
points.

points and DSM data together, our true detection (TD) and
false alarm (FA) rates are 90.3% and 12.9% respectively. When
we use shadow points and DSM data, the true detection and
false alarm rates are as 86.0% and 9.6%. Although the true
detection performance decreased in the shadow based method,
the false alarm rate also decreased. The main reason for false
alarms is trees and road segments. Multispectral information
may be used to eliminate these in future studies. Also if there
are two adjacent buildings with very big height differences,
then most of the kernel vote directions will be towards the
higher building. This may cause miss detections. Besides, the
obtained results using both methods are very promising.

TABLE I
BUILDING DETECTION PERFORMANCES FOR THE PROPOSED METHODS.

Method TD FA TD (%) FA (%)
Corner points 84 12 90.3 12.9
Shadow points 80 9 86.0 9.6

To note here, although we used the height information for
kernel formation, we didn’t use normalized DSM (nDSM) data
for this purpose. nDSM is the difference of DSM and Digital
Terrain Model (DTM) of the interested region. Therefore, the
ground height will be referenced to zero at nDSM. Unfor-

tunately, the DTM extraction process gives false results at
closely located building groups or at industrial areas. In these,
buildings are large and they have big height differences. To
avoid these disadvantages, we didn’t use nDSM data in our
methods.

V. CONCLUSION

In this study, we propose two novel methods for building
detection in satellite images. In both methods, we effectively
fuse the panchromatic information and DSM data. In our first
method, we perform this fusion using corner points and DSM.
In our second method, we fuse the shadow information and
DSM to detect the buildings. The initial results indicate the
effectiveness of our methods in building detection.
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