

Transient response of thermoelectric elements and dynamic measurement methods for thermoelectric materials

K. Zabrocki¹, W. Seifert², C. Goupil^{3,4}, H. Kolb¹, J. de Boor¹, T. Dasgupta^{1,5}, and E. Müller^{1,6}

¹Institute of Materials Research, German Aerospace Center (DLR), Köln, Germany

²Institute of Physics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany

³LIED, CNRS, UMR 8236, Universite Paris Diderot, France

⁴Laboratoire CRISMAT ENSICAEN, Caen, France

⁵ IITB, Mumbai, India

⁶Justus Liebig University Giessen, Giessen, Germany

Knowledge for Tomorrow

Content

- 1. Fundamental equations for transient response Continuum theory – thermoelectricity
- 2. Direct and inverse problems
- 3. Transient performance calculations
- 4. Dynamic measurements (thermal conductivity)
 - Combined thermoelectric measurement (CTEM)

Thermoelectricity – Continuum approach

- Continuum theory: Description of the properties and measurements of thermoelectrics on a macroscopic level
- Characteristic time and length scales $\tau \ge 10^{-3}$ s and $l \ge 10^{-3}$ m
- Transport of energy and charges description via differential equations, thermal energy balance equation

 $\vec{E}[\vec{r}(t), t]$

 $T[\vec{r}(t), t]$ Temperature field

Continuum theory: Two main categories of equations

Equations independent of the material: kinematic relations of the continuum, loading parameters, balance equations **Conservation laws**

Equations dependent on the material: Coverage and description of material properties **Constitutive equations**

Thermoelectricity – Generalized heat equation

Conservation equations

Differential form

- Charge conservation

$$\nabla \cdot \vec{j} = 0$$

- (thermal) energy conservation - Geodesical constraints - Geodesical

Constitutive equations

Onsager's linear response theory

- Generalized Fourier's law – Heat flux

$$\vec{j}_Q = -\kappa \nabla T + \alpha T \vec{j} = \vec{j}_{Q,\kappa} + \vec{j}_{Q,\pi}$$

- Generalized Ohm's law – Electrical current density $\vec{j} = \sigma \vec{E} - \sigma \alpha \nabla T$

$$\varrho_{\rm d} \, {\rm c} \frac{\partial T}{\partial t} - \nabla \cdot (\kappa \nabla T) + \tau \vec{j} \cdot \nabla T = \frac{j^2}{\sigma}$$

 $\tau = T \frac{\partial \alpha}{\partial T}$... Thomson coefficient, ϱ_d ... mass density, *c*... specific heat capacity, κ ... thermal conductivity,

α ... Seebeck coefficient, σ ... electrical conductivity

T. C. Harman, J. M. Honig: Thermoelectric and thermomagnetic effects and applications, McGraw – Hill (1967) Charles A. Domenicali, Irreversible Thermodynamics of Thermoelectricity, Rev. Mod. Phys. 26, 237 – 275 (1954)

Solution of heat equation in thermoelectricity

- Initial conditions (IC) Temperature distribution at t = 0: $T_0[\vec{r}(t)]$

- Boundary conditions (BC)

- Dirichlet/Neumann/mixed BC [Boundary value problem (BVP)]

$$\varrho_{\rm d} \, {\rm c} \frac{\partial T}{\partial t} - \nabla \cdot (\kappa \nabla T) + \tau \vec{j} \cdot \nabla T = \frac{j^2}{\sigma}$$

Direct problem Initial values, boundary conditions, material properties well-posed problem

Inverse problem

Not all values are given, Experimental data for estimation of boundary values ill-posed problem

Performance calculation of thermoelectric devices and systems

Determination of parameters in measurements systems, e.g. material properties

Performance calculation of thermoelectric devices

Thermoelectric Generator

Thermoelectric Cooler

Transient response in thermoelectricity

- Time dependent fields $T = T(\vec{r}, t)$ and $\vec{E} = \vec{E} (\vec{r}, t)$
- Dynamic working conditions:

BC
$$T_{\rm h} = T_{\rm h}(t)$$
 $T_{\rm c} = T_{\rm c}(t)$ $\dot{Q}_{\rm h} = \dot{Q}_{\rm h}(t)$ Ambient $T_{\rm amb} = T_{\rm amb}(t)$ Materiale.g. $\kappa = \kappa [T(\vec{r}, t), \vec{r}, t]$ Load/Current $R_{\rm L} = R_{\rm L}(t)$ or $I = I(t)$

- Solution of the generalized heat equation:
 - Steady state \Rightarrow Ordinary differential equations
 - Transient response \Rightarrow Partial differential equations
- Analytical solutions only in particular cases with help of integral transformation (e.g. Laplace) or in a (Fourier) series expansion
- Approximative or numerical solution methods (CPM, FEM, FDM, Circuits...)

H.S. Carslaw/J.C. Jaeger "Conduction of heat in solids", Oxford Science Publications, 1986

J. Crank, "The mathematics of diffusion", Oxford University Press, 1979

Transient performance calculations

 Quasi-stationary processes ⇒ Timescale of changes in the working/boundary conditions much greater than response time of the thermoelectric system ⇒ use of steady state equations for different times

- Review: Separate chapter in the book "Continuum theory and modelling of thermoelectric elements" edited by C. Goupil, release date March 2015

Measurement of thermal conductivity

- Thermal conductivity for semiconductors often small $\Rightarrow \approx 1 \text{ W/(m K)}$
- Small samples, mechanically not easy to be processed
- Brittleness \Rightarrow not possible to put in thermocouples in the sample
- Hard to realize a good thermal contact via soldering
- Specific heat often not known

- time-domain thermoreflectance

S. Reif-Acherman "Early and current experimental methods for determining thermal conductivities of metals" Int. J. Heat Mass Transfer 77 (2014), 542-563 T. M. Tritt "Electrical and Thermal Transport Measurement Techniques for Evaluation of the Figure-of-Merit of Bulk Thermoelectric Materials" Ch. 23, CRC Thermoelectric Handbook. Macro to Nano (2006)

Inverse heat conduction problems

- Inverse heat conduction problems (IHCP)

Temperature *T* measured (at some points, times)

- Classification IHCP:
 - Material properties determination inverse problems,
 - Boundary value determination inverse problems,
 - Initial value determination inverse problems,
 - Source determination inverse problems,
 - Shape determination inverse problems
- Unknown thermal conductivity (material property) \Rightarrow inverse calculation
- Solution of the direct problem to get insights how to solve the IHCP

Krzysztof Grysa "Inverse Heat Conduction Problems" Chapter 1 in "Heat Conduction - Basic Research" ed. by V. S. Vikhrenko, InTech (2011)

CTEM – Measurement of thermal conductivity

- Combined thermoelectric measurement (CTEM):

Simultaneous measurement method ⇒
 all TE properties including Harman-ZT
 Here: focus on thermal conductivity
 measurement

- Generalized loffe method

More experimental details on Poster P3.30 H.Kolb today

Cu block

sample

Cu block

Transient temperature difference

- Heating of one Cu block
- Switching off after reaching $\Delta T \approx 5 \text{K}$
- Observing relaxation of temperatures

Solution of the direct problem – Simple loffe method WWW.DLR.de · Chart 13

- Simple loffe method (sample and one block):
- 1. Analytical solution as Fourier series
- 2. Numerical solution with ANSYS (FEM)

Sequences of transient simulations

- Short time behavior - heat wave through the sample - non-exponential

$$t = 10^{-4} \text{ s}$$
 $t = 10^{-1} \text{ s}$ $t = 1 \text{ s}$

Relaxation of temperature difference

- Relaxation to equilibrium exponential

- Thermal conductivity after algebraic treatment and Taylor expansion (omitting terms of second order and higher)

$$\kappa_1 = \frac{L_1}{A_{c,s}} M_1 C_2 \left(1 + \frac{\kappa_1 L_2}{3 \kappa_2 L_1} + \frac{C_1}{3 C_2} \right)$$

- in the example calculation less than 1% approximation error

Influence factors on the relaxation time

CTEM – Peltier heat

- DC current through the assembly \Rightarrow Peltier heat at the contacts
- At which side of the contact is the Peltier heat liberated or absorbed?

3D Simulation

2D Simulation (axisymmetric)

- transient thermal simulation
- No holes for thermocouples
- Heat generation in a slice
- Contacts bulk values of a slice

Contacts as a slide

- Three thin layers:
 - Metal block
 - Contact material
 - Sample

- Galinstan (liquid metal solder) $\kappa = 16.5 \text{ W/m K}$ $\rho_{d} = 6.44 \text{ g/cm}^{3}$ $\sigma = 3.46 \cdot 10^{6} \text{ S/m}$ $c_{p} = 200 \text{ J/kg K}$

Volumetric heat generation for a certain time

Peltier heat from where?

- Peltier heat liberated or absorbed at the metal side or the sample side

Peltier heat – Qualify contact resistance

 Peltier-heat either liberated/absorbed at metal side or sample side of the contact material ⇒ different behavior at the switch-off

- Experimentally observed jump \Rightarrow Qualification of the thermal contact resistance

Summary

- Generalized heat equation in thermoelectricity for transient response
- Direct solution for the determination of the performance of TE devices
- Inverse problem: Determination of material properties from measurements of temperatures
- Dynamic measurement of the thermal conductivity CTEM

Thank you for your attention!

