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ABSTRACT

The paper proposes a novel approach to object classifica-
tion and segmentation in multi-channel (e.g. polarimetric)
SAR data. The classifier is intended for particularly difficult
problems, where objects of interest exhibit a high degree of
radiometric, polarimetric and geometric heterogeneity, both
within individual object instances and across the object cate-
gory as a whole. Classification is based on a non-parametric
characterization of scene contents that avoids model assump-
tions liable to fail in this scenario. The classifier structure is
based on a combination of techniques developed for related
problems in computer vision: the cascade architecture helps
breaking down the problem into manageable stages while ran-
dom forests provide a powerful framework for learning and
combining discriminative classification rules. In addition,
scale space techniques explicitly introduce non-local, contex-
tual and geometric information into the classification process.
Preliminary results illustrate the potential of the proposed
approach with respect to the task of building segmentation in
dual-polarized TerraSAR-X data.

Index Terms— Synthetic Aperture Radar, SAR Po-
larimetry, Classification, Texture

1. INTRODUCTION

The accurate segmentation of objects in high-resolution syn-
thetic aperture radar data is treated as a classification problem
in which a non-parametric description of local signal statis-
tics plays an important role. The proposed classifier is trained
from examples and is not specific to a particular object cat-
egory or acquisition mode; in particularly it extends natu-
rally to multi-channel SAR data such as (partially-) polari-
metric acquisitions. The principal focus is on difficult prob-
lems where the objects of interest may have a complex in-
ternal structure with a large radiometric and polarimetric di-
versity within individual objects as well as between different
instances of the same object type. This type of problem will
continue to become more relevant as increasing sensor res-
olutions continue to reveal more of the spatial structure and
texture of objects in SAR acquisitions.
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Fig. 1. The filter bank applied to characterize local image
structure. a) The eight families of filter applied. Clockwise
from the top left: oriented 1°¢ order, oriented 274 order, Gaus-
sian and Laplacian filters. b) Sample input data, convolved
with the Gaussian filter. c¢) The Laplacian response. d) 15 or-
der responses for the three filter scales. e) 2"¢ order responses
for the three filter scales.



The approach is largely inspired by recent advances in the
segmentation and categorization of objects in optical imagery.
Here, Shotton ef al. [1] have proposed an approach based
on randomized forest[2] classifiers using texture-related in-
formation. A somewhat similar approach, combining boost-
ing and conditional random fields, was previously proposed
in [3]. Both techniques achieved impressive results and are,
implicitly or explicitly, based on the so-called texton repre-
sentation of optical imagery. This representation has gone
through several re-formulations before reaching the current
state of the art in [4].

The current approach differs from previous techniques by
the introduction of a new cascade-based classifier architec-
ture. Cascade classifiers were first introduced in [5] and ex-
tended in [6] to solve object detection problems in real time.
Although computational cost is not a primary concern here,
cascades are attractive in the context of object segmentation
since they provide mechanisms to deal with the enormous di-
versity of the background in object segmentation tasks. In ad-
dition, scale space analysis techniques are introduced to allow
the classifier to discriminate on the basis of non-local image
structure geometry.

Section 2 briefly reviews the non-parametric descriptor
used as a basis for classification. The classifier architecture
and the training process are summarized in section 3. Sec-
tion 4 introduces the scale space techniques adopted to ac-
count for geometric object properties, while section 5 presents
and briefly discusses preliminary results for building segmen-
tation in partially polarimetric TerraSAR-X data. Section 6
summarizes the contributions and points to future work.

2. TEXTON DESCIPTORS

Texton descriptors, introduced in [4], are extracted in a two
step process which begins with applying a multi-scale filter
bank to obtain a local signal characterization as illustrated in
figure 1. Each sample of a given image is then compared to
a so-called dictionary on the basis of the filter responses as-
sociated with it. The dictionary contains entries that describe
local image structure that is recurrent in terms of geometric
structure and radiometric/polarimetric scattering characteris-
tics.

Finally, an image region is described as the histogram
of dictionary entries that have been matched within it. In
practice, this histogram is a local description of the observed
backscatter characteristics as well as the relative abundance
and constellation of line, edge and point like geometric im-
age constituents. Importantly, the process of histogram ac-
cumulation is inherently non-parametric, i.e. it involves no
model assumptions concerning the distribution obtained, and
is therefore suitable for complex, heterogeneous scene con-
tents that are otherwise difficult to model satisfactorily.

For a full description of an extension of this approach to
fully polarimetric SAR, which is beyond the scope of this ar-
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Fig. 2. Classifier and decision tree structure. a) Structure of
the cascade classifier. b) Extraction of features from texton
vectors. ¢) The binary decision tree (with leaf posterior dis-
tributions) in a cascade node.

ticle, the reader is referred to [7].

3. CASCADE CLASSIFIER

The classifier produces a bi-level segmentation of a multi-
channel (e.g. polarimetric) SAR data set by assigning each
resolution cell to one of the classes ¢ = 0 (background) or
c = 1 (foreground/object). As illustrated in figure 2a, the pro-
posed classifier consists of several stages in accordance with
the cascade architecture introduced by Viola and Jones in [5].
A given input sample traverses the first stage of the cascade,
at the end of which it is either irrevocably assigned to the
background class ¢ = 0 or propagates to the next stage where
the process repeats. Any sample that traverses all stages in
the cascade without being assigned to the background is then
deemed to be part of the foreground and is assigned ¢ = 1.
For the present purposes, this architecture helps to over-
come difficulties stemming from the fact that the background
class is, in practice, extremely diverse. Instead of attempting
to characterize the entire background in a single, monolithic
classifier, stages break down the classification process and al-
low the learning process to focus on one (manageable) part of
the background at a time. Latter stages in the classifier can as-
sume that most background has been eliminated and focus on



finding specific rules to isolate the few remaining but difficult
background samples.

In the proposed architecture, each stage of the classifier
is itself a random forest [2] in which a number of weak clas-
sifiers combine to produce a single strong classifier. The
individual weak classifiers are represented by the nodes
ni,na,... in figure 2a. Internally, each node takes the form
of a binary decision tree in which each leaf [ contains a pos-
terior density p(c|l) over classes ¢ € {0, 1}, as illustrated
in figure 2b. Each binary decision is based on comparing a
different, scalar feature derived from the texton descriptors to
a threshold.

When the classifier is applied to SAR data after training is
complete, each image sample traverses each decision tree and
the posteriors p(c|l) encountered are averaged. At the end
of each stage, the accumulated posterior determines whether
a given sample traverses to the next stage or not.

The pool of scalar features used in binary decisions is
generated by locally averaging the texton vectors (local his-
tograms) with a bank of oriented low-pass filters of a partic-
ular size and anisotropy, as shown in the first row of figure
2c. The filtered results are compared to an arbitrary template
using one of a number of distance measures (e.g. Euclidian,
x? or Kolmogorov-Smirnov), as shown in the second row of
figure 2c. Finally, rotation invariance is achieved by comput-
ing an integral invariant over low-pass filter orientations (e.g.
mean, median, maximum and similar) as shown in the third
row. The aim of this design is to retain rotation invariance,
which is deemed important in remotely sensed imagery, while
providing a large number of degrees of freedom to ensure a
highly diverse set of features for use in binary decisions.

Individual nodes are trained using the techniques de-
scribed in [2], including advanced techniques such as sample
bagging. Individual binary decisions are trained by selecting
a random feature from the pool and then setting the thresh-
old to minimize the entropy of the foreground/background
training sample distributions propagated to descendents. The
overall cascade is constructed as described in [5]. Interest-
ingly, this process guarantees a maximum false alarm as well
as a minimum hit rate, and therefore a user specified clas-
sifier performance with respect to the training data, upon
completion.

4. SPATIAL CONTEXT AND OBJECT GEOMETRY

The cascade classifier of the preceding section makes deci-
sions that rely primarily on local image contents (depending
on the size of the low-pass filters used in binary decision
nodes). An extension that explicitly incorporates non-local
context and object geometry entails letting binary decision
nodes access the entire Gaussian scale space, as illustrated
in the left column of figure 3a, of a given input feature. In
this approach, each binary decision is trained by selecting a
decision threshold that is optimal over all considered scales

Fig. 3. Learning contextual and geometric patterns via scale
space analysis: a) Features extracted from Gaussian scale
space, from left to right: the scale space itself, the Hessian
trace and the Hessian determinant. b) Training mask used in
a synthetic example. c¢) Simulated feature for the binary deci-
sion nodes (in this example all binary decision nodes use the
same input feature). d) Class posterior density for a single
decision tree. e) Class posterior averaged over five decision
trees.

of observation.

In addition to the scale space itself, nodes may also base
decisions on the trace and determinant of the associated Hes-
sian, as illustrated in the second and third columns of figure
3a. These rotation invariant quantities are directly related to
the presence of blob and ridge like structures in the under-
lying feature and were originally introduced for multi-scale
geometric structure detection in [8].

As illustrated in figure 3b-e, this approach adds valuable
discriminative power to the classifier: although the input sig-
nal only distinguishes the outline of the rectangular objects
considered, the classifier can correctly discriminate the object
interior on the basis of contextual information.

5. PRELIMINARY RESULTS

The preliminary results in this section illustrate classifica-
tion/segmentation performance for a classifier trained to de-
tect buildings in high resolution, dual-polarized TerraSAR-X
imagery. The classifier was trained and evaluated on distinct
regions of the same data acquisition. Training was car-
ried out on the basis of manually annotated foreground and



Fig. 4. The results of applying the classifier to unseen data after training for the category ’building’. Left: High-resolution
TerraSAR-X image (dual-polarized) acquired over Berlin, Germany, in 2009. Middle: Segmentation result with pixels in the
"background’ class set to black. Right: Detail views of three regions with reference optical imagery.

background masks created with the help of optical imagery
back-geocoded into the slant-range geometry.

A visual inspection of the results illustrated in figure 4
suggests that the classifier is, by and large, able to accurately
localize buildings despite pronounced geometric distortions
and high levels of clutter in the underlying dataset. Encour-
agingly, the classifier output in some areas is difficult judge,
even to an experienced user, without reference to the corre-
sponding optical data.

Although these preliminary results appear promising, fur-
ther work is required to quantitatively validate the technique
with respect to a larger corpus of SAR data and other state-
of-the art approaches.

6. CONCLUSION

The preceding sections outline a novel approach to object
segmentation and classification for multi-channel SAR ac-
quisitions. The classifier architecture, featuring several tech-
niques adapted from related research in computer vision, is
intended to tackle challenging problems involving highly het-
erogeneous foreground and background classes. The classi-
fier incorporates scale space analysis techniques which are
shown, on the basis of simulated data, to provide valuable,
discriminative information in terms of object context and ge-
ometry.

Preliminary results concerning building detection in dual-
polarized TerraSAR-X data are presented and appear promis-
ing. A more quantitative evaluation and a comparison with
alternative state of the art approaches, however, remains to be
carried out.
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