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• How to choose number of stages? 
 

• How to choose stage coefficients? 
 

• How to choose CFL number? 
 

• How to construct preconditioner? 

Goal: Design of a robust solution method 
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Apply multistage Runge-Kutta method to (approximately) solve the Reynolds 
averaged Navier Stokes equations:  
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Implicit Multistage Runge-Kutta method 
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• Number of stages: 1 
 

• Stage coefficient: α2,1 = 1 
 

• CFL = 
 

• Preconditioner: Exact Derivative 

Rough explanation of parameters: Heuristic 
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Implicit Multistage Runge-Kutta method 
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Newton‘s method 

Requires (at least) 
1. Good initial guess 
2. Solution of linear system 
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 Newton‘s method in general not realizable, because 
Sol. not 
available 

Not available 



• Number of stages: 1,…,s  Multistage 
 

• Stage coefficient: α2,1, …, αs+1,s 
 

• CFL < 
 

• Preconditioner: Exact Derivative 

Rough explanation of parameters: Heuristic 
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Implicit Multistage Runge-Kutta method 
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 Newton‘s method in general not realizable, because 
Sol. not 
available 

Not available Stabilization term 
(Linear systems are 
easier to solve) 

Necessity ? Hope of additional stability! 



Simplifications and Stabilizations 
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 Newton, First order prec., LU-SGS, Line-implicit, Point-implicit, expl. Runge-
Kutta + local time stepping (all well known methods in CFD literature) 



Iterative solution methods 
Jacobi method: 
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Gauss-Seidel method: 
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(Symmetric) Line Gauss-Seidel method: 
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Line implicit: Apply 1 line Jacobi sweep 

tridiag 



Construction of investigation tool: Idea 
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Influence of CFL  
and choice of  
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Nonlinear Problem: Linearized Problem 
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Approximation to 
eigenvalues can be 
computed exploiting 
Arnoldi‘s method 
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Computation of spectrum: Prec. (GmRes) with inner Arnoldi iteration 
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Computation of spectrum: Prec. (GmRes) with inner Arnoldi iteration 
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Inner Arnoldi process: 
• Constructs orthonormal basis of Krylov subspace via 

Gram Schmidt 
• Coefficient matrix is upper Hessenberg matrix  

 
 
 
 
 
 
 

 
• Eigenvalues of Hessenberg matrix approximate 

eigenvalues of original matrix on Krylov subspace: 
 
 
 

• Error = 0          GmRes stops with exact solution 
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Construction of investigation tool: Idea 
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Nonlinear Problem: Linearized Problem 
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Approach to check correspondence of theory and applicaton 

1. Compute steady state solution of nonlinear problem (density residual reduced 
1e-14) 
 

2. Determine approximate spectrum of linearized operator at steady state 
 

3. Transform spectral data by polynomial describing the multistage solution method 
 

4. Determine largest absolute value of approximate eigenvalues 
 

5. Start from steady state with chosen multistage solution method and observe 
behavior 



Numerical example 1: Laminar flow over NACA 0012 airfoil 
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Divergence CFL > 5 

Convergence CFL = 5 

Eigenvalue distribution 



Numerical example 1: Laminar flow over NACA 0012 airfoil 

Better clustering of eigenvalues 
when stronger linear solvers 
are used. 
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Symm. Line Gauss-Seidel: 



Numerical example 2: Turbulent flow over DPW 5 CRM 

Analysis for mesh with 5.2e6 points:  
 
Investigation of number of stages 
With respect to symmetric Line Gauss-
Seidel method and different CFL numbers: 
Sweeps: 5 

Mesh 

One stage: CFL = 1000    unstable 
One stage: CFL = 100      unstable 
One stage: CFL = 10        stable 
Three stage: CFL = 1000  stable 

Sweeps: 25 
One stage: CFL = 1000  unstable 

Significant reduction 
of CFL necessary for 
one stage schemes 

Additional effort 
does not pay of 



Numerical example 3: Turbulent flow over DPW 5 CRM 
Analysis for mesh with 41.2e6 points:  
 
Investigation of number of stages 
With respect to symmetric Line Gauss-
Seidel method: 
CFL = 50, Sweeps: 5 

996946.0max  :5  Stages

997233.0max  :3 Stages
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Only three and five stage method are stable 



Conclusion 1: Evaluation of analysis tool 

• Analyis shows good correlation of theory and application 
 

•  if instability is predicted by method, this instability was also observed in 
application  
 

• Analysis tool comprises the actual flow solver including boundary conditions 
and all other terms, no severe simplifications such as in classical Fourier 
analysis are assumed 
 

• Analysis tool only deals with approximate spectral data 
 

• Multigrid is not included 
 

• a-posteriori tool (steady state solution required) 



Conclusion 2: Evaluation of solution methods 

• Analyis shows good correspondence to the heuristic expectations  
 

• Weak solution methods (point/line implicit) show stability only for  small CFL 
numbers already for basic testcases 
 

• Improving the linear solvers (including lines, Gauss-Seidel instead of Jacobi, 
symmetric sweeps) allows for larger CFL numbers and gives additional 
stability 
 

• Use of multistage methods has an additional stabilizing effect, in particular for 
large scale three dimensional flows 



Future work 

• Use analysis tool to optimize stage coefficients of multistage methods 
 

• Include multigrid into the analysis tool 
 

• In principle one can compute at any state spectral data  Computation 
diverges, compute spectral data and analyze  
 

 Development of tool which can be used in daily engineer‘s work to help better 
understand the behavior of CFD codes 
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• Include multigrid into the analysis tool 
 

• In principle one can compute at any state spectral data  Computation 
diverges, compute spectral data and analyze  
 

 Development of tool which can be used in daily engineer‘s work to help better 
understand the behavior of CFD codes 

Questions? 
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