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ABSTRACT

Alternative Position Navigation and Timing (APNT)
considers different possible ranging sources like DME,
UAT, LDACS, etc for which multipath is a major threat.
Therefore code smoothing with Doppler measurement
techniques have been considered in this paper.

But ranging errors are not the only issues encountered in
APNT; in fact the positioning algorithm needs to be revis-
ited as the linearization assumption for GNSS does not ap-
ply for the short range case. Indeed, two problems have
been observed while applying the Newton-Raphson ap-
proach for the LDACS data collected during the 2012 flight
trials: the initial point when taken too far away from the
true position prevents the iterative positioning algorithm to
converge; and when the initial point is close to the solution
but the ranging errors are too large we also observed a con-
vergence problem of the Newton-Raphson algorithm.
From this observation, we have decided to investigate the
performance of a direct method. A hybrid method taking
advantage of both approaches (initial point provided by a
direct method followed by the Newton-Raphson method)
has been suggested and compared with the stand alone di-
rect method. This paper describes these methods and their
performances are assessed based on simulations over Ger-
many using DME stations as ranging source locations.

We show that the direct and hybrid methods provide a so-
lution also when the Newton-Raphson algorithm does not
converge.



INTRODUCTION

GNSS is foreseen by both air traffic management re-

search programs NextGen in the US and SESAR in Eu-
rope to be the primary mean of navigation for all phases of
flight. GNSS offers flexibility, global availability and out-
standing performance to support performance based navi-
gation (PBN) and precision approach under low visibility
conditions. Unfortunately, due to the low level of its signal
power, this system is vulnerable to radio frequency inter-
ference and the user may potentially loose the navigation
service in a wide area during a critical phase of flight. In or-
der to ensure continuity of the navigation service, a backup
solution must be provided, that provides a PBN service, i.e.
navigation including integrity monitoring. There are differ-
ent concepts for APNT-Systems under investigation, most
of them rely on ranging or pseudo ranging with ground
based stations. The ground based ranging is much more
resilient to interference than space based ranging sources
(such as GNSS) thanks to a higher emitted signal power and
a shorter distance between transmitter and receiver. But the
change in geometry and the length of ranges has an impli-
cation on the positioning algorithms. The traditional GNSS
positioning algorithm does not apply anymore. There are
different ways to approach this problem, e.g. compute only
the horizontal position and take the altitude from a baro-
metric altimeter or apply algorithms that are less sensitive
to high Dilution of Precision (DOP). But the DOP will have
a significant impact no matter which algorithm is used, we
can only avoid divergence of iterative algorithms and the
failure to determine a position solution. We will show that
depending on the density of the network of stations and
the accuracy of the range measurement we need to com-
bine independent altitude measurements with improved al-
gorithms to get a reliable position solution.
We will start by analyzing the number of visible stations
and the dilution of precision for ground stations located in
Germany. Then we will shortly describe the error model
that is used for the ranging errors. After this we will discuss
the advantages and disadvantages of several algorithms and
analyze their performance with simulations and flight trial
data.

DENSITY OF STATIONS

In this section we will investigate how the density of
ground stations impacts the availability of the positioning
service. Three or four (for a three dimension problem) sta-
tions have to be in view to make a position solution pos-
sible. The availability largely depends on the altitude of
the airborne receiver, as the visibility is mainly limited by
the curvature of the earth, not the distance from the sta-
tion. But having a line of sight connection to sufficiently
many (more than three or four) stations does not guarantee
an accurate position solution. This mainly depends on the

Dilution of Precision (DOP) of the ranging sources and the
accuracy of the range measurements. We have investigated
the situation at the example of Germany’s DME stations
and for a subset of these stations limited to one station per
airport. In the Figures below you can see the number of
visible stations as well as the horizontal Dilution of Preci-
sion (HDOP) and the global DOP at 10000ft, 20000ft and
30000ft above mean sea level (AMSL). We did not include
detailed terrain information to compute the solutions, as we
did not consider aircraft altitudes close to the ground.
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Fig. 1 Number of visible stations with currently used DME
stations in Germany

In Figure 1 we can see that the German DME stations (not
including the DMEs used as beacons for ILS) cover most
of the German airspace at and above 10000ft. When close
to the borders availability gaps may occur, but this situation
can be avoided when considering the contribution of other
DME stations of neighboring countries.

The horizontal dilution of precision (shown in Figure 2)
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Fig. 2 HDOP with currently used DME stations in Ger-
many

is below 2 in all relevant areas. So we have a good config-



uration for horizontal position determination. But the geo-
metric dilution of precision (GDOP) (see Figure 3) reaches
extremely high values (even exceeding a few hundreds of
kilometers especially at 10000ft). So a vertical position
determination will be quite hard to achieve with the geo-
metrical constellation in this situation.

But there are 86 DME stations in Germany, without the
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Fig. 3 GDOP with currently used DME stations in Ger-
many

ones used to substitute the beacons for ILS. So we investi-
gated the situation with a thinned out station network and
used just 33 stations close to airports (including small re-
gional airports). This could be a sufficient set of stations
for a communication system, such as LDACS.

At an elevation of 10000ft AMSL we observe that the cov-

>20
18-19

o

16-17

10000+ =
—iill 14-15
. g 12-13
£ — 10-11
$ 5000 8-9
2
= 6-7
(]
55 4-5
0l 2-3
5 N 0-1
10 5 &
longitude (deg) 15 &

Fig. 4 Number of visible stations with one ground station
per airport in Germany

erage is seriously degrading, and availability problems may
accur in large areas. But thou there are much less stations,
we still see a horizontal DOP below 2 at 20000ft and above
(see Figure 5).

The global DOP degrades also further (see Figure 6),
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Fig. 5 HDOP with one ground station per airport in Ger-
many

showing that there would not be any availability for 3-
dimensional positioning at FL.100 in wide areas.
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Fig. 6 GDOP with one ground station per airport in Ger-
many

RANGE ERROR MODELS

In 2012 a flight trial with the LDACS communication
signal was conducted to prove that this signal can also be
used for ranging [7]. From the measured data we took a
several samples at different altitudes showing nominal be-
havior. Then we derived a model for the ranging error by
overbounding the estimated error in these samples using
a normal distribution. We could improve our range mea-
surements by applying a carrier phase smoothing filter (also
called Hatch filter [3]) with different smoothing times. Af-
ter the smoothing the distribution of the range error is not
similar to a normal distribution anymore, but a Gaussian
overbound can be constructed to model an upper bound



for the ranging error. With this method we get the stan-
dard deviations for different altitudes considered during the
measurement campaign and different smoothing constants
shown in Table 1 were evaluated. Figure 7 shows the rang-
ing error measured to one of the stations during a sample
recorded at about 8.5km (AMSL) which is approximately
flight level 280.
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Fig. 7 Ranging Errors measured at altitude 8.5km AMSL

altitude Code 3s 12s 60s
30km | 3709m | 11.7m | 3.6m | 1.1m
8.5 km 17.4m 43m | 2.1m | 1.1m
11.5 km 10.0m | 3.1m | 2.1m | 1.5m

Table 1 Modeled standard deviation of ranging errors

CONVERGENCE OF ITERATIVE ALGORITHMS

The iterative Gauss-Newton algorithm, often also called
Newton-Raphson algorithm, has shown to converge to
wrong solutions as well as to diverge in our simulations
and with the recorded data from our flight trial. The ex-
istence and the size of an area of convergence around the
optimal solution of the pseudorange equations depends on
the geometry of the visible stations, how fast the geometry
changes in the area around the position solution and how
good the solution fits the measured pseudoranges. With the
Gauss-Newton method we want to minimize the following
function

x
F:R* SRV (b) = (o= lIsi = x[| = b)<ien

where N denotes the number of stations and s; the coor-
dinates of each station and p; the measured pseudorange
from the receiver to the station at s;. We will now write
z = (x7,b)T. We usually minimize F by finding a fixed

point of

®(z) =z — (G(2)' G(z)) " G(2)" F(z)

=:H(z)

where G(z) is the Jacobian matrix of F' and also the so
called geometry matrix for the location x. To guarantee
the existence of a positive radius of convergence to a fixed
point z* of ® we need to show that [6, p. 220]

12 (z") ]| = [H(z")]l2 - IIZF F (2]l < 1

where F;(z) is the i-th coordinate of F'(z), and F’ is the
Jacobian matrix of this coordinate. For this it is sufficient
to show that

pi — (|[si — x[| +b)
DOP? <1.
Z [si — x|

DIRECT ALGORITHM

APNT is not the only application for which the geome-
try of the constellation makes a position determination un-
usually hard to achieve. Deep space navigation is an other
such application, for which different direct positioning al-
gorithms were developed e.g. the algorithm by Krause [4]
or by Bancroft [1]. In this paper we select the second al-
gorithm as it is capable of handling more than four pseudo
ranges, but it is not possible to directly handle an altitude
sensor information like the barometric altimeter. For the
horizontal only solution we project the ranges into a plane
and transform the 3 D problem to a 2 D problem. We will
briefly describe the direct algorithm we used in our simu-
lations, for a detailed description of the algorithm see [1].
With the notation used in the previous section we have

S1 pP1
A =
Sn  Pn
With
B := A the pseudo inverse of A
and
1 0 0 O
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we define
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Let A\; and )5 be the solutions of the quadratic equation
EXN +2FA+G =0
then either z; or z, with
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is the position and timing solution. The right solution
y1 or yo has to be selected by verifying that it is suffi-
ciently satisfying the pseudorange equations. The perfor-
mance of the algorithm mainly depends on the accuracy of
the pseudo range measurements, because it solves an other
minimization problem than the classical Newton-Raphson
algorithm:

N

<)1:> = arg min ; (i =) = |x—s:|®)* ()

and not

N
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Therefore the solution is not optimal in the same sense as
the solution computed by the Newton-Raphson algorithm.

HYBRID ALGORITHM

The algorithm presented in this section combines the two
algorithms above, by computing the position using the di-
rect method by Bancroft [1] and then taking it as an ini-
tial position vector for the Newton-Raphson method. So
we (usually) get a sufficiently good initial vector for the
Gauss-Newton algorithm to converge to the right position
solution. One advantage of this method is that the position
solution is optimal in the sense of Equation 2. Furthermore
the propagation of the distribution of the ranging error to
the position error and the horizontal protection level can
be computed in the same way as for the Newton-Raphson
method.

PERFORMANCE ANALYSIS

To analyse the performance of the algorithms in differ-
ent situations we look at the results of simulations as well
as theoretical computations. We describe the quality of the
position solution derived for simulations by computing an
overbounding normal distribution. For the horizontal po-
sitioning error we use the principal component analysis to
estimate the dominant error direction. Then we compute
a one-dimensional Gaussian overbound to the distribution
of the error in this direction. The standard deviation o of
this distribution is then taken as o, for the horizontal po-
sitioning error. For all our simulations we used 100 sample
range errors for each station.
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Fig. 8 opound for 0rqnge deduced smoothing with 12s time
constant see Table 1
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Fig. 9 opouna for orqnge deduced from ranging with code
measurements see Table 1

For the Newton-Raphson algorithm we can compute a
horizontal standard deviation opy,,q Overbounding the hor-
izontal error, depending only on the geometry and the stan-



dard deviation of the ranges o,qnge-

Hy |+ H Hy i — Hyo\?
Chound = 1,1 5 2,2 +\/< 1,1 5 2,2) _’_1;]—12$2

This leads to a similar result as 0,,,, for the hybrid algo-
rithm, as the final Position computation is done with the
Newton-Raphson method and is shown in Figures 8 and 9.
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Fig. 10 o,,, for high ranging accuracy (0rqnge = 2.1m),
with one ground station per airport at altitude 8.5km
(AMSL) using the hybrid algorithm.
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Fig. 11 o, for high ranging accuracy (0range = 2.1m),
with one ground station per airport at altitude 8.5km
(AMSL) using the direct method.

First we will compare the performance of the hybrid and
the direct positioning methods for a high ranging accuracy
and known altitude. We will do so by simulation at an
altitude of 28000ft (flight level 280) with one station per
airport in Germany. As standard deviation for the ranging

error we use 2.1m (overbound of the 12s smoothed ranges
at this altitude). The resulting o, is shown in Figures 10
and 11.

Low Ranging Accuracy

Secondly we will compare the performance of the hy-
brid and the direct positioning method for a lower ranging
accuracy at known altitude. We will do so by simulation
at an altitude of 28000ft (flight level 280) with one station
per airport in Germany. As standard deviation for the rang-
ing error we use 17.4m (overbound of the ranges from code
measurements at this altitude).The resulting 0,05 is shown
in Figures 12 and 13.
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Fig. 12 o, for low ranging accuracy (0rqnge = 17.4m),
with one ground station per airport at altitude 8.5km
(AMSL) using the hybrid algorithm.
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Fig. 13 o, for low ranging accuracy (0rqnge = 17.4m),
with one ground station per airport at altitude 8.5km
(AMSL) using the direct algorithm.



At Low Altitudes

At about 10000ft (flight level 100) less stations are visi-
ble and the ranging performance is worse than at higher al-
titudes. So positioning with the ranges determined through
the code measurement is hardly possible, if at all. So we
included all DME stations in this simulation and chose to
use the standard deviation of the overbounding distribution
of the 12s smoothed ranges and we consider the altitude
as known. As the results for the direct and the hybrid al-
gorithms are very similar we show only the results of the
hybrid algorithm in Figure 14.
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Fig. 14 o,,, for high ranging accuracy (0rqnge = 3.6m),
with all DME stations at altitude 3.0km (AMSL) using the
hybrid algorithm.
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Fig. 15 o, for high ranging accuracy (0rqnge = 2.1m),
with one ground station per airport at altitude 8.5km
(AMSL) using the direct algorithm for 3D Positioning.

Finally we analyze the horizontal positioning error of a
3-dimensional positioning solution. Which can be com-
puted if four or more stations are in view, but without the

use of a barometric altimeter. In Figures 15 and 16 we
show the overbounding o,,,, for the horizontal position er-
ror for a 3-dimensional position solution. First for the di-
rect method with high ranging accuracy, second for the hy-
brid algorithm with lower ranging accuracy.
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Fig. 16 o, for low ranging accuracy (0rqnge = 17.4m),
with one ground station per airport at altitude 8.5km
(AMSL) using the hybrid algorithm for 3D Positioning.

EVALUATION WITH FLIGHT TRIAL DATA
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Fig. 17 Position error at 8.5km (AMSL)

We also tested these algorithms with the ranges mea-
sured during our flight trials in 2012 [7] and compared the
computed position with the reference position determined
with GPS. In Figure 17 and 18 we see the total and the
horizontal position error when using the hybrid algorithm
for 3-dimensional positioning with the range data recorded
at approximately 8500m above MSL. We used different
smoothing constants for the filtering of the ranges to show



the impact of the different errors in the range measurements
(see Table 1) on the positioning.
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Fig. 18 Horizontal position error at 8.5km (AMSL)

CONCLUSIONS

In this paper we did an analysis of the positioning algo-
rithm performance for a ground based APNT system. The
difficult geometric conditions can be overcome by direct
and hybrid algorithms. With these algorithms we prevent
convergence problems and get high performance and accu-
racy for horizontal positioning. The coverage can be ex-
tended by using an additional baro-altimeter, whereby the
number of necessary stations can be reduced to three. But
even despite the high geometric dilution of precision a 3-
dimensional position solution can be computed whenever
enough stations are visible and a good ranging performance
is assumed.
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