Space Cloud: From a Distributed On-board Computer to a Federated System-of–Systems in Space

Daniel Lüdtke, Volker Schaus, Andreas Gerndt

German Aerospace Center (DLR) Simulation and Software Technology Software for Space Systems and Interactive Visualization

Federated Satellite Systems Workshop 14th Oct 2014

Knowledge for Tomorrow

Challenges in the area of data processing on-board spacecraft

Missing On-board Computing Power

- Number of space-qualified processors and FPGAs is low
- Increasing requirements for more computing power in the areas:
 - Optical Navigation Example: ATON
 - Earth observations Example: Tandem-X / TerraSAR-X
 - Robotics Explorative Swarm
 - ...

Redundancy Concepts Often Limited to Subsystems

- Each computing unit has usually its dedicated redundant counterpart
- Standby systems can not take over tasks of computers in other subsystems

Autonomous Terrain-based Optical Navigation for Landers (ATON) Goal: Bring Optical navigation for autonomous landing on celestial bodies to TRL 4-6

ATON continued

Software Tasks

- Crater Detection
- Epipolar Geometry --> Stereo Matching --> 3D Matching
- Feature Tracking
- Landing Site Evaluation
- Navigation Filter

High demands on computing power

- Parallel tasks (CPU, FPGA)
- Short execution time (~1 h)

DLR Research Activity On-Board Computer – Next Generation (OBC-NG)

Resource Utilization	 Using all available computing resources
Redundancy	 Migration of applications across subsystems
Reconfiguration	 Software and hardware reconfiguration for different mission phases and error mitigation
Cost reduction	 Evaluation of Commercial Off-The- Shelf (COTS) Equipment

Reconfiguration – Task Migration / Morphing

OMNeT++

Reconfiguration – Network Simulation

Demonstrator using Optical Navigation

How should the system reconfigure...?

Planned

- Switching mission phases
- Cruise -> Land -> Explore
- Initiated by ground control
- Mission timeline

Automatic

- Error Mitigation
- Initiated by Master after failure detection
- No adaptive reconfigurations
- Precalculated decision graph to mitigate node failures

A Space Cloud ?

DLR.de • Chart 12 > Volker Schaus • Space Cloud: From a Distributed On-board Computer to a Federated System-of-Systems in Space >

Earth Observation in 3D

Synthetic Aperture Radar (SAR)

ANDEM

Digital Elevation Model of Earth

1 Sender / 2 Receivers

Data Processing on the ground

1.5 Petabyte over 3 years

Tandem-X continued: Laser Communication Terminal

European Data Relay System (EDRS)

Geostationary Relais Network

On-board Alphasat / Sentinel

45 000 km – 1.8 Gbit/s

High Precision Star Tracker

Cheaper LEO Missions

Service Architecture in Space

Explorative Robotic Swarms

Most Recent Publication:

OBC-NG: Towards a reconfigurable on-board computing architecture for spacecraft **IEEE Aerospace Conference 2014**

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6836179

SpaceBot Cup

Test-bed for new robotic developments

Challenging student teams