Boarding Efficiency

How to enter an aircraft – the most efficient way?

Dr. Michael Schultz

Institute of Flight Guidance, Department of Air Transportation

German Aerospace Center (DLR e.V.)

Introduction

- Michael Schultz
 - Business and Engineering degree (Dipl.-Wirtsch.-Ing.)
 - PhD in Aviation Technologies (Dr.-Ing.)
 - former senior researcher at Institute of Logistics and Aviation, Technische Universität Dresden
 - Currently Heading Department of Air Transportation, Institute of Flight Guidance at German Aerospace Center in Braunschweig
 - Research Topics
 - model-/data based performance assessment of Air Traffic Management (ATM)
 - Performance Based Airport Management (PBAM)
 - advanced ATM concepts
- Structure of presentation: research background > tournaround > boarding modell > results

Background - Passengers at Airport Terminals

Considering of visual perception areas

- navigation to unknown locations
- information gathering and processing

Schultz et al. (2007) Enhanced Information Flow and Guidance in Airport Terminals using best Passenger`s Visual Perception Schultz et al. (2011) Managing Passenger Handling at Airport Terminal

Background - Group Dynamics

• Common group behavior also valid for airport environment

Group Size	Business	Tourist
1	73%	19%
2	23%	55%
3	4%	26%

Schultz et al. (2011) Group dynamic behavior and psychometric profiles as substantial driver for pedestrian dynamics
Schultz (2010) Entwicklung eines individuenbasierten Modells zur Abbildung des Bewegungsverhaltens von Passagieren im Flughafenterminal

Background - Group Dynamics (2)

• Common constellation of pedestrians walking in groups (size of 2, 3, and 4 pedestrians)

Schultz et al. (2011) Group dynamic behavior and psychometric profiles as substantial driver for pedestrian dynamics, Presentation at Pedestrian and Evacuation Dynamics Conf.

Airt Transportation - Turnaround

• Connect research topics: passenger dynamics, turnaround optimization

- increasing passenger transport capacity of aircrafts

- demand for efficient connection between land/airside
- ATM significantly depends on a reliable turnaround progress

- Boarding
 - always on the critical path
 - high potential of disruptions
 - robust strategies vs.
 highly optimized procedures
 - Passengers own the process, individual behavior drives the boarding progress

Fricke and Schultz (2009) Delay Impacts onto Turnaround Performance

How boarding looks like?

Szenario: Random - 1 Door

Aircraft Layout

- A320 as a reference layout
- · Layouts differ
 - amount of passengers
 - number of aisles
 - config: 1st, business, eco
- Passenger process
 - enter aircraft
 - get correct aisle
 - walk to assigned seat
 - store baggage
 - seating interaction

Aircraft Layout - Modell

Schultz (2010) Entwicklung eines individuenbasierten Modells zur Abbildung des Bewegungsverhaltens von Passagieren im Flughafenterminal

Motion Model and Parameter

- Asymmetric simple exclusion process (ASEP)
 - stochastic, forward directed, one dimensional, and discrete
 - shuffled sequential update of positions at each time step
 - regular grid consists of equal cells with a size of 0.4 x 0.4 m²
 - $v_{max} = 1 \mod (\max 1 \text{ cell per time step})$
 - pax speed of 0.8 ms⁻¹ at the aisle
 - time step of 0.5 s
- Additional parameter
- individual amount baggage
- interaction during seating (seat shuffle)
- boarding strategy

Boarding Strategies

• Random (reference), Block, Back-to-Front, Outside-In

Remarks:

Schultz (2013) Boarding on the critical path of the turnaround

- tourist with clear trend of groups with 2 or more members (81%)
- business travelers often travel alone (73%)
- passengers are not altruistic (non-conformant behavior)
- fast processes need considerable pre-sorting effort

Simulation Scenarios – Sensitivity Analyses

• Input

- time to store baggage
- seat shuffle: response time, interaction time
- seat layout of aircraft: A320, B777 (2-5-2, 3-4-3, 3-3-3), A380

Variation of input factors

- boarding strategy/passenger sequence (default: *random*)
- seat load factor (SLF) ranging from 20% to 100% (default: 85%)
- conformance rate (CR) ranging from 20% to 100% (default: 85%)
- arrival rate at aircraft (AR) ranging from 1 to 40 pax per minute (default: 14 pax per minute)
- one door and two door configuration (default: one)

Results (1) - Video

Results (2) - Video

Szenario: Block-Boarding

Results (3) - Video

Szenario: Block Boarding - Alternating

see http://video.air-transportation.org

Results (4) - Video

Szenario: Outside-In

Results (5) - Video

Szenario: Reverse Pyramid

Results (6) - Video

Results (A320 Sample)

Block - Sequence

Acceptance of Boarding Sequence

Results (B777, A380 Sample)

Arrival Rate (B777)

125₋ expected boarding time (%) 100 75 1 door configuration 50 0 10 20 30 arrival rate (passengers per minute)

Acceptance of Boarding Sequence (A380)

Summary of Research Results

- Reliable boarding progress and delay compensation during the turnaround (A320, B777, A380)
 - additional door for the boarding process (20 25 % savings)
 - change of the **boarding strategy** (10 15 % savings)
 - different **seat layouts** (3 % savings)
- Verification/Validation
 - field trials done with Airberlin for validation of input parameters
 - reliability of the proposed stochastic aircraft boarding model against common observations
 - measurements for further improvements needed (**reducing variance**)
- Microscopic (individual-based) process description results in
 - identification of **optimization potential** of existing processes
 - stochastic boarding model to derive a benchmark methodology
 - coupling of infrastructure and procedure requirements

Next Step – New Infrastructure?

• Side-Slip-Seat - @molonlabedesigns

first simulation results using new slide seats (preliminary results! procedures not yet verified)

- random boarding (0%, 0%)
 - efficiency + 16%
 - stability + 4%
- *block* boarding (16%, 14%)
 - efficiency + 25%
 - stability + 11%
- Random boarding, 2 doors (26%, 34%)
 - efficiency + 31%
 - stability + 40%

Boarding Efficiency

How to enter an aircraft – the most efficient way?

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

German Aerospace Center

Institute of Flight Guidance

Dr.-Ing. **Michael Schultz**Head of Department, Air Transportation
Phone +49 (0) 531 295-2570
michael.schultz@dlr.de

