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Goal: Design of a robust solution method

Apply multistage Runge-Kutta method to (approximately) solve the Reynolds

averaged Navier Stokes equations:
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 How to choose number of stages?
* How to choose stage coefficients?
* How to choose CFL number?

* How to construct preconditioner?




Goal: Design of a robust solution method

Apply multistage Runge-Kutta method to (approximately) solve the Reynolds
averaged Navier Stokes equations:

—dex+j( F, — F, )ends= dex

0Q Convectlon lefusmn

%,_J
Finite volume Source terms
Discretization (Turbulence model)
—=  dW 3
& —=-M"R(W)
dt
Implicit Multistage Runge-Kutta method . @S
©) . W O
W w 0\
WO = WO —g  PrarR(WOD) =15 \9‘6
W = W) o
1 OR P

P, = +
CFLAt oW

i DLR




Rough explanation of parameters: Heuristic

Implicit Multistage Runge-Kutta method
w© = w® e Number of stages: 1
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Rough explanation of parameters: Heuristic

Implicit Multistage Runge-Kutta method

w© = w® e Number of stages: 1
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Preconditioner: Exact Derivative
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2. Solution of linear system — W= R(W(n))
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Sol. not

> Newton's method in general not realizable, because  available
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Rough explanation of parameters: Heuristic

Implicit Multistage Runge-Kutta method Necessity ? Hope of additional stability!
w© = w®  Number of stages: 1,...,s > Multistage
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W= W =ay,P, R(W ) J=Ll..8, Stage coefficient: a, ,, ..., Ogyq ¢
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Stabilization term
(Linear systems are

easier to solve)

ioner: Exact Derivative
TNOt available

Requires (at least)
1. Good initial gu o)
2. Solution of line tem —— AW = R(W )

Sol. not
> Newton'‘s method in general not realizable, because  available
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Simplifications and Stabilizations

1) Stabilize linear system R R(W)= R - R(W)
oW oW

o 1 OR 1
2) Simplify linear system: | + h=R(W)= I =R(W
) plity Y [CFLAt awj ( ) (CFLAt (
app \ app '1q
3)Solve approximately : h = L R R(W)=h= I R R(W)
CFLAt oW CFLAt oW

4) Stabilize : Embed in a multistage method

Simplification of R and choice of
oW

linear solution methods determines method :

- Newton, First order prec., LU-SGS, Line-implicit, Point-implicit, expl. Runge-
Kutta + local time stepping (all well known methods in CFD literature)
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lterative solution methods

Jacobi method:;:

D b - ZAJx“") i<, N

J=1, j=#i

Xi( m+1)

Gauss-Seidel method:

D by - ZAJx“"*l) ZAJx“"), i=1...,N

j=i+1

Xi(m+1)

(Symmetric) Line Gauss-Seidel method:

(m+1)
Z ALX T =

jELli""Li—l’jeLi jﬁLl,...,Li_l,jELi

X" = tridiag(DLi fl b, -

Point implicit: Apply 1 Jacobi sweep
Line implicit: Apply 1 line Jacobi sweep




Construction of investigation tool: Idea

Nonlinear Problem:

Linearized Problem

dw dw A\ OR [
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Approximation to
eigenvalues can be
computed exploiting
Arnoldi‘'s method




Computation of spectrum: Prec. (GmRes) with inner Arnoldi iteration

Given initial guess X, r® = p—pte» R0 5_ .z = 10
oW F;
forj=12,...,m Approximate by finite difference
w(i) = p-Lapp 8_R

fori=1,...,]
N (w”),z(‘))
wi) = W) 0,0

NpE HW(J‘)H
2

Jom._ 1 )
T R

Solve min(ﬂ,ﬁe1 ~H (”‘)yHZ) e.g. by Givens rotation,

Approximate solution : x™ = x© +v My
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Computation of spectrum: Prec. (GmRes) with inner Arnoldi iteration

L 1
Given initial guess x©, r® = — p-tee R o B=[r®) 2" ==
oW
for j=12,...,m Inner Arnoldi process:
_ R ..  Constructs orthonormal basis of Krylov subspace via
wt = paw 22 () Gram Schmidt
_ _ oW » Coefficient matrix is upper Hessenberg matrix
fori=d....J (h®D 2 .. h&m)
N (W(”,z(')) s - .
h®h (&2 h(zm
wi) =W Dz 0 Hm _ hG2  KE R Gm)
p(ih i+ - HW(J)H
: , ;
S+ . 1 w \ hmm= - ptmm )

G+D)

* Eigenvalues of Hessenberg matrix approximate
eigenvalues of original matrix on Krylov subspace:

« Error=0 < GmRes stops with exact solution




Construction of investigation tool: Idea

Nonlinear Problem: Linearized Problem
dw dw « OR I «
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Approach to check correspondence of theory and applicaton

1. Compute steady state solution of nonlinear problem (density residual reduced
le-14)

2. Determine approximate spectrum of linearized operator at steady state
3. Transform spectral data by polynomial describing the multistage solution method
4. Determine largest absolute value of approximate eigenvalues

5. Start from steady state with chosen multistage solution method and observe
behavior




Numerical example 1: Laminar flow over NACA 0012 airfoll

Im(A)

Eigenvalue distribution

NACA0012, Mesh: 256 x 128
Ma = 0.5, Angle of attack: 1.0°, Re = 5000 NACA0012, Mesh: 256 x 128
r Ma = 0.5, Angle of attack: 1.0°, Re = 5000
1o
3 stage scheme 3 stage scheme
Line Implicit : Line Implicit
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Numerical example 1: Laminar flow over NACA 0012 airfoll

Better clustering of eigenvalues
when stronger linear solvers
are used.

Dependency on number of
sweeps and linear solver:

1

0.5
Line Jacobi:
Sweeps =1: max‘/lj‘:l.01760 2‘
e
Sweeps =3: max|2;|=1.003566 £ °
Sweeps=5: max‘/lj ‘ =0.989747
Symm. Line Gauss-Seidel: -0.5

Sweeps =1: max|4;| = 0.994866
Sweeps=3: max‘lj ‘ =0.981674
Sweeps =5: max|4;| =0.976196
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NACA0012, Mesh: 256 x 128
Ma = 0.5, Angle of attack: 1.0°, Re = 5000

3 stage scheme
CFL = 1000

Sweeps: 1, Line Jacobi ®o o
Sweeps: 3, Line Jacobi @@
Sweeps: 5, Line Jacobi 8 8
Sweeps: 1, Symm. Line GS
Sweeps: 3, Symm. Line GS
Sweeps: 5, Symm. Line GS 8
Stability region

g

0%

- - -




Numerical example 2: Turbulent flow over DPW 5 CRM

Analysis for mesh with 5.2e6 points:

Investigation of number of stages

With respect to symmetric Line Gauss-
Seidel method and different CFL numbers:
Sweeps: 5

One stage: CFL = 1000 -> unstable
One stage: CFL =100 - unstable
One stage: CFL =10 —> stable
Three stage: CFL = 1000 - stable

DPW5 CRM, Hexahedral Mesh, No. of points: 5.2e6
Ma = 0.85, Angle of attack: 2.158°, Re = 5.0e6

Additional effort
does not pay of

v Three stage, CFL = 1000, Stable
15 4 One stage, CFL = 1000, not stable
A One stage, CFL = 100, not stable
i B One stage, CFL = 10, stable
1} Stability radius
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DPW5 CRM, Hexahedral Mesh, No. of points: 5.2e6
Ma = 0.85, Angle of attack: 2.158°, Re = 5.0e6
2C v Three stage, GFL = 1000, Stable
B B One stage, CFL = 1000, Sweeps: 25, not stable
15k Stability radius
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Numerical example 3: Turbulent flow over DPW 5 CRM

Analysis for mesh wit points:
DPW5 CRM, Hexahedral Mesh, No. of points: 41.2e6

Investigation of number of stages Ma = 0.85, Angle of attack: 2.1245°, Re = 5.0e6

With respect to symmetric Line Gauss-

Seidel method:

CFL =50, Sweeps: 5

o One stage: CFL =50

& Three stages: CFL = 50
v Five stages: CFL = 50
Stability region

Stages =1: max|2;| =3.390514 2_0-5—
Stages =3: max|4;|=0.997233  E °f 1T
Stages =5: max|2;|=0.996946 'O'f-‘

3 =23 =2 =13 - -0.5 0 0.5 1

Re(A)

Only three and five stage method are stable




Conclusion 1: Evaluation of analysis tool

Analyis shows good correlation of theory and application

» ifinstability is predicted by method, this instability was also observed in
application

» Analysis tool comprises the actual flow solver including boundary conditions
and all other terms, no severe simplifications such as in classical Fourier
analysis are assumed

» Analysis tool only deals with approximate spectral data

o Multigrid is not included

» a-posteriori tool (steady state solution required)




Conclusion 2: Evaluation of solution methods

Analyis shows good correspondence to the heuristic expectations

Weak solution methods (point/line implicit) show stability only for small CFL
numbers already for basic testcases

Improving the linear solvers (including lines, Gauss-Seidel instead of Jacobi,
symmetric sweeps) allows for larger CFL numbers and gives additional
stability

Use of multistage methods has an additional stabilizing effect, in particular for
large scale three dimensional flows




Future work

» Use analysis tool to optimize stage coefficients of multistage methods

* Include multigrid into the analysis tool

* |In principle one can compute at any state spectral data - Computation
diverges, compute spectral data and analyze

- Development of tool which can be used in daily engineer‘s work to help better
understand the behavior of CFD codes




Future work

» Use analysis tool to optimize stage coefficients of multistage methods
* Include multigrid into the analysis tool

* |In principle one can compute at any state spectral data - Computation
diverges, compute spectral data and analyze

- Development of tool which can be used in daily engineer‘s work to help better
understand the behavior of CFD codes

Questions?
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