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I 

 

Abstract 
 

Synthetic Aperture Radar (SAR) Tomography, a new and advanced technique in the field of 

SAR processing, is aimed at determining the 3-D reflectivity function from measured 

multi-pass SAR data. It is essentially a spectrum estimation problem as for a specific 

resolution cell the complex valued SAR measurements of a SAR image stack are actually 

the irregularly sampled Fourier transform of the reflectivity function in the elevation 

direction. The successful launch of the German high resolution SAR mission TerraSAR-X 

provides a new possibility to investigate this topic with high quality spaceborne data. 

 

Within the framework of this master thesis, the spectrum estimation problem is formulated 

from a mathematical point of view. Different spectrum estimation strategies such as the 

Singular Value Decomposition (SVD) and Nonlinear Least Squares estimation (NLS) are 

evaluated and compared using both simulated data and TerraSAR-X data from the testsite 

Las Vegas with special consideration of the difficulties caused by sparse and irregularly 

spaced sampling. The problem of ill-conditioning when using the Singular Value 

Decomposition is investigated and regularization tools (such as singular value truncation 

and Wiener filtering) are utilized to overcome this problem. For the sake of validation, the 

spectrum estimation results with TerraSAR-X data are compared to the probable ground 

truth. 

 

Penalized model selection criteria such as the Bayesian Information Criterion (BIC), Akaike 

information criterion (AIC) and Minimum Description Length criterion (MDL) are 

implemented on the spectral estimates to determine the number of scatterers inside one 

resolution cell - which is necessary a prior knowledge for precise PSI displacement 

estimation. The probability of correctly detecting the number of scatterers and the accuracy 

of the corresponding elevation estimates are evaluated from simulated data. Finally, the 

model selection results with PS points of TerraSAR-X data are visualized in Google-Earth 

and the nature of PS pixel with multi-scatterers are discussed. 

 

 

 

Key words: Synthetic Aperture Radar (SAR), tomography, Spectrum estimation, Singular 
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1   Introduction 
 

Synthetic Aperture Radar (SAR) has played an important role in remote sensing since the 

1980s. It has been demonstrated that it is able to reliably map the earth’s surface and acquire 

information about its physical properties such as topography, morphology, roughness and 

the dielectric characteristics of the backscattering layer (Bamler and Harl, 1998). As an 

active sensor, SAR functions independently of solar illumination and is capable of 

penetrating clouds and (partially) vegetation canopy, soil and snow. However, it also has 

typical foreshortening, layover and shadowing problems. 

 

In Earth observation, unique capabilities are associated with the use of remote sensing via 

synthetic aperture radars (SARs) and, particularly, with the extensions of SAR to 

interferometric modes (InSAR) and more generally to the joint use of coherent multiple 

acquisitions (PSI and SAR tomography etc.) (Fornaro,2005). 

 

The standard acquisition of a single SAR image is a two dimensional image of scene 

reflectivity in azimuth and range. InSAR techniques, which combine two or more 

complex-valued SAR images to determine geometric information about the imaged objects 

(compared to using a single image) by exploiting phase differences, have different 

applications according to the baseline type.  With incidence angle difference (across-track 

InSAR), it is possible to get topography information and DEMs. Therefore, it is possible to 

reach the third dimension which is perpendicular to the azimuth and range plane. However, 

with one or two acquisitions, the reflectivity function along the third dimension is 

undetermined and multiple-scatterers within one resolution cell cannot be separated. 

 

SAR tomography is a young technology which is based on multi-pass acquisitions to 

estimate the 3-D radar reflectivity function. This thesis investigates the spectrum estimation 

problem for SAR tomography with both simulated and real data, especially in case of small 

irregularly sampled datasets. Both deterministic and statistical methods are implemented 

and investigated. Additionally, the application of model selection to SAR tomography will 

be addressed. 

1.1  State of the Art  

InSAR and D-InSAR exploit the phase differences of coherently acquired SAR images in 

order to measure land surface deformations from space (Bamler et al., 1998; Massonnet et al., 

1993). Since the first spectacular results were published e.g. co-seismic deformation 

(Gabriel et al., 1989), the method has been well established in the geophysical community 

and complements GPS point measurements with two-dimensional displacement maps. 

These maps provide centimeter and even millimeter accuracy over areas of typically 50 km 

by 50 km and can be used to monitor deformations of the Earth’s surface.  
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The accuracy of InSAR and D-InSAR is limited by temporal decorrelation of the surface and 

by electromagnetic path delay variations in the troposphere. The latter distortions can be 

reduced by temporal averaging of multiple interferograms which in turn reduces the 

temporal resolution (Hanssen, 2001). The Persistent Scatterer Interferometry (PSI) method 

uses stacks of 10-100 acquisitions of the same area, selection of long term coherent points – 

so-called Persistent Scatterers (PS) – and motion models in order to reduce the estimation 

error to well below 1 millimeter/year (Ferretti et al., 2001; Kampes, 2006; Adam et al., 2007). 

Persistent scatterers are bright points in the image that represent strong scatterers in the 

object space, e.g. metallic structures or retro-reflecting corners at a building. They do not 

decorrelate over long time spans. PSI is currently one of the most powerful space based 

geodetic measurement methods. 

 

The PSI technique, however, can only be applied when sufficient points with long-term 

stable backscattering characteristics are found, i.e. when the spatial density of these PSs is 

large enough to represent the ground deformation pattern. An example of PSI analysis over 

an urban area is shown in Figure 1, where a deformation map of Las Vegas, USA is presented. 

Note the mm-scale of the deformation process.  

 

subsidence of point 167088:  ca. - 4.1 mm/a

subsidence of point 81491:  ca. - 18.5 mm/a

 
 

Figure 1.1: Example of a deformation map created from PSI for Las Vegas showing long term 

trends and periodic seasonal variations. Each of the colored points represents a time history 

over 9 years, obtained from 64 ERS data sets. The color reflects the linear component of the 

subsidence. The three ground water wells can be recognized, as well as two slight uplift 

areas (Adam et al., 2008). 
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The mathematical algorithms for PSI have been optimized for medium resolution SAR 

satellite systems (ERS, ENVISAT, 25 m resolution). With this kind of data the PS density is 

not high enough to achieve subsidence or deformation measurements for every building. 

Typically 100-450 PS/km2 can be detected, i.e. on average a single PS in a square of 50-100 

m side length. Only gross subsidence patterns like those in Figure 1 can be retrieved. 

Individual buildings can only be investigated opportunistically. Also, the limited resolution 

prevents accurate 3D localization of the scatterers. Often it cannot be distinguished whether 

a scatterer is part of a building and, hence, represents the subsidence of this building, or 

whether it is a double-bounce effect off the street-wall-interface and shows the subsidence of 

the pavement.  

 

 

 

Figure 1.2: Example of thermal stress monitoring of a building in Las Vegas using the 

Persistent Scatterer technique with TerraSAR-X high resolution spotlight data (Adam et al., 

2008). Only the linear motion component is retrieved and extrapolated to mm/y. 

 

Recently, a new generation of SAR systems has been deployed in space, among them the 

first German SAR satellite TerraSAR-X with a spatial resolution of 0.6×1.1m. This 

resolution has been made possible by virtue of the new spotlight imaging mode and the high 

bandwidth. Today, only the DLR-TUM group is able to exploit this special data for PSI 

measurement. The PSI density can be shown to rise by a factor of about 50-100 compared to 

the previously available data (Adam et al., 2008). Several tens of PS can now be identified 

on a single building. Figure 2 provides a preliminary building’s deformation estimation 

from TerraSAR-X data applying the straight forward PSI processing technique. This opens 

the potential of retrieving for the first time deformation and structural stress of individual 
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buildings from space on a regular basis.  

 

For a 4D (space-time) analysis each scatterer and its subsidence history must be accurately 

located in 3D space. In PSI this is done by exploiting the natural drift of orbits which results 

in a slightly different observation angle for each acquisition in the stack. A synthetic aperture 

in the elevation direction can be built up, comparable to the synthetic aperture in the flight 

direction of the SAR imaging principle. The fundamental difference, however, is that in the 

flight direction the data is sufficiently and regularly sampled according to the Nyquist 

theorem, while in the elevation direction sampling reflects random orbit locations and is 

sparse and irregular. A further complication is that in the multiple-scattering case the 

different scatterers may exhibit a different deformation history. 

 

Imaging in the third dimension (elevation) is also referred to as “tomography”. While in the 

original references on SAR tomography (Reigber et al., 2000) an estimate of the reflectivity 

in elevation is derived, PSI needs to retrieve the coordinates of single points. Both methods 

are tomographic and are equivalent to spectral estimation, the first one being non-parametric 

and the latter parametric. For a full exploitation of 1 m resolution data in urban environments, 

the omnipresent ambiguities due to multiple-scattering must be resolved. Hence, multiple 

scatterers must be considered in the tomographic reconstruction and model selection must be 

applied in order to estimate the number of relevant scatterers (Adam et al., 2005). 

 

Tomography, introduced to SAR in the early nineties, is a way of overcoming the limitations 

of standard two-dimensional (2-D) imaging by achieving, similar to Computed Axial 

Tomography (CAT), focused 3-D images. However, with respect to classical CAT, SAR 

tomography has a few additional difficulties. First of all, acquisitions are generally highly 

unevenly distributed in baseline: a classical Fourier-based inversion may decrease the 

performance with respect to a regularized inversion, (G. Fornaro, 2005). Second, 3-D data 

cannot be collected simultaneously, at least with existing satellites, but rather synthesized via 

repeated passes, well separated in time. Third, for spaceborne SAR the number of 

acquisitions depends directly on the number of passes, which means that for young SAR 

satellites such as TerraSAR-X the number of acquisitions can be very limited. 

 

SAR tomography is addressed in very few scientific publications. The first experiments 

were carried out in the laboratory (P. Pasquali, 1995), under ideal experimental conditions, 

or by using airborne systems (A. Reigber and A. Moreira, 2000). The application of 3-D 

SAR tomography to spaceborne systems is limited (G. Fornaro et al., 2005), (J. Homer, 

2002) , (Z. She, 2002) and not yet well assessed until now. Notwithstanding, developments 

of SAR tomography for spaceborne systems would join the potentials of advanced imaging 

techniques to the synoptic view capabilities (F. Gini et al., 2002), and is fundamental to 

four-dimensional (4-D) (space time) SAR imaging, i.e. to techniques that not only separate 

point scatterers interfering in the same azimuth-range resolution cell, but also estimate their 

relative deformations (G. Fornaro et al., 2006). 
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1.2  Motivation and Objectives 

Satellite remote sensing is becoming more and more important. It is able to recover 

contact-free information about objects. Synthetic Aperture Radar (SAR) along with its 

interferometric capabilities has many proven advantages compared to other techniques in 

the remote sensing sensor suite: SAR is independent of weather and sun illumination and 

due to phase measurements, it is even capable of measuring precise 3D localization and 

millimeter motions on the earth from space and reveals a previously unknown potential for 

earth observation.  

 

SAR tomography (TomoSAR), is a consequent further development of SAR and InSAR: 

TomoSAR can retrieve the reflectivity distribution in the elevation direction (perpendicular 

to the range and azimuth plane), therefore, TomoSAR can better reconstruct 3D structures, 

distinguish multiple scatters within one resolution cell and allows to monitor with highest 

precision to 4D dynamic world extending the PSI technique.   

 

In recent years, with ideal experimental conditions or by using airborne systems, some 

experiments for TomoSAR were carried out. However, for the spaceborne case, the 

application of 3-D SAR tomography to spaceborne systems is limited. Even though the 

importance of spaceborne TomoSAR has been recognized and the basic principle is well 

described and understood from theoretical point of view, there are not many examples from 

real data. The performance is limited either by satellite data acquisition or by the complexity 

of the problem itself.  

 

Currently, there are several new SAR satellites, e.g. TerraSAR-X, COSMO-SkyMed, 

Radarsat-2, TanDEM-X, which are already launched or will be launched very soon. They 

provide new high quality data acquisitions for TomoSAR unavailable so far. The 

TerraSAR-X satellite, launched on June 15
th

 2007, provides high resolution of up to 1m in 

Spotlight mode. TomoSAR can indeed profit a great deal from such high resolution as the 

density of PS increase dramatically and the signal to clutter ratio has been improved 

significantly as well. With a short repeat cycle of 11 days, the stack can be built up rapidly. 

Needless to say, the launch of TerraSAR-X brings new blood to the development of 

spaceborne TomoSAR.  

 

To summarize, practical demonstration on spaceborne TomoSAR is very important and 

challenging. 

 

The research work in this thesis has been carried out with the following objectives. 

 Analysis of existing tomographic algorithms: 

An estimation theoretic framework is established to evaluate the applicability of existing 

tomographic algorithms in multiple scattering cases. 

 Simulation of typical elevation apertures and parameter estimation: 
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Based on typical TerraSAR-X orbit histories, representative aperture sampling schemes 

are generated. Parametric and non-parametric tomographic reconstructions are simulated 

and evaluated.  

 Implementation and assessment of model selection methods: 

Bayesian, the minimum description length and the Akaike information criterion are 

implemented and tested on the simulated data in order to compare the performance to 

detect one, two or three dominant scatterers inside of a resolution cell. 

 Application of the developed algorithms on real data: 

Data of the Las Vegas testsite are preprocessed to form a PSI stack. The tomographic 

algorithms developed in the previous steps are applied on the real data. The detected 

single and multiple scatterers are compared to ground truth and validated. 

1.3  Introduction to TerraSAR-X Mission 

 

The TerraSAR-X satellite was launched on June 15
th

, 2007, from Baikonur in Kazakhstan. 

With its active antenna, the spacecraft acquires high-quality X-band radar images of the 

entire planet whilst circling the Earth in a polar orbit at 514 km altitude. TerraSAR-X is 

designed to carry out its task for five years, independent of weather conditions and 

sun-illumination, and reliably provides radar images with a resolution of up to 0.6×1.1m. 

 

 
Figure 1.3: Artist's view: TerraSAR-X in space 

Technical features include: 

 Active phased array X-band SAR 

 Single, dual and quad polarization 

 Side-looking acquisition geometry 

 Sun-synchronous dawn-dusk repeat orbit 

 Repetition rate: 11 days; due to swath overlay, a 2.5 day revisit time can be achieved 

 Orbit altitude range from 512 km to 530 km 

 Three operational imaging modes: 

- SpotLight: up to 1m resolution, 10 km (width) x 5 km (length) 
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- StripMap: up to 3m resolution, 30 km (width) x 50 km (length) 

- ScanSAR: up to 16 m resolution, 100 km (width) x 150 km (length) 

 StripMap and ScanSAR: acquisition length extendable to 1,650 km  

 300 MHz high bandwidth providing a range resolution of 0.6m. 

TerraSAR-X is the first German radar satellite to be implemented within a Public-Private 

Partnership (PPP) between the German Aerospace Center (DLR) and Europe’s leading 

satellite specialist Astrium. DLR and Astrium share the costs of the development, 

construction and deployment of the satellite.  

 

 

 
 

Figure 1.4: First scene acquired by TerraSAR-X only four days after its launch: Landscape 

near Volgograd, Russia. 

 

 

In the future, the PPP-funded TanDEM-X, a twin satellite to TerraSAR-X, will enhance the 

mission. The satellite constellation will enable the generation of high-quality Digital 

Elevation Models (DEMs) on a global scale. 

 

 

 

 

 

 

 

http://www.dlr.de/
http://www.astrium.eads.net/
http://www.infoterra.de/terrasar-x/tandem-x-mission.html
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1.4  Outline of the Thesis 

After the introduction, Chapter 2 introduces the basic principle of SAR tomography. The 

framework of SAR tomography is presented showing that the technique results finally in a 

spectral estimation problem. Afterwards, several spectrum estimation strategies, both 

deterministic and statistical, (including the Singular Value Decomposition and Nonlinear 

Least Squares estimation strategies) are explained in detail.  

 

Based on the theory explained in Chapter 2, the effect of different criteria such as a random 

distribution of baselines, number of samples, amplitude of the signal, mutual inference, 

signal to noise ratio and performance of different spectrum estimation strategies are 

analyzed with simulated data in different conditions. The practical applicability of the 

developed algorithms is demonstrated using high resolution Spotlight data from 

TerraSAR-X of the Las Vegas testsite. 

  

SAR tomography can give information about the scatterer distribution within one resolution 

cell. It is capable of determining number of scatterers and the corresponding reflectivity. As 

an application of the development, Chapter 4 gives a short overview of the DLR 

PSI-GENESIS processor and describes how SAR tomography helps to improve the PSI 

processing by estimation of the scatterer configuration. Different model selection methods 

are discussed and the performances are investigated with simulated and real data. The model 

selection results are visualized in Google-earth. 

 

Chapter 5 concludes this thesis, and attempts to provide an outlook of future research 

directions. 

1.5  Summary 

1) Spaceborne SAR tomography is a new and challenging technique which allows 

improving the PSI estimation. It can be considered as a straight forward extension of the 

PSI processing.    

 

2) The subject of this thesis is the prototyping and test of spectral estimation methods for 

SAR tomography. The practical applicability of the developed algorithms is 

demonstrated on TerraSAR-X data even in irregularly sampled and small dataset. 
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2  Spectrum Estimation Strategies 
 

This chapter presents some fundamentals of SAR tomography, interpolation and the use of 

SVD and Nonlinear Least Squares estimation (NLS) for spectrum estimation. The main 

purpose of this chapter is to develop and provide mathematical framework for the following 

chapter.   

 

SAR tomography and its corresponding mathematical description are discussed in Section 

2.1. Afterwards, the interpolation strategy for spectrum estimation and its corresponding 

frequency response kernel is described in Section 2.2. The singular value decomposition 

strategy for spectrum estimation is introduced in Section 2.3. Nonlinear Least Squares 

estimation which is a deterministic estimator is explained in Section 2.4. Finally, Section 2.5 

summarizes the chapter. 

 

2.1  Introduction to SAR Tomography 

 
With applying a classical focusing algorithm, 2-D full resolution SAR images are obtained 

as the single-look complex (SLC) images. The complex valued measurement of a specific 

resolution cell of the SLC image represents the integral of the reflected signal along the 

elevation direction.  

 

In Figure 2.1, the building at the centre is the famous hotel: Wynn Las Vegas. The orange 

line refers to the line of sight and the yellow lines represent the elevation direction for the 

respective single resolution cells. Figure 2.2 shows the corresponding TerraSAR-X high 

resolution Spotlight SAR image of that building where the brightness refers to the intensity 

of reflected radar signal. The pixels highlighted with yellow dots are nothing more than the 

integration of the reflected radar signal along the yellow lines i.e. in the elevation direction. 

Therefore, if there are two scatterers within such a resolution cell e.g. a scatterer on the 

building and on the ground, we can not distinguish them with a single SLC image. 

 

SAR tomography retrieves the distribution of scatterers in the elevation direction and the 

corresponding reflectivity. In order to understand SAR tomography, we have to understand 

that SAR tomography is actually a spectrum estimation problem. The theoretical aspects of 

SAR tomography are quite well understood and there exist several publications (Reigber and 

Moreira 2000, Fornaro and Serafino 2003, Fornaro and Lombardini 2005, Lombardini 2005, 

Fornaro 2006). In this section, the theory of SAR tomography will be explained 

mathematically. 
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Figure 2.1: The famous hotel in Las Vegas: Wynn Las Vegas visualized in Google-Earth 

 

 

 
Figure 2.2; Corresponding SAR image of Wynn Las Vegas. The brightness refers to the 

intensity of reflected radar signal received by SAR sensor. 

 

Spaceborne SAR tomography is applied to determine the 3-D reflectivity function from 

repeat pass acqusition. With a single pass SAR image, with coordinates in the azimuth-range 

plane, the two dimensional reflectivity properties can be retrieved. Multi-pass SAR images 

have the potential of providing information in the third dimension. 

 

Let us define the 3-D reference sensor frame of a single pass as: 

x:   

r:   

s:   

azimuth direction 

range direction 

elevation direction 

where the origin is the position of the satellite.  
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Figure 2.3: Sensor frame 

 

Within this reference frame, N+1 SAR passes at coordinates (x, r) are made for each 

resolution cell. We are interested in the determining the s coordinates of each scatterer within 

one resolution cell and their corresponding reflectivities. 

 

For the purpose of simplicity, we consider only one resolution cell and make the following 

assumptions. 

 

       1) All SAR images are co-registered.  
       2) The SAR sensor is observing ideal point scatterers. 
 

With assumption 1, for a specific resolution cell, we shift the geometry from a 3D world to a 

2D world. As depicted in Figure 2.4, let us set the pass labelled with 
Mn  as the reference 

pass (master pass), then the reference frame can be specified with an origin which is the zero 

Doppler satellite position of pass
Mn ; an r axis pointing to a reference point 

0P  inside the 

resolution cell with zero elevation; and an s axis perpendicular to the r axis within the 

range-elevation plane. Note that the reference pass can be any pass. Therefore, we have 

)0,,( 000 rxP   with the target P  lying at the position ),,( 00 srx . Under this definition, the 

azimuth coordinates of a specific target at zero Doppler position is 0xx  . 

 

 

 

 

 

 

r 

s 

o 

0P

 

x 
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Figure 2.4: Two dimensional system frame 

 

Assumption 2 is reasonable with DLR PSI-GENESIS which extracts phase and amplitude 

by Point Target Analysis (PTA). With this assumption, the post focusing 2-D point spread 

function (PSF) can be replaced by a 2-D Dirac function. 

 

Using the 1st Born approximation, the obtained 2-D signal for the n
th 

antenna can be 

modelled as follows 

 

                                                                 ,   (2.1) 

 

where 
00 ,rx  are the azimuth and range coordinates associated with the focused data,  is 

the operating wavelength, ),,( srx  represents the 3D scattering model and ),( srRn
 refers 

to the distance between the target and sensor. Within the 2-D sensor frame (RS plane) of the 

antenna 
Mn depicted in Figure 2.4. 

 

  .       (2-2) 

 

Here, ),( | | nn bb  is the position of the n
th 

antenna and ),( sr are the coordinates of the scatterer. 

),( 0´0 rrxxf   is the so called post focusing 2-D point spread function (PSF) which is 

given by 

                   
 

                                                      ,              (2-3) 
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where x and r  are the azimuth and range resolution, respectively. 

Using assumption 2, 

                                                   ,                 (2-4)  

                   
 

                                                                ,    (2-5) 

 

Then, ),,( srx and ),( srRn
 only depend on the elevation since

0x and
0r  are given by the 

focused position of the SAR images. By multiplying the received signal with a phase factor 

corresponding to the zero elevation reference point
0P , we have. 

 

                                                               ,     (2-6) 

 

where,  

   

                                                              

                                                             ,       (2-7) 

  

which is the range difference caused by a different sensor position. 

 

],[ aa  is the extent of the image scene in the elevation direction. The value of a  mainly 

depends on the height of the building and the look angle.   

                      

 
Figure 2.5: Two dominant scatterers inside the resolution cell 
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Inserting 2.7 into 2.6 gives: 

 

                                                      ,              (2-8) 

 

 

 

where 

                                                   .                 (2-9) 

 

From which we can see that 
ng  is nothing else but the Fourier transform of )(' s  at 

position 

  

                                                            . 

     

 

From this, we can see that the effect due to the baseline in the range direction nb| |  can be 

neglected. All passes can be assumed located along the elevation axis.  

 

As the phase term of )(' s  only affects the phase of the final image and we are only 

interested in the amplitude which determines the power density, we ignore the phase term for 

simplicity: 

,  (2-10) 

 

which shows that the focused SAR image from the n th
 pass for a specific resolution cell is 

nothing else but the Fourier Transfer of the reflectivity function in the elevation direction at 

the position
nf . Taking into account all 

sn +1 passes, we have a series which is irregularly 

sampled and depends on the baseline of each antenna relative to the master antenna frame 

(
Mn ). Therefore, in order to estimate the elevations of the scatterers, we have to estimate the 

peak in the frequency domain. Hence, SAR tomography is a spectrum estimation problem. 

 

In order to understand this explicitly, we can also treat multi-pass data for a specific 

resolution as a signal in the elevation direction while a SAR image is a signal collection in 

the range and azimuth directions. Therefore, we also need an elevation direction focusing 

process and this is what SAR tomography does. 

 

For uniform sampling at a sufficient rate, the discrete values of the reflectivity function 

along the elevation direction can be directly retrieved by a DFT. However, in our case the 

data is unevenly sampled and seldom passes over the area of interest. Fornaro et.al deal with 

this specific SAR tomography inverse problem for ERS data and obtained good results. 

However, compared to ERS, TerraSAR-X has far fewer acquisitions. Thus, we have to 

design an algorithm for the case of sparse irregularly sampled data. 
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Several possibilities are conceivable, both statistical and deterministic strategies. 

Interpolation, Singular Value decomposition and Nonlinear Least Squares Estimation are 

explained in detail in the following sections.  

 

2.2  Interpolation Kernel and Corresponding Frequency 

Response 

 

Interpolation is the process of determining the values of a function at positions lying 

between its samples. It achieves this by fitting a continuous function through the input 

samples. 

 

“Interpolation” has different meanings depending on the context. For continuous signals, it 

can be filling a gap. For discrete signals, it can be reconstruction of the original continuous 

signal which is sorted as polarimetric strategy; it can also be a change of the sampling pattern 

such as sampling rate conversion, resampling, geometric distortion, co-registration, shift in 

the sub-pixel domain, and so on. In our case, we wish to resample the series to a regular 

series and then estimate the spectrum using the resampled data.  

 

The accuracy and computational cost of interpolation depends on the interpolation kernel. 

Here, the purpose of interpolation is to simulate an ideal low pass filter which is an infinite 

length sinc function in the time domain. Therefore, by comparing the frequency response 

with an ideal low pass filter, one can evaluate the performance of the interpolator. There are 

many different interpolation kernels such as nearest neighbourhood, linear interpolation, 

cubic convolution and B-splines. However, interpolation is only possible if a priori 

knowledge about the signal bandwidth is available. Here, it is assumed that the bandwidth of 

the low pass filter is equal to 1.  For the purpose of performance evaluation, regular 

sampling is assumed in the following discussion. 

 

1. Nearest Neighbour 

 

The simplest interpolator from a computational standpoint is the nearest neighbor, where 

each interpolated point is assigned the value of the nearest sample point in the input image. 

The interpolation kernel and corresponding frequency response is represented in the 

following table. We can see that there is a large distortion of the signal spectrum and aliasing 

effects due to incomplete suppression of the spectral replicas. 
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Table 2.1; The Nearest Neighbour interpolation kernel in the time and frequency domains 

 

Time domain  Frequency domain 

1 0 0.5
( )

0 0.5

x
h x

x

  
 



 
 

( ) sinc( )H f f  

  

 

2. Linear Interpolation 

 

Linear interpolation is a first degree method that joins two consecutive points in the input 

signal with a straight line. The interpolation kernel is a triangular function and its 

corresponding frequency response is the square of a sinc function. This kernel is also called 

the roof function or Bartlett window. The frequency response of the linear interpolation 

kernel is superior to that of the nearest neighbour interpolation function. The side lobes are 

less prominent. The performance is improved in the stop band. The pass band is moderately 

attenuated, resulting in smoothing.  

 

Table 2.2: The Linear Interpolation kernel in the time and frequency domains 

 

Time domain  Frequency domain 

1 0 1
( )

0 1

x x
h x

x

   
 



 
 

2( ) sinc ( )H f f  
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3. Cubic Convolution 

 

Cubic convolution is a third degree interpolation algorithm that well approximates the 

theoretically optimum sinc interpolation function. It is so called interpolation as “weighted 

truncated sinc” as it approximates the sinc interpolation function quite well. b is a parameter 

that can be controlled by the user. Different values of b suit different problems. For the case 

of 1b   , it approximates a sinc function with the same gradient at 1x  . 

 

Table 2.3: The cubic convolution interpolation kernel in time and frequency domain 

 

Time domain  Frequency domain 

 

3 2

3 2

( 2) ( 3) 1 0 1

( ) 5 8 4 1 2

0 2

b x b x x

h x b x b x b x b x

x

      



     




 

2

2

2

2

3
( ) (sinc ( ) sinc(2 ))

( )

2
(3sinc (2 ) 2sinc(2 )

( )

sinc(4 ))

H f f f
f

b f f
f

f





 

 



 

     
 

 

Based on the analysis above, we can see that in the case of regular sampling, the nearest 

neighbour is quite poor, linear interpolation gives a reasonable result at moderate cost, cubic 

convolution shows much better performance, but the cost is also relatively high.  

However, everything discussed above is based on having enough samples. Therefore, 

interpolation in the data space can only be performed with a sufficient number of satellite 

passes. Otherwise, as we see from the frequency response, the pass band will be extended, 

leading to significant aliasing.   
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2.3  SVD Strategy 

 

In linear algebra, the singular value decomposition (SVD) is an important factorization of a 

rectangular real or complex matrix, with several applications in signal processing and 

statistics. Applications which employ the SVD include computing the pseudo inverse, least 

squares fitting of data, matrix approximation, and determining the rank, range and null space 

of a matrix. SVD is a simple and valuable tool for analyzing image quality and the amount of 

independent information about the unknowns which can be reliably retrieved from 

observations in presence of noise. For spectrum estimation, it is generally possible to 

effectively overcome the associated problem due to nonuniform track distribution that may 

include significant noise propagation due to the ill-conditioned nature of the problem by 

Truncated Singular Value Decomposition (TSVD). In the following section, the 

mathematical description of the SVD and how to apply it to the spectrum estimation 

problem is presented. 

 

2.3.1  Mathematical Description 

 

Let m nG  be a rectangular matrix with m n . The SVD of G  is a decomposition of the 

form (Hansen, 1992) 

1

n
T T

i i i

i

G U V u v


   ,                       (2-11) 

where 
1( ,..., )nU u u  and 

1( ,..., )nV v v  are matrices with orthonormal columns, 

T T

nU U V V I   and 
1( ,..., )ndiag     has non-negative diagonal elements such that 

1 ... 0n     

The 
i  are the singular values of G  while the vectors 

iu  and 
iv are the left and right 

singular vectors of G  respectively. The condition number of G  is equal to the ratio
1 / n  . 

 

From the relations 2T TG G V V   and 2T TGG U U   we see that the SVD of G  is 

strongly linked to the singular value decompositions of the symmetric positive 

semi-definite matrices TG G and TGG . This shows that the SVD is unique for a given 

matrix G -except for singular vectors associated with multiple singular values. In 

connection with discrete ill-posed problems, two characteristic features of the SVD of G  

are very often found. 

 

1) The singular values
i decay gradually to zero with no particular gap in the spectrum. 

An increase in the dimensions of G will increase the number of small singular values. 

 

2) The left and right singular vectors 
iu  and 

iv  tend to have more sign changes in their 

elements as the index i increases, i.e. as 
i decreases. 
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Although these features are found in many discrete ill-posed problems arising in practical 

applications, they are unfortunately very difficult or perhaps impossible to prove in 

general. 

 

To see how the SVD gives insight into the ill-conditioning ofG , consider the following 

relations: 

2

1,...
i i i

i i

G v u
i n

G v





 


 
,                   (2-12) 

We see that a small singular value
i , compared to 12

G  , means that there exists a 

certain linear combination of the columns of G , characterized by the elements of the right 

singular vector
iv , such that 

2i iG v   is small. In other words, one or more small 
i  

implies that G  is nearly rank deficient, and the vectors iv  associated with the small 
i  

are numerical null-vectors of G . From this and the characteristic features of G  we 

conclude that the matrix in a discrete ill-posed problem is always highly ill-conditioned, 

and its numerical null-space is spanned by vectors with many sign changes. 

 

The SVD also gives important insight into another aspect of discrete ill-posed problems, 

namely the smoothing effect typically associated with a square integrable kernel. Notice 

that as
i decreases, the singular vectors iu  and iv  become more and more oscillatory. 

Consider now the mapping G x  of an arbitrary vector x . Using the SVD, we get 

1
( )

n T

i ii
x v x v


  and 

1

1
( )

n T

i i ii
Gx v x u 


 .                     (2-13) 

 

This clearly shows that due to the multiplication with
i , the high-frequency components 

of x are more damped in G x  than the low-frequency components. Moreover, the inverse 

problem, namely that of computing x from G x b  or min
2

G x b , must have the 

opposite effect: it amplifies the high-frequency oscillations in the right hand side b . 

 

2.3.2  SVD for Spectrum Estimation 

 

The SVD strategy can be used to solve the spectrum estimation problem under irregular 

sampling. Define the data space: 1sn
Y C


  as a vector with 1sn   elements for a specific 

pixel. Define the unknown space: ( , )L a a   which is the continuous reflectivity 

function of the target in the elevation direction with extent ( , )a a . With a compact 

operator L , we can switch from the unknown space to the data space as follows: 
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,            (2-14)  

                            

 

                                                       .            (2-15) 

 

With an Adjoint operator
*L , the inverse process can be implemented: 

 

                                                  .                 (2-16) 

 

The difficulty is that we cannot implement this operator directly as we have to either 

discretize the reflectivity function along the elevation direction or transfer to a regularly 

sampled data space and implement spectrum estimation. These two ways are essentially 

equivalent. Theoretically, we can use the Adjoint operator to transfer the few irregularly 

sampled data to the unknown space and then using the compact operator back to such a data 

space which is regularly sampled with the number of samples we want: 

 

*( )m mh LL g  with,  ( )
2

n

N
b b m    

2
0, ... ,m

m

b
f m N

r
  .      (2-17) 

 

The tricky thing here is that the nonlinear operator can be replaced by a Grant matrix G  

with 2 sin [2 ( )]mn m nG a c a f f   which means ,

0

sn

m m n n

n

h G g


 with 0,...,m N  and 

0,..., sn n , which can be proven as follows: 

 

*( ) ( ) ( )exp[ 2 ]

a

m m m m

a

h LL g L s j f s ds  


     

0

0

0

0

( ) exp[ 2 ]

exp[ 2 ] exp[ 2 ]

exp[ 2 ( ) ]

sin [2 ( )]

N

n n

n

a N

m m n n

na

aN

n m n

n a

N

n m n

n

s g j f s

h j f s g j f s ds

g j f f s ds

g c a f f

 

 







 



 

   

 

 

 





 


 
h G g

.        (2-19)

 

Practically, error propagation is the main problem. However, the problem described by 2-19 

fits exactly to 2-13. Therefore, instead of resampling by direct matrix multiplication, an 

SVD strategy will be implemented. As described in Figure 2.6, with simulated data, the 

Grant matrix can be generated first. Implementing the SVD algorithm on the G matrix, we 

can resample the data regularly. In order to solve the associating ill-conditioning problem, 

{ } { } exp[ 2 ]

a

n

a

g L L j f s ds  



  

1 21 2exp( 2 ) exp( 2 )n n ng j f s j f s   
 

 

*

0

{ } exp[ 2 ]
N

n n

n

L g j f s g 


  
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regularization methods such as singular values truncation are implemented. Based on this 

resampled data, we can estimate the reflectivity function along elevation direction by 

transforming the “new” data to the spectral domain. With some model selection criteria, the 

number of scatterers and their relative position within one resolution cell along the elevation 

axis can be estimated. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Flow chart of the SVD spectrum estimation strategy 

 

2.4  Nonlinear Least Squares Estimation 

 

Consider the noise-corrupted SAR observations of 
pn  complex-valued sinusoids, the 

observation equation is: 

 

                                                      ,             (2-20) 
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0,...,
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j f s
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Where

k  

ks  

1sn   

n  

pn  

nf  

ng    

complex amplitude of scattererthk  

elevation of scattererthk  

number of available data samples  

observation noise, which is complex zero mean Gaussian noise

number of scatters within this resolution cell  

frequency of sampled FT which depends on the baseline distribution

complex valued observation for passthn                                    

 

As both the complex amplitude and elevation are unknown, the spectrum estimation 

problem is nonlinear. In order to solve nonlinear problem, there are two methods to reduce 

the complexity of the problem (Kay, 1993): transformation of parameters or separation of 

parameters 

 

In the first case, we seek a one-to-one transformation of unknown parameters that produces a 

linear signal model in new space.  After that, implement least square estimation to 

transformed unknowns. Finally convert back to the unknown parameters. This approach 

relies on the properties that the minimization can be carried out in any transformed space that 

is obtained by a one to one mapping and then converted back to the original space. The 

determination of the transformation, if it exists, is usually quite difficult. Suffice it to say: 

only a few nonlinear LS problems may be solved in this matter. 

 

A second type of nonlinear LS problem that is less complex than the general ones exhibits 

the separability of property. Although the signal model is nonlinear, it may be linear in some 

of the parameters. That is true in our problem: the amplitude and elevation can be separated 

to the following form: 

 



   
g = H(s)  x + u  ,                        (2-21) 

where 

 

 

 

 

                                                                     

                                                                      

 

 

 

Where H is a ( 1)s pn n   matrix depending on the unknown elevations of the scatterers. As 

this model is linear in amplitude and nonlinear in elevation, the LS error may be minimized 
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with respect to x


 and thus reduced to a function of elevations only, which means a K 

dimensional search is needed. Since the object function: 

 

( , ) ( ( ) ) ( ( ) )TJ s x g H s x g H s x  
       

,                 (2-22) 

 

x


 that minimizes J  for a given s


is 
1ˆ ( ( ) ( )) ( )T Tx H s H s H s g

   
.                    (2-23) 

The resulting error is 

1ˆ( , ) [ ( )( ( ) ( )) ( )]T T TJ s x g I H s H s H s H s g 
       

.            (2-24) 

 

The problem now reduces to a maximization of 1( )( ( ) ( )) ( )T T Tg H s H s H s H s g     
 over s


and 

a grid search can be used.  

 

The following flow chart shows the Nonlinear Least Squares estimation procedure for 

spectrum estimation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Flow chart of the Nonlinear Least Squares spectrum estimation strategy 

 

To reduce the computational complexity, we assume that there are only two scatterers within 

one resolution cell. A two dimensional search is then required. After that the amplitudes can 

be retrieved by least square estimation.  Finally we get the reflectivity function along the 

elevation direction. 

When the noise is zero normally distributed and white, the NLS is also the MLE, the 

1sn   SAR passes 

over the interested Area 

Generate simulated data           
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Least square estimation for amplitude    

Reflectivity function along elevation 

direction                 

Maximize            
1( )T T Tg H H H H g
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( ) ( )Tg H x g H x
 

 
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theoretically optimum (achieves the CRB) for large samples. This method is very expensive 

as a multi-dimension search is required. When only two scatterers are assumed and with a 

small data stack, it is reasonable. 

2.5  Summary 

1) The fundamentals of SAR tomography were presented in this chapter. Its relation to 

spectrum estimation was discussed and the spectral estimators to be evaluated in this 

thesis were presented. 

 

2) Although interpolation in data space is only possible when we have enough samples, 

for completeness, it is also considered in this thesis. 
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3  Spectrum Estimation Results with Simulated 

and TerraSAR-X Data 
 

The spectrum estimators are evaluated on both simulated and real data. For simulated data, it 

is possible to compare the results with the simulated truth and effects caused by different 

factors can be separated. For real data, it verifies whether the strategies will be successful in 

practice. 

 

Section 3.1 explains how the data are simulated. Spectrum estimation results from simulated 

data under different simulation condition are discussed in Section 3.2 and Section 3.3. 

Results with TerraSAR-X data at test site Las Vegas are discussed in Section 3.4. Section 3.5 

summarized this chapter.  

3.1  Data Simulation 

The spectrum estimation algorithm is firstly evaluated on simulated data. For simplicity, we 

start with the case of two point scatterers within one resolution cell instead of continuous 

volume scattering.  

 

The reflectivity function is then: 

 

,                 (3-1)
 

 

where 1s and 2s  are the true elevations of the two scatterers. 

   

In order to separate the effects of baseline distribution and noise, the complex-valued SAR 

data are simulated in two ways:  

 

Table 3.1; Two data simulation cases 

 

Case 1 (pure simulated ) Case 2 (semi-simulated) 

No noise Noise present 

Simulated baseline distribution Baseline distribution from real data 

 

For case 1, the purpose is to investigate the influence of a random baseline distribution, the 

Grant matrix, the number of samples and the interference between scatterers. The data is 

simulated as follows.  

 

Firstly, system parameters are initialized with respect to the ERS satellite mission: 

 

 

1 1 2 2( ) ( ) ( )s s s s s       
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Table 3.2: Initialized parameters for case 1 

 

Distance from scene center r  847.361 km 

Uniform orthogonal baseline b  30 m 

Wavelength   0.056m 

Expected number of acquisitions 1N   99 

Actual number of acquisitions 1sn   15 

Extent of image scene in elevation direction a  / 2nyqa  

 

The focused data at 0 0( , )x r  with different baselines along the elevation direction is then 

simulated as: 

( )
2

n

N
b b n   ,

2
0, ... ,n

n

b
f n N

r
   

   ,              (3-2)
 

 

From the N+1 regular samples, 1sn 
 
randomly chosen samples and two endpoints are 

taken. The reason for fixing the two endpoints is that the minimal distinguishable distance 

between two scatterers depends on the baseline range (i.e. the maximum difference between 

baselines). In this case, the baseline distribution is not strictly irregular, but regular with 

missing samples. Nevertheless, it is a reasonable approximation to the real world. With the 

baseline distribution in Table 3.2, the elevation resolution (the minimal distinguishable 

distance between two scatterers) can be computed with the following expression: 

 

(99 1) 30  2940 ;

8.07
2

baseline range m m

r
elevation resolution m

baseline range



   

 


 

For case 2, a real baseline distribution of TerraSAR-X Spotlight data is used. The main 

purpose here is to investigate the influence of noise. System parameters are initialized to 

those of the TerraSAR-X satellite mission instead of ERS. 

 

Table 3.3: Initialization parameters for case 2 

 

Distance from scene center r  704.000 km 

Wavelength   0.031m 

Actual number of acquisitions 1sn   9 

extent of image scene in elevation direction a  depends on the test site 

 

Subsequently, the focused data at  0 0( , )x r  are simulated with the following baseline 

distribution in the elevation direction: 

1 1 2 2exp( 2 ) exp( 2 )n n ng j f s j f s    
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[0.00 -98.17 -40.55  -94.99  -91.39 -107.18   132.86 107.719  -83.73] [m]b 


 

With a base range of 240.0410 meter, the elevation resolution is 45.5 meter. Therefore, even 

from the theoretical point of view, it is impossible to distinguish two scatterers along 

elevation direction with a distance smaller than 45.5 meter and the only possibility to 

improve resolution is having more acquisitions with larger baseline range. Simulated data 

are then as: 

2
0, ... ,n

n s

b
f n n

r
 

 
,          (3-3)

 

 

The noise samples are independent, identically distributed (i.i.d.) complex zero mean and 

Gaussian. The SNR is defined as:
 

,                       (3-4)
 

 

where, SNR is the signal to noise ratio in dB, A  is the amplitude of the signal and noise  is 

the standard deviation of the noise.  

 

Results with simulated and semi-simulated data are discussed in Section 3.2 and 3.3. 

 

3.2  Spectrum Estimation Results from Pure Simulated 

Data 

As mentioned in Section 3.1.1, in this simulation, the baseline distribution is simulated in 

such a way that 1sn   passes are randomly chosen from an irregular baseline distribution 

with 99 samples. Since no noise is present, Nonlinear Least Squares estimation always gives 

the true value when the number of measurements is not less than the number of unknowns. 

Therefore, only the Singular Value Decomposition is evaluated without singular value 

truncation which is mainly applied to reduce noise. The main effect of the SVD strategy here 

is that the Grant matrix is used to resample the measurements. The extent of the image in 

elevation is assumed to be known. 

 

3.2.1  Baseline Distribution 

 

Figure 3.1 shows an example where 15 samples out of 99 were randomly chosen. The upper 

plot is the power spectrum of the measurements. In this example, two point scatterers are 

simulated which are located at 0m and 79.09m (about 10 resolution cells in between) along 

elevation axis. The corresponding reflectivity of the scatterers is 0.8 and 1 and the extent of 

the image is 197.7m. Red solid lines with stars are the normalized power spectra found using 

the SVD. As a reference, the power spectrum using all 99 samples, obtained using the DFT, 

is also shown with a blue solid line. For comparison, the normalized power spectrum 

2

10 2
10log ( )

noise

A
SNR




1 1 2 2exp( 2 ) exp( 2 )n n ng j f s j f s noise     
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obtained from the DFT of the data with missing samples is shown with solid a green line 

(when a sample with a certain baseline is missing, zeros were inserted). The DFT of the full 

dataset can be treated as a reference which illustrates the best case while the DFT with 15/99 

samples, which is the available dataset, shows the worst case.  

 

 
Figure 3.1: Example 1: spectrum estimation result with 15 samples out of 99 with favorable 

baseline distribution. The upper image refers to the normalized spectrum power; lower plots 

displays the distribution of uneven samples compared to the regularly sampled full data. 

 

The SVD shows a better performance. With help of the prior knowledge about the extent of 

the object in elevation direction, the side lobes which may lead to false detection when the 

baseline distribution is not so favourable are suppressed. This is discussed in detail later in 

this section. 

 

The relevant baseline distribution of this experiment is described in the lower plot. The blue 

dots refer to the uniformly sampled observations from which the nonuniformly sampled 

observations are randomly extracted. In this instance, the baseline distribution is relatively 

evenly distributed. Compared to the power spectrum obtained from the DFT of the full data, 

both the DFT with missing samples and the SVD perform well. 

 

On the other hand, when the baseline distribution is not so favourably distributed, there may 

be a large divergence from the result obtained from the DFT of the full data. Figure 3.2 

shows the result obtained for the same conditions but a different baseline distribution 

compared to the example showed in Figure 3.1. As visualized in the lower plot of Figure 3.2, 
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the baseline distribution is relatively uneven with both large gaps and very closely spaced 

samples. Due to the unfavourably distributed baseline, there are large sidelobes beside the 

main peak as shown in the upper plot of Figure 3.2. In this case, the spectrum of the signal is 

significantly distorted.  

 

 
Figure 3.2: Example 2: spectrum estimation result with 15 samples out of 99 with unfavorable 

baseline distribution. 

 

From the two examples above, we can see that the baseline distribution has a significant 

effect on spectrum estimation which cannot be ignored. In order to analyze the contribution 

of the baseline distribution, the ratio of the signal to strongest side lobe in different 

simulation condition is now investigated statistically.  

 

The histogram of the signal to strongest sidelobe ratio of the estimated normalized power 

spectrum is plotted in Figure 3.3. The red solid line represents the histogram for the case of 1 

scatterer. In this instance, the signal to strongest sidelobe ratio has a mean value of 3.85and 

standard deviation 1.18. If only one scatterer is present, the mean signal to strongest sidelobe 

ratio is mainly due to the small dataset and nonuniform sampling while the standard 

deviation is mostly due to different baseline distributions. Therefore, we can conclude that 

the baseline distribution contributes significantly to the estimated power spectrum which is 

reflected in the histogram. 
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The blue solid line is for the case of 2 scatterers. In this instance, the signal to strongest 

sidelobe ratio has mean value 2.0 and standard deviation 0.6. A smaller mean signal to 

strongest sidelobe ratio and standard deviation are mainly due to the interference effect. 

 
Figure 3.3: The histogram of signal to strongest sidelobe ratio of estimated normalized power 

spectrum 

 

As singular value decomposition is mainly dealing with singular value and corresponding 

eigenvectorss, it would be very interesting to see how the singular values are dependent on 

the random baseline distribution. Figure 3.4 shows the singular values behaviors due to 

different baseline configuration when fix a certain number of samples. From this 

viewgraph, we can see the spread of the singular values due to the random baseline 

distribution. For instance, when the number of samples is very small (e.g. 15), the singular 

value spread caused by a random baseline distribution is comparable to the magnitude of the 

singular value itself. This is exactly the reason why we choose to add no noise to the pure 

simulated data - as the baseline distribution has so large an influence on the singular values, 

it is very difficult to determine the singular value threshold and seperate the effects due to the 

baseline distribution and noise. The conditioning of the problem is defined by the ratio 

between the largest singular values and smallest singular value. As we can see, the 

conditioning is much worse when there are more samples. However, it does not mean that 

more samples has worse estimation capability. As in case of more samples, on the one hand, 

we can find the useful singular values more clearly and thus set the threshold more easily. 

One the other hand, more samples means large baseline range, we can always get better 

resolution when there are more acquisitions available.therefore, better estimation capability 
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can be obtained if there are more samples available. 

 
Figure 3.4: Singular values behavior vs. random baseline distribution 

 

 

3.2.2  Number of Samples and Interference Problem 

 

Since the number of samples starts of very small but increases continuously with the 

duration of the satellite mission, it is important to see how the performance improves as the 

number of samples is increased. Above all, it is important to determine the probability with 

which the scatterers can be correctly detected. As the full data and resampled data are 

sampled Fourier Transforms in the frequency domain at the same frequency position, a 

correct detection is defined as occurring when the detected peaks of power spectrum are 

located at the same position when compared to the result with full regularly sampled data. A 

Monte Carlo simulation with a randomly extracted baseline distribution was used to evaluate 

the detection rate. In this section, noise is not yet taken into account, thus the elevation can 

always be reliably detected when the number of samples is greater than 5 and only one 

scatterer is present. The case of one scatterer is not of interest, consequently, two scatterers 

are assumed. 
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Figure 3.5: Detection possibility of the true elevation varies the number of samples 

 

Figure 3.5 shows the detection rate versus the available number of samples when two 

scatterers are present in one resolution cell. The reflectivities of the scatterers are 0.4 and 0.7. 

We can see that the dominating scatterer with reflectivity 0.7 is reliably detected when only 5 

samples are available. For the weaker scatterer when the number of samples is not sufficient, 

the detection rate is reduced due to interference from the other scatterer.  This interference 

effect varies with the amplitude ratio and will be discussed in detail later in this section. For 

the weaker scatterer, when there are 5 samples available, the detection rate is only 10% using 

a direct DFT with missing data (blue dash line) and 15% using Grant matrix (SVD, red line). 

However, the detection rate for the weaker scatterer increases to 50% using a direct DFT 

with missing data and increases to 70% using the Grant matrix when the number of samples 

increases to 15. Therefore, we conclude that when the number of samples is not sufficient 

additional samples can improve the detection rate dramatically. When compared to the DFT 

with missing data, the SVD performs better, this will be discussed in detail later. 
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Figure 3.6: Detection possibility of the true elevation varies with the amplitude ratio between 

two scatterers 

 

In order to investigate the effect of interference between the two scatterers, Figure 3.6 shows 

the detection rate for both scatterers versus the amplitude ratio between the two scatterers. 

The interference effect depends not only on the amplitude ratio but also on the relative 

position and number of samples due to the properties of the sinc function. In this plot the 

elevations 0m and 150m (those two scatterers are quite far away from each other with 

roughly 40 resolution cell in between), and number of samples (15/ 99) were fixed. As 

2 1/  increases toward 1, the detection rate also increases. Only when the amplitudes are 

comparable does the weaker scatterer have an effect on the detection rate of the stronger one. 

As plotted in Figure 3.5, when the amplitude of the weaker scatterer is smaller than half of 

the stronger one, the weaker scatterer may be hidden by the sidelobes of the stronger one. 

 

3.2.3  Performance of Grant Matrix 

 

As explained in Chapter 2, the Grant matrix is used to resample the data to a regular 

sampling rate. Therefore, in order to evaluate the performance of SVD resampling, it is very 

important to ensure that the use of the Grant matrix improves the quality of the data or at 

least has no negative effect. Therefore, detection rate using the DFT with missing samples 

and using the SVD is investigated as the amplitude ratio of the scatterers varies. In Figure 3.7, 
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the detection rate is shown as the amplitude of both scatterers varies. 

 

 
Figure 3.7: Performance of Grant matrix when the amplitude ratio between two scatterers 

varies 

 

The upper left image shows the detection rate of the second scatter using the SVD while the 

upper right image shows the results using a direct DFT. When one scatterer dominates 

(upper left corner and lower right corner of each image), the Grant matrix can not improve 

the detection rate of the weaker one as the interference dominates. However, when the two 

scatterers are comparable (the diagonal of each image), we can see that the Grant matrix 

shows some improvement in detecting the weaker scatterer. For instance, when 
2 0.1  and 

1 0.2  , the detection rate of the second scatterer is more than 70% using Grant matrix and 

smaller than 50% using a direct DFT with missing data. The lower images show the same 

comparison for the first scatterer which shows the same behaviour as the upper images. 

Based on this analysis, we can say that the SVD will not reduce the quality of the data but 

improve it a little when the amplitude of the two scatterers is comparable. 
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3.3  Spectrum Estimation Results for Semi-Simulated 

Data 

 

3.3.1  Spectrum Estimation Results using the SVD  

 

For semi-simulated data, the baseline distribution is fixed to the real baseline distribution 

from a TerraSAR-X data stack as shown in the left image of Figure 3.8. Furthermore, 

normally distributed complex noise is present. 

     
 

Figure 3.8: Baseline distribution and singular values 

 

The typical singular value pattern when noise is present should be that they decrease slowly 

at first and then rapidly to the noise level with a sufficient number of samples. Figure 3.9  

shows the singular values when 44 samples from the ERS satellite are available. From the 

plot, we can see that the singular values decrease very rapidly when the number of singular 

values is larger than 35. Eigenvectors and eigenfunctions associated with low singular 

values are unreliable as bases in the data and object space, in the sense that in these 

directions, the Grant matrix transfers only a small amount of information. The 

ill-conditioning is responsible for the instability of the solution and causes the presence of 

significant reconstruction distortions. Regularization techniques based on approximate 

solutions are in this case needed to limit the propagation of errors due to noise and obtain 

stable solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 : Typical singular value pattern with scale in dB (source: Fornaro et. al, 2003)  
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When the number of samples is not sufficient, the behavior of the singular values is different 

as we can see from the left plot of Figure 3.8. The singular values decrease continously but 

not rapidly and the minimal singular values is about 5 dB. Therefore, by cutting-off the 

singular values, there will be some infomation loss associates with noise compression. Thus, 

choosing threshold at which to cut off singular values becomes much more difficult. 

Dependent on the noise level, the threshold is determined through experiments. The good 

thing is when the data stack is small, the optimum number of singular values to retain is quite 

stable and not sensitive to the noise level. 

 

As an example, two scatterers at position -100m and 180.5m (the distance between two 

scatterers is approximately 6 resolution cells) with amplitudes 0.8 and 1 (theoretical 

spectrum power should be 0.64 and 1) are simulated with SNR=4.24dB.  

 
Figure 3.11: Example1: Result with different singular values cutting-off threshold (different 

number of singular values (1-9) are used; note the scale of each plot). 

SNR=4.24dB,
1 20.8, 1   , 

1 1100 , 180.5s m s m  
 
 

 

Figure 3.11 shows the estimated spectrum using different numbers of singular values. For 

example, the upper left plot shows the estimated spectrum when only the largest singular 

value is used and the upper middle plot shows the result for when 2 singular values are used; 

the rest may be deduced by analogy. It’s worth to mention that in order to the contributions 

of different eigenvalues, the spectrum power is not normalized in this viewgraph. From the 

last two viewgraph, we can clearly see the effect of ill conditioning from the error 

propogation caused by small sigular values. For the purpose of regularitzation, one can 

easily see that when less than 5 singular values are used, too much information about the 
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signals is lost and when more than 7 singular values are used, too much noise is present. 

Only when the threshold is chosen in such a way that 5~7 largest singular values are retained, 

is a reasonable spectrum estimate obtained. The best result comes from using 5 singular 

values. From this example, we can see that the choice of a threshold is very critical. For this 

reason, instead of cutting off the singular values, a Wiener filter is implemented and 

discussed later in this section. 

 

In order to show the effect of singular value truncation, the normalized power spectrum in 

case of noise free, noisy data and TSVD implemented on the noisy data is displayed in 

Figure 3.12. The noise free data in red can be treated as a reference; the green solid line 

shows the curve when direct matrix multiplication instead of an SVD (TSVD) are used; and 

the blue line shows the same as green curve the only difference being that the singular values 

are truncated according to the noise level. As for noise free data, there are two scatterers at 

positions -100 meter and 180.5 meter with reflectivity 0.8 and 1. Due to noise propagation, 

the weaker scatterer at position -100 meter (green line) is hidden by sidelobes. When the 

singular values are truncated, the peak at -100 meter is visible but slightly shifted from the 

true elevation. 

 
Figure 3.12: Example1: comparison between noise free, noisy data and TSVD  

 

With this example, from one hand we can easily see the influence of regularization method 

on noise reduction and also the information loss which caused the peak position and 

amplitude to be shifted from the true position and amplitude. From other hand, we can see 

the big sidelobes present in the estimated spectrum. It would be very interesting to see the 
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behaviour of the signal to strongest sidelobe ratio varies with the position of single 

scatterer. Figure 3.13 shows the estimated normalized spectrum power for scatterer at 

different elevation position in case of noise free. From this viewgraph, we can see the 

magnitude of the strongest sidelobe is shift invariant and remains at the level of 0.3. If the 

noise or multiple scatterers are taken into account, the strongest sidelobe will become 

larger. Nevertheless, in our application, peaks with a magnitude smaller than 0.3 don’t need 

to be considered as candidates of point scatterers. 

 
Figure 3.13: Estimation result for scatterers at different position in case of noise free. X axis 

refers to elevation in meter; y axis refers to the normalized spectrum power. 

 

As another example, the situation that high rise buildings cause broad layover areas in the 

scene as a result of the high resolution is simulated. The building has an elevation of 440 

meter (-220m ~ 220m) where ground is at zero elevation. Figure 3.14 shows the estimated 

spectrum. The X axis refers to true elevation of points on the building. The Y axis refers to 

the elevation of the estimated spectrum. The ideal image should be two highlight red lines 

(one horizontal and another oblique). The upper left image is the result with noise level 

SNR=0.89dB while from upper right image to lower right image accordingly refers to 

SNR=3.78dB, 9.81dB and noise free. From this Figure, we can clearly see the building 

structure and ground even at a very low SNR. When the distance between two scatterers is 

very small compared to the resolution (-45m ~ 45m), instead of two lines, one straight line 

with a smaller slope is present. The consequence of information loss can be clearly seen in 

the noise free image, the stronger power spectrum at the upper left corner and lower right 

corner do not correspond to reality.  This is directly due to the singular value truncation and 

indirectly due to the interfernce between the two scatterers. 
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Figure 3.14: Example 2: The situation that high rise buildings cause broad layover areas in 

the scene as a result of the high resolution is simulated (by using TSVD).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15:  Example 2: elevation estimation result in different noise level (by using TSVD). 
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Figure 3.15 shows the estimated elevation from spectrum estimation based on two scatterers 

assumption. The estimator simply takes the two highest peaks of the normalized power 

spectrum. The red line refers to the building with height 440 meter (from -220 meter to 220 

meter) while the blue line refers to ground at zero elevation. Even though only a simple 

elevation estimator is implemented, the estimation results are acceptable when compared to 

the truth. The TSVD gives good results especially in case of low SNR.  

 

As mentioned above, the truncation threshold is critical when the number of samples is small. 

In order to improve performance, one possibility is to take more samples, which is time 

consuming. Another possibility is instead of truncating the singular values, to weight the 

singular values (filtering for the removal of noise from a “corrupted” signal). For this 

purpose, the Wiener filter, is discussed in the following section. 

 

3.3.2  Wiener Filter 

 

The Wiener filter is a filter proposed by Norbert Wiener during the 1940s and published in 

1949. Its purpose is to remove noise by linear filtering in an optimal way and improve 

ensemble averaging by incorporating correlation information. The performance criterion is 

minimizing the mean square error based on the assumption that the signal ( )s t  and additive 

noise ( )n t are stationary linear stochastic processes with known spectral characteristics or 

known autocorrelation and cross-correlation. The formula for the optimum filter is given by 

(William, H. Press,1992): 

 

                                                 ,                   (3-6) 

 

where ( )S f  and ( )N f are the frequency response of the signal and noise. In our 

application, the implementation of the Wiener filter is formulated in table 3.4. Instead of 

truncation, the Wiener filter weights each singular value by a factor
2 2 2/ ( )k k   . 

k  is 

the thk singular value, and   is a parameter related to the noise level where smaller   

refers to high SNR.   should be comparable to the singular values as too small an  has 

only a slight regularization effect and too large an   weights all singular values similarly. 

Therefore, different choices for   (
min  ,

mean  and 
max  ) are discussed next. 
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Table 3.4: Formulation of Wiener filter in our application  
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In order to visualize the difference between singular value truncation and Wiener filtering 

more explictly, Figure 3.16 shows the different weighting on the eigenvalus using TSVD and 

Wiener filtering with different  .   

 

  
Figure 3.16: The Weighting factor of singular values (TSVD Vs Wiener filter) 

 

For TSVD (purple solid line with triangle), when the singular value is larger than the 

threshold, a weight of 1 is used, otherwise the weighting factor is 0. For Wiener filtering, 

different weightings given by 
min  ,

mean  and 
max  are shown. When

min  , 

only the information carried by the smallest two singular values is retained. This is only 

suitable for extremely high SNRs as visualized in Figure 3.17. In the noise free case, the 

estimated elevation is perfect and without information loses. However, when some noise is 

adding to the measurements (even SNR=9.62 dB), the structure of the building (the oblique 

straight line) is completely hidden by the strong sidelobes caused by noise propagation at the 

position of the boundary of the extent of the images (here, around -220m and 220m as in 

2

2 2

k

k



 
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Figure 3.17). The structure of the ground is also very noisy with a large standard deviation.   

 

 

Figure 3.17: Example 2: elevation estimation result with Wiener filtering (
min  ) 

 

The red solid line in Figure 3.16 represents a singular value weighting
mean  . Compared 

to the information carried in the largest singular values, there are some compression effects 

on information carried by all other singular values. Compared to the previous case, the 

weighting curve is more moderate which makes the estimator more stable. Figure 3.18 

shows the estimation result for different SNRs. In this case, the performance of the Wiener 

filter is much better as noise has been effectively reduced. We can clearly see the structure of 

both building and ground. However, there is also some information loss which we can see 

from the noise free plot. Some scatterers, that should be located on the ground, turn out to be 

at around 100m and -100m.  Figure 3.19 shows the results under the same conditions except 

that   is set to be the maximum singular value. From this plot, we cannot see much 

difference compared to Figure 3.18. However, it is clear that the information loss here is not 

as severe as in Figure 3.18. The statistical characteristics of the estimation results for the 

various estimators and  parameter settings are compared in detail in Section 3.3.4  
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Figure 3.18: Example 2: elevation estimation result with Wiener filtering (
mean  ) 

 

 

 

Figure 3.19: Example 2: elevation estimation result with Wiener filtering (
max  ) 
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Even though via Wiener filtering the spectrum estimation is more stable, it may also 

decrease the estimation resolution. To highlight this effect, the baseline distribution is 

extended from 9 to 16 (7 new baselines are adding to the original baseline distribution of the 

real data) as shown in the left plot of Figure 3.20, the right plot shows the singular values 

corresponding to the new baseline distribution. 

 

 
Figure 3.20: New baseline distribution and singular values 

 

Figure 3.21 depicts the comparison between the Wiener filter and TSVD when different 

numbers of singular values (0-~16) are used. In this case, signal reflected from two scatterers 

at elevation 0m and 50m with amplitude 0.9 and 1 respectively are simulated. In each 

subplot, the red solid line is the estimated normalized power spectrum for different 

truncation thresholds; the blue solid line is the estimated power spectrum using the Wiener 

filter.  

 
Figure 3.21: Example: by using Wiener filter the estimation resolution might be reduced. 

(Red: TSVD with different threshold; blue: Wiener filtering) 
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By analysing the baseline range, the two scatterers should theoretically be distinguishable. 

However, with Wiener filtering, those two scatterers can not be separated. Meanwhile, we do 

not need to specify such a threshold and the risk that useful information is removed is 

relatively small. By contrast, the TSVD can distinguish the two scatterers when the 8 largest 

singular values are used; however, it is extremely difficult to select the cutting off threshold 

in such a way that optimum number of singular values are used, as the singular values 

decrease not very rapidly and slight different threshold may lead to completely different 

result.  

 

3.3.3  Spectrum Estimation Results using NLS 

 

Figure 3.22 shows the results obtained by using NLS estimation under the same simulation 

conditions as in Figure 3.13. As explained in Section 2.4, a multi-dimensional search is 

required which is time consuming. In this example, a priori knowledge that two scatterers 

are present in a specific resolution cell is used. Thus, instead of a multi-dimensional search, 

only a two dimensional search in the elevation direction is required.  

 

 
Figure 3.22: Example 2: elevation estimation result in different noise level (by using NLS).  

(Red: ground; blue: building) 

 

From the upper left plot, we can see that the estimation result is not good when the SNR is 

very low. It performs worse compared to TSVD. When SNR=3.48dB, the performance of 

both strategies are comparable to each other. NLS has excellent performance when the SNR 

is 9.62dB or in the case of no noise. Compared to the result from TSVD, NLS does not show 
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any resolution limitation due to the baseline distribution, rather there is a strong dependency 

on the SNR. Even though NLS may provide excellent result when the SNR is relatively low, 

it is not practical as the critical SNR for PS points is 2dB. 

 

3.3.4  Comparison and Discussion 
 

Based on the analysis above, we can summarize the difference between the truncated 

singular value decomposition strategy and the Nonlinear Least Squares estimation strategy. 

First of all, SVD is a non-parametric method while NLS is parametric. As a 

multi-dimensional search is necessary for NLS, NLS is time consuming while SVD has 

much lower computational complexity. SVD does not need a priori model selection to 

determine the number of signals inside the specific resolution cell; the estimated power 

spectrum provides a possibility for model selection while NLS needs this prior knowledge 

even for formulating the observation equation. However, the resolution of SVD depends on 

the baseline range. For instance, in our simulation, only two scatterers with a separation 

larger than 45 meter can be distinguished. By contrast, NLS does not have resolution 

dependent on the baseline range from a theoretical point of view and extremely high 

resolution can be obtained when the SNR is very high. However, it works perfectly only with 

high SNR, in the case of low SNR, it works much worse than SVD. In practice, SNR=2dB 

would be the critical SNR for our application which is not high enough for NLS estimation. 

SVD has an ill-conditioning problem, thus regularization tools such as TSVD and Wiener 

filtering should be used. SVD can give good and stable performance with regularization. 

Taking all factors into account, SVD is a better choice here. 

 

Table 3.5 summarizes the statistical properties (false alarm rate, mean of residuals and 

standard deviation of residual) of the results for example 2 by using different strategies (e.g. 

singular value truncation vs. Wiener filtering, SVD vs. NLS) or with different parameter 

settings (Wiener filter) for different SNRs. In the table, Wiener 1, Wiener 2 and Wiener 3 

correspond to the Wiener filter with 
min  ,

mean  and
max   respectively. 

Let us take the Wiener filter with different   as an example. Due to the small regularization 

effect of Wiener 1, the estimation results for low SNR is catastrophic.  For instance, with 

SNR=1.03dB, the false alarm rate of Wiener 1 is 40.45% which is very poor compared to 

Wiener 2 and Wiener 3. It only gives perfect results in a noise free situation. Wiener 2 and 

Wiener 3 have a similar performance for different SNRs.  In addition, Wiener 2 has slightly 

better performance for low SNR. For instance, Wiener 2 has a false alarm rate of 29.87% 

when SNR=1.03 dB while Wiener 3 has a false alarm rate of 30.34%. On the other side, 

Wiener 3 shows better results in the noise free case due to a more moderate weighting of the 

singular values. In practice, Wiener 2 should be a better choice compared to Wiener 1 and 

Wiener 3. 
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Table 3.5: Comparison between diff. strategies or with diff. parameter setting 

SNR 

[dB]  

Method False alarm 

(%) 

Mean elevation 

estimate error [m] 

Std of elevation 

estimate error [m] 

1.03     TSVD 32.58 4.21 9.05 

Wiener 1 40.45 5.83 7.84 

Wiener 2 29.78 7.15 9.05 

Wiener 3 30.34 7.16 8.94 

NLS 46.63 1.84 8.57 

3.48  TSVD 25.84 4.10 8.57 

Wiener 1 39.33 5.67 6.66 

Wiener 2 23.60 6.37 8.48 

Wiener 3 23.60 6.70 8.50 

NLS 36.52 0.66 8.11 

9.62      TSVD 10.11 5.33 7.53 

Wiener 1 37.08 7.32 9.39 

Wiener 2 9.55 6.17 7.50 

Wiener 3 9.55 6.63 7.83 

NLS 6.74 0.09 4.94 

INF TSVD 0.0225 5.17 6.66 

Wiener 1 0.0112 5.12 7.02 

Wiener 2 0.0562 5.88 7.61 

Wiener 3 0.0337 5.99 7.72 

NLS 0 0.03 0.37 

 

Based on the conclusion that Wiener 2 performs better than Wiener 1 and Wiener 3, it would 

be very interesting to compare Wiener 2 with the truncated SVD. Due to the moderate 

weighting, Wiener filtering appears to have a lower false alarm rate. For example, for an 

extremely low SNR of 1.03dB, TSVD has a 32.58% false alarm rate while Wiener 2 has a 

false alarm rate of only 29.78%. For the noise free case, Wiener 2 also shows better 

performance with a false alarm rate of 5.62%.  Therefore, it is sufficient to comment that 

Wiener filtering which gives different weight according to the singular values has a better 

and more stable performance than simply truncating the singular values. 

 

The argument that NLS shows best performance for high SNR is proved again.  By looking 

at the mean value and standard deviation of the residuals, a slight bias between the true 

elevation and estimated elevation appears. The standard deviation, which represents the 

uncertainty of the estimated elevation, is within 10 meters uncertainty band. Compared to 

the 45 meter resolution, the estimation precision is excellent. 
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3.4  Spectrum Estimation Results with TerraSAR-X Data 

 

For the purpose of validation, data of a selected urban area are pre-processed to form a PSI 

stack. The tomographic algorithm SVD discussed in the previous steps are applied and tuned 

to the real data. The detected single and multiple scatterers are compared to ground truth. A 

reference point refP  on the ground is selected to compensate atmospheric effect and relative 

to this the resolution cells at points
1P , 

2P  and 
3P  are estimated. 

 

 
 

Figure 3.23: Example1: SVD implemented on real data

 

As visualized in Figure 3.23, the green points refer to the persistent scatterers. The reference 

point is chosen within the PSs which have higher signal to noise ratio.
1P is a point on the 

ground as well and the reference point is selected as the closest point of 
1P . Therefore, the 

theoretical power spectrum should be a peak around zero elevation. The right plot shows the 

estimated normalized power spectrum obtained from the SVD strategy from which we can 

see that the estimated result fits to the ground truth. The sidelobes are quite small compared 

to the signal which is due to single scatterer (no interference) and the high SNR of PS point.  

 

2P  and 
3P are two point with similar height and likely have two scatterers within the same 

resolution cell (one from the ground and another from the building). The same point on the 

ground is chosen as the reference point; therefore, the estimated spectrum of those two 

points should show a similar pattern. As the surface of the building is made of high reflective 

material, the power spectrum should include a relatively weak peak near zero elevation and 

another relatively strong peak at a relatively high elevation. When checking the estimated 

result from the right plot of Figure 3.24 and Figure 3.25, we conclude that the estimate is 

consistent with the ground truth even though the sidelobes are quite high due to the 

Ground                    

ref
P

1P
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interference between the two scatterers and the limited number of available scenes. Due to 

the repeat cycle of only eleven days no problem is expected with typical data stacks. 

 

 

 

Figure 3.24: Example 2: SVD implemented on real data 

 

 

 

 

 
 

Figure 3.25: Example 3: SVD implemented on real data 
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3.5  Summary 

 

1)  For the purpose of performance investigation, the spectrum estimation strategies 

were applied to pure simulated data and semi simulated data. 

 

2) The results for pure simulated data show that not only the number of samples but also 

the baseline distribution has a significant effect on the estimation result. 

 

3) The performance of different strategies was mainly investigated based on the semi 

simulated data. As the SVD has an ill-conditioning problem under the influence of 

noise, regularization methods such as singular value truncation and Wiener filtering 

were implemented. Wiener filtering appears to be more stable and has better 

performance even though the resolution may be slightly reduced. NLS performs best 

for high SNR. 

 

4) For the purpose of validation, spectrum estimation strategies including the SVD 

(singular value weighting using a Wiener filter) were evaluated on TerraSAR-X data 

and compared to the probable ground truth. 
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4  Model Selection 
 

This Chapter gives a short introduction to the DLRs PSI-GENESIS processor and explains 

the necessity of model selection in SAR tomography for PSI techniques in Section 4.1. 

Several penalized likelihood model selection criteria such as Bayesian Information Criterion, 

Akaike information criterion, and Minimum Description Length criterion, which trade-off 

the accuracy and complexity of the model are explained in Section 4.2. Their performance is 

analyzed with simulated data with the historical baseline distribution of the TerraSAR-X 

satellite in Section 4.3. Finally, the model selection results with PS points of TerraSAR-X 

data are visualized in Google-Earth and the nature of PS pixel with multi-scatterers are 

discussed in Section 4.4. Section 4.5 summarizes the chapter.   

 

4.1  Introduction to DLR PSI-GENESIS Processor 

 

PSI-GENESIS is based on DLR's interferometry system GENESIS. The GENESIS system 

is optimized for operational DEM generation and has been used e.g. in the course of the 

Shuttle Radar Topography Mission (SRTM). The system is modular and consequently it 

could be easily updated for the Persistent Scatterer Interferometry (PSI) which allows the 

monitoring of subtle deformations of the Earth's surface. GENESIS and PSI-GENESIS are 

generic and support various SAR sensors e.g. ERS, ENVISAT/ASAR, RadarSAT, 

SIR-C/X-SAR, ALOS and TerraSAR-X. 

 

A new challenge is the geometric complexity of radar mapping in urban areas. High rise 

buildings cause broad layover areas in the scene as a result of the high resolution. Figure 2.1 

and 2.2 shows an example for the situation described above. Apparently, the radar returns 

from the ground and from the building interfere with each other. Classical interferometry can 

not resolve this ambiguity. Algorithms developed for PSI offer a solution (Ferretti et. al, 

2005) (Adam et. al, 2005). The more natural solution is tomography (Reigber, 2000). 

Tomography which also is based on stacks of radar scenes offers a framework to separate the 

scatterers providing 3D scatterer locations and their reflectivity. Because the 3D localization 

of the estimates is essential the tomography principle needs to be considered in PSI 

processing. This is the reason several tomography algorithms are implemented and tested in 

the PSI-GENESIS system (Adam et. al, 2008). 

 

For the purpose of application, instead of retrieving the reflectivity function along the 

elevation direction of a continuous volume scatterer, the case that several point scatterers are 

inside one resolution cell is more of interest. Persistent Scatterer Interferometry (PSI) is a 

revolutionary relative new technique which was introduced in the late 1990s for measuring 

ground displacements to mm level accuracy and over time periods previously unachievable 
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using conventional interferometry methods. It deals with persistent scatterers which are 

point scatterers which are stable during the whole temporal selection. The displacement rate 

is estimated according to the phase change of the same pixel which is measured with certain 

temporal baselines, perpendicular baselines and Doppler baselines. When the number of 

scatterers inside that resolution cell is not correct, the displacement estimation can be 

completely wrong. Thus, knowledge about the number of scatterers inside the resolution cell 

is very important. Tomography provides the possibility for model selection criteria to be 

applied to the estimated spectrum to separate and localize the PS in 3D space. 

 

4.2  Model Selection Methods 

 

4.2.1  Introduction to Model Selection 

 

Model selection is the task of selecting a statistical model from a set of potential models, 

given data.  

 

Model selection problems are encountered in many applications. In linear regression 

analysis, it is of interest to select the right number of nonzero regression parameters. With 

the smallest true model, statistical inferences can be carried out more efficiently. In the 

analysis of the time series, it is essential to know the true orders of an ARMA model. In 

problems of clustering, it is important to find the number of clusters. In signal detection, it is 

necessary to determine the number of true signals, and so on. 

 

Taking model order determination as an example, the upper left figure shows experimental 

data to which we want to fit a harmonic polynomial. Now we come to the problem of what 

order of harmonic polynomial model should be used. If the order is too low, as showed in the 

upper right plot, the problem is under fitted and the residual of the model is too large. In 

contrast, when the order is too high, as showed in the lower right plot, the problem is over 

fitted. Even though the model fits the measurement very well, the model is too complicated. 

With the fourth order model, the result looks good. How can we decide which order of 

harmonic polynomial is the true one. This is a model selection problem. 

 

 

http://en.wikipedia.org/wiki/Statistical_model
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Figure 4.1: Example of harmonic polynomial order selection (red: true model; green: noisy 

measurements; blue: estimated model) 

 

In this section, we survey the model selection discussed in statistical literature and mainly 

concentrate on those used in signal detection as detecting number of scatterers within one 

resolution cell is essentially a signal detection problem. 

 

4.2.2  Model Selection Methods 

 

Let k  be a parameter which defines the complexity of the model which can be the number 

of parameters describing the signal, order of the model, number of signals, and so on.  Let 

( )k  be the unknown parameters or quantities. The relationship between ( )k  and the 

observed data y  can be described by an observation model. The likelihood ( | ( ), )p y k k  

will increase with increasing k , thus fitting the observations better. As a consequence, 

maximization of the likelihood function is useless for model selection. Instead of using only 

the likelihood as criteria, penalized likelihood criteria are used for model selection. The 

general form of penalized likelihood criteria is: 

 

                     ,           (4-1) 

 

ln ( | ( ), )p y k k is the likelihood and ( ( ))C k  is a complexity penalty, from which we can 

see that model selection is actually a trade-off between how good the model fits the data and 

the complexity of the model. A good model fits well to the observed data with small 

( )

ˆ( ) arg max{ ln ( | ( ), ) ( ( ))}
k

k p y k k C k 


  



Model selection 

54 

 

description length. There are many types of penalized likelihood criteria, such as Bayesian 

Information Criterion (BIC), Cp criterion (Cp), Network Information Criterion (NIC), 

Akaike information criterion (AIC), subspace information criterion (SIC) and Minimum 

Description Length (MDL). Their principles are the same and the main difference comes 

from the penalty term. If this term only depends on the model dimension, then: 

  

                 ,               (4-2) 

 

In other words, choose the best parameters for each k  and then select among these models. 

 

For the purpose of this thesis, Bayesian Information Criterion (BIC), Akaike information 

criterion (AIC) and Minimum Description Length (MDL) will be further discussed in this 

section.  

 

 Bayesian Information Criterion (BIC) 

 

The BIC is sometimes also named the Schwarz Criterion or Schwarz Information Criterion 

(SIC). It is so named because Gideon E. Schwarz (1978) gave a Bayesian argument for 

adopting it. The BIC is an asymptotic result derived under the assumptions that the data 

distribution is in the exponential family. The formula for BIC is: 

                                      

                  ,               (4-3) 

 

n refers to the number of samples. k  is defined as above. The detailed derivation and 

performance of BIC is described in (Burnham, Kenneth P. und David R. Anderson, 2003). 

For historical reasons, the BIC is defined by ˆln ( | ( ), ) ln
2

k
p y k k n  multiplied by minus 

two: 

 

                     ,             (4-4) 

 

Under the assumption that the model errors or disturbances are normally distributed, this 

becomes (up to an additive constant, which depends only on n and not on the model): 

 

          ,                 (4-5) 

 

Where, RSS is the residual sum of squares from the estimated model. The following 

examples show how the penalized likelihood criterion works (BIC, AIC, MDL). The left 

image shows experimental data generated from a Gaussian mixture with 4 components. The 

left plot shows how the BIC value changes with the number of components. The preferred 

model is the one with the lowest BIC value. 

ˆ ˆarg max{ ln ( | ( ), ) ( )}
k

k p y k k C k 

ˆ ˆarg max{ ln ( | ( ), ) ln }
2k

k
k p y k k n 

ˆ ˆarg min{ 2ln ( | ( ), ) ln }
k

k p y k k k n  

ˆ arg min{ ln ln }
k

RSS
k n k n

n
 
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Figure 4.2: BIC application on model selection with 4 Gaussian Mixture Model 

 (Source: Joshua Broadwater, 2003) 

 

BIC can measure the efficiency of the parameterized model in terms of predicting the data 

and penalizes the complexity of the model where complexity refers to the number of 

parameters in model.  

 

 Akaike information criterion (AIC) 

 

Akaike’s (1973) seminal paper proposed the use of the Kullback-Leibler information or 

distance (information loss when the selected model is used to approximate the true model or 

the distance between the selected model and true model) as a fundamental basis for model 

selection. However, K-L distance cannot be computed without the complete information of 

the true model and the unknown parameters. Therefore, Akaike found a rigorous way to 

estimate K-L information, based on the maximum of the empirical log likelihood function. 

For the purpose of this thesis, a detailed derivation of the Akaike information criterion is 

given here. Books and papers on the derivation of AIC include Shibata (1983, 1989), Linhart 

and Zucchini (1986), Bozdogan (1987), and Sakamoto (1991).  The formula for AIC is: 

                                                      

,              (4-6) 

 

The AIC methodology attempts to find the model that best explains the data with a minimum 

of free parameters. The AIC penalizes free parameters less strongly than the Schwarz 

criterion. 

 

While Akaike derived an estimation of K-L information, AIC may perform poorly if there 

are too many parameters in relation to the size of the sample (Sugiura 1978, Sakamoto et al. 

1986). Sugiura (1978) derived a second-order variant of AIC that he called c-AIC. Hurvich 

and Tsai (1989) further studied this small-sample bias adjustment, which led to a criterion 

that is called AICc, 
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            ,                     (4-7) 

                  

Unless the sample size is large with respect to the number of estimated parameters (n/k<40), 

use of AICc is recommended. 

 

 Minimum Description Length (MDL) 

 

The minimum description length principle is a formalization of Occam's Razor in which the 

best hypothesis for a given set of data is the one that leads to the largest compression of the 

data. The MDL was introduced by Jorma Rissanen in 1978; it is an important concept in 

information and learning theory. "The fundamental idea behind the MDL Principle is that 

any regularity in a given set of data can be used to compress the data, i.e. to describe it using 

fewer symbols than needed to describe the data literally." (Grünwald et al., 1998) 

 

The MDL principle and Bayesian techniques are sometimes erroneously claimed to be the 

same.  The broad MDL principle is sometimes also confused with an implementation of it 

as a particular and not so powerful model selection criterion BIC. The difference between 

the MDL and BIC is discussed in (J. Rissanen, 2005). If there is any Bayes principle it 

probably is associated with the paradigm prior-posterior probabilities in the Bayes' identity, 

or actually `degrees of belief' since in the real case where none of the hypotheses is true the 

usual interpretation of probability such as `the probability of the event that the hypothesis is 

true’ is vacuous. Putting such religious sounding interpretations aside, the Bayes identity 

states: 

                                          

                                                 ,                   (4-8) 

 

where ( )w   is the prior probability of the hypothesis or model and  is the parameter. 

( | )Q x  the posterior, conditional on the data x. A fundamental objective in Bayesian 

statistics is to pick the hypothesis, labeled as ( )x , which maximizes the posterior or the 

numerator, while the objective of the MDL principle is to maximize the code length for the 

data. It is true that we can encode the data with the 2-part code length 

 

( , ( )) log ( | ( )) log ( ( ))L x x P x x w x     ,              (4-9) 

 

given a class of models{ ( | )}P x  and the prior ( )w  , but this is not the shortest code length 

for the data. In fact, the following code length is shorter. 

 

                                                     ,              (4-10) 
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where, 

: ( ) ( )

( ( )) ( | ( ))
y y x

P x P y x
 

 


 
 

 

Nevertheless, for the purpose of our application, once the penalized term is assumed to be 

the same, the MDL criterion is identical to the Bayesian Information Criterion which means 

Bayesian information is the shortest code as well. The MDL is then  

 

                  ,             (4-11) 

 

The performance of the penalized likelihood criterions in this model selection problem are 

analyzed in Section 4.3. 

 

4.3  Model Selection with SAR Tomography 

 

In this section the focus is on the application of model selection criterion to semi-simulated 

data as explained in Chapter 3 which refers to the historical baseline distribution of 

TerraSAR-X satellite at the test site Las Vegas.  

 

In the following, the residual sum of squares from the estimated model is computed in such a 

way that 1) the simulated observation are transformed to the frequency domain using the 

TSVD spectrum estimator as the red solid line showed in Figure 4.3, which is the normalized 

spectrum power of the signal spectrum. Here there are two scatterers within the resolution 

cell at positions -100m and 180.5m.With certain model assumption (number of scatterers), 

the elevation, amplitude and phase of the scatterers are estimated as the flow chart described 

in section 2.3.2.  

 

The power spectrum estimated using the optimal model should then be a good fit to the true 

spectrum as showed in Figure 4.3. The blue solid line shows the power spectrum for 

different model orders. The upper plot compares the power spectrum of simulated noisy 

measurements and assuming a model order of 1 (1 scatterer). It is easy to conclude that the 

modeled power spectrum does not fit the data power spectrum at the position of -100m. The 

middle plot shows the same comparison under the assumption of 2 scatterers, with a 

significant improvement appearing. The lower plot is for an assumed model order of 3 (3 

scatterers). The modeled power spectrum fits to the data power spectrum better but only 

slightly. Comparing the results with different model order assumptions, one would prefer to 

choose to believe 2 scatterers are present. This is a model selection process, using a model 

selection criterion one can determine the model order automatically. 

 

 

ˆ ˆarg min{ ln ( | ( ), ) ln }
2k

k
k p y k k n  

http://en.wikipedia.org/wiki/Residual_sum_of_squares
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 Figure 4.3: Example: two scatterers inside one resolution cell (SNR=3.36dB), the 

comparison between data spectrum power and modeled spectrum power under different 

model assumption. 

 

One difficulty when using model selection criteria is how to compute the residual sum of 

squares.  Because of the small datasets, irregular sampling and noise, the estimated result 

might be not reliable. Therefore, instead of evaluating the RSS in the data space, we shift 

to the spectrum domain. Based on the spectrum information, the RSS is computed by 

comparing the modeled spectrum and data spectrum.  One can find similar approach in 

(Ferretti, 2005). Given the RSS, the information criteria can be computed. The model which 

minimizes the criterion is then an estimate of the true model order as shown in the flow chart 

in Figure 4.4.   

 

It is necessary to assume that the number of scatterers inside one resolution cell is smaller 

than 4. For n scatterers, the model order k =3 1n  as for each scatterer the amplitude, 

elevation, and initial phase are the 3 unknowns which need to be estimated for complex 

data. Due to the normalization, one amplitude parameter is redundant.  
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Figure 4.4: Flow chart of the model selection procedure for our problem                                 

 

Figure 4.5 shows the criterion values varies with number of scatterers using different 

methods for the example showed in figure 4.3. All criterions suggest that there are two 

scatterers inside this pixel. In reality, the simulated truth is two scatterers at position -100m 

and 180.5m with amplitude 0.8 and 1. In this example, the selected model is fit to the true 

model. By comparing the criterion values for different models, we can see that Bayesian, 

MDL and AIC give similar penalty to the complexity of the model. AICc gives more 

penalties. As a general rule, Differences in criterion value (Δ) can be used to interpret 

strength of evidence for one model vs. another. A model with a Δ value within 1-2 of the best 

model has substantial support in the data, and should be considered along with the best 

model. A Δ value within 4-7 of the best model has considerably less support. A Δ value > 10 

indicates that the worse model has virtually no support and can be omitted from further 

consideration. 
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Figure 4.5: Criterion values for different model selection schemes 

 

There is always the risk of selecting the wrong model, whether the model is selected 

manually and automatically. The performance of different model selection criteria with 

respect to detection rates and false alarm rates is discussed next.  

 

 Detection Rates 

 

An important characteristic for evaluating the performance of the model selection criteria is 

the detection rate which here refers to the probability of correctly detecting the number of 

scatterers. A Monte Carlo simulation with 1000 realisations was used to evaluate the 

detection rates of the above described model selection procedures. 

 

Figure 4.6 shows the detection rate when only one scatterer is present. In this case, the results 

are quite good, and the detection rates are larger than 70% even with an SNR of 2dB. When 

the SNR is increased to 7dB, all methods have detection rates larger than 90%. On the other 

hand, the task is relatively easier when only one scatterer is present as there are no inference 

effects between scatterers. As the BIC more strongly penalises the complexity of the model 

compared to the AIC, it is more likely to select a lower model order from theoretical point of 

view. This is true in our experiments. The BIC (blue solid line) shows a higher detection rate. 

However, since the sampling size is very small, there are no big differences between them.  

As explained in Section 4.2, the MDL (green solid line with star) and BIC are identical in 

this application. The AICc (purple dashed line) penalizes the complexity of the model much 

more than the AIC (red dashed line). Therefore, it shows a much better performance when 
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the true model is very simple. However, when the true model becomes more and more 

complex, the criterion may not find a good fitting model.  

 

The lower plot of Figure 4.6 shows the consistency of the different methods which means the 

probability that all methods have the same and correct outcome. From the plot, we can make 

the same comments as above - that these methods are all very similar to each other as the 

consistency is above 70%. This is easy to understand as all methods try to give a weight to 

the precision and complexity of the model and get an optimum. 

 

 
Figure 4.6: Detection possibility and consistency of different methods when only 1 scatterer 

is included 

 

Figure 4.7 shows the detection rate for the case of two scatterers. As the penalty term of the 

AICc is too strong, the AICc is biased towards choosing a lower model order – and hence has 

a lower detection rate - when compared to the other criteria. However, the performance is 

still acceptable with a detection rate of about 60% at an SNR of 1dB.  2dB is the critical 

SNR for real data from TerraSAR-X. Accordingly, with AICc, the detection rates may reach 

67%. The detection rates of the AIC, MDL and BIC are similar independent of the SNR. The 

AIC performs a little better when the SNR is very low in which case the RSS is very large. At 

the critical SNR of 2dB, the detection rate is 75% which is quite good. The consistency plot 

is again evidence for the arguments above. 
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Figure 4.7: Detection possibility and consistency of different methods when  

only 2 scatterers is included 

 

 

 Detection accuracy 

 

For the model selection problem, not only the number of scatterers is of interest but also the 

elevation of the scatterers within one resolution cell as the final task is actually estimating 

the position of the scatterers and their reflectivity in the elevation direction. Therefore, how 

accurate the elevation of the scatterers can be estimated is also an important factor. The 

following figure shows a histogram of elevation estimates over 1000 Monte Carlo 

realisations. For the noisy measurements, two scatterers within one resolution cell, which are 

separately at the position of -100 meter and 180.5 meter, are simulated. The elevation 

estimation histogram is computed from experiments where the correct number of scatterers 

was detected. In this plot, what we are interested in is how accurate the elevation position 

can be estimated and the differences between different methods as well. Most elevation 

estimates are close to the true value and biased within an uncertain region, however, there 

are also some false estimates. For example, the histogram shows a small peak around zero 

elevation position which is false. Thus, it is very important to evaluate the estimation 

accuracy for the purpose of performance evaluation. As the basic idea behind these model 

selection criteria is very similar, the difference between them is too slight to see from the 

histogram. From the detection rate point of view, the BIC, MDL and AIC give similar 

results.  
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Figure 4.8: Histogram of estimated elevation with SNR =0.47dB, the true elevation is -100 

meter and 180.5 meter when the amplitude is 0.8 and 1. The corresponding detection 

possibility is: Pd_Bayesian= 0.65, Pd_AIC= 0.66, Pd_MDL=0.658 and Pd_AICc= 0.54 

 

 
Figure 4.9: Elevation estimation accuracy with different method (1 scatterer at the position 

100 meter are included) 

 

Figure 4.9 shows the detection accuracy for the case of 1 scatterer.  As specified in Chapter 

3, the minimum distance that two scatterers can be distinguished is 45.46 meter. Thus, the 
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elevation of the scatterer is assumed to be accurately estimated when the estimated elevation 

is within this 45.4589 meter resolution cell. Based on this definition, the elevation estimation 

accuracy for 1 scatterer is higher than 93% for SNR=2dB for all methods. The estimation 

accuracy is close to 1 when the SNR is larger than 6 dB.  However, the case of only 1 

scatterer is not of so much interest as there is no inference between signals from different 

scatterers.  

 

The estimation accuracy in the case of 2 scatterers is been illustrated in Figure 4.10. A 

correct estimation is assumed to occur only when the elevation of both scatterers is within 

the 45 meter resolution cell.  As a result of the inference, the estimation accuracy is reduced 

slightly compared to Figure 4.10. Taking the case SNR=2dB with a single scatterer as an 

example, the probability that the elevation is correctly estimated is about 94%, for the case of 

two scatterers it is close to 90% for the BIC, MDL and AIC and 93% for the AICc. AICc 

shows higher accuracy as it most strongly penalizes the complexity of the model, and only 

when the two scatterer hypothesis is much more likely than the single scatterer hypothesis 

will two scatterers be detected. It is worth mentioning that whether the peak can be correctly 

detected or not also depends on the noise behavior. As mentioned above, the number of 

samples is too small to obey some statistical distribution. By means of the average SNR 

value out of thousand times experiments, the noise level may be consistent with the 

theoretical one (simulation input). However, for a single experiment, it is possible that the 

SNR value is much lower than the mean SNR in which case the signal may be distorted 

dramatically by higher level noise. Nevertheless, the estimation accuracy is quite good (0.93) 

even under the critical condition (SNR=2dB).  

 

 
Figure 4.10: Elevation estimation accuracy with different method (2 scatterer at the position 

100 meter and 180.5 meter are included) 
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In this section, model order selection schemes were implemented and tested on simulated 

data. Based on the analysis above, we conclude that model selection with SAR tomography 

shows high detection rate and elevation estimation accuracy for both single and multiple 

scatterers. 

 

4.4  Result with TerraSAR-X Data 

 

For the purpose of validation, the model selection criteria are evaluated on TerraSAR-X 

data. Figure 4.11 presents the result from 12 acquisitions (Three more acquisitions were 

obtained. Unfortunately the baseline range is not extended which means the 45 meter 

resolution remains). As mentioned above, the reference points are selected to penetrate the 

atmospheric effect. Conjugate multiplication in measurement space is equivalent to 

correlation in the spectral domain. Therefore, the noise level of the reference point has a 

dramatic influence on the performance of the spectrum estimator and thereby has a 

significant effect on model selection result as well. As a consequence, the yellow point 

which is supposed to be one strong scatterer on the ground is selected to be a reference 

point. With the reference point, the model selection criterion AIC is implemented on the PS 

points and the number of scatterers is retrieved and visualized. In Figure 4.11, the colour 

points visualized on gray image are PS points. Green points denote pixels with only one 

scatterer inside one resolution cell. Red points denote pixels with two scatterers and blue 

points three scatterers.  

 

From the retrieved number of scatterers inside the specific resolution cell, most selected PS 

pixels contain only one scatterer. Pixels with two or more scatterers mainly appear in the 

area marked with the purple circles. From the texture in the SAR image, the marked region 

is the layover area of the higher part of the hotel and other lower structures beside the road. 

The strong scatterer on the ground and building are mapped onto one resolution cell. In this 

area, the model selection result fits to the ground truth, but as a result of high sidelobe 

caused by small number of samples, there are also several PS pixels referring to scatterers 

on small building which turn out to have three scatterers which is impossible due to the 45 

meter resolution. This can also be caused by less a priori information about the extent of 

the SAR image which was selected according to the height of the Wynn Las Vegas. With 

help of Digital Elevation Models which do not need to be very precise, the estimation 

results are expected to be better.  
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Figure 4.11: Model selection result using Akaike Information Criterion 

 

In order to compare with ground truth, the estimated elevations of the scatterers inside each 

resolution cell of PS points are visualized in Google-earth. Figure 4.12 is the visualization 

of PS pixels with only one scatterer inside. Due to the Geo-coding, there is a slight bias 

between the visualized PS points and the 3D model of Google-earth. Nevertheless, we still 

can see the frame of the hotel especially the two sides of the hotel which have high PS 

density. As marked by circles, the retrieved height of the lower part of the building is 

excellent. The elevation estimation of points near ground is also quite stable which we can 

see from the localization of scatterers in front of the hotel. Within the area of the yellow 

circle appear several scatterers with similar height to the Wynn. This is probably due to the 

overlay area being wrongly geo-coded during PS processing which means the scatterer is 

actually located on top of the building. 
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Figure 4.12: Visualization of PS pixels with only one scatterer per cell. 

 

 
Figure 4.13: Visualization of PS pixels with one and two scatterers per cell. 

 

The red points in Figure 4.13 are the visualized scatterers when the model two scatterers 

per cell are selected. As we expected, two scatters mapped into one resolution cell are 
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mainly caused by layover of the higher building and lower structures near the ground. 

However, as geo-coding of PS are based on the height estimation after the assumption that 

only one scatterer is present in one resolution cell, those pixels with two scatterers are 

either located at the building when the scatterer on the building is much stronger or located 

at the yellow line on the ground.  In order to verify the position of the scatterers precisely, 

a second geo-coding procedure is required. However, as we can only retrieve the height 

difference between the two scatterers instead of the exact height, for this purpose, we need 

either additional information such as digital surface model or new algorithm to retrieve the 

height of both scatterers by combing the information from PS processing and Tomography. 

 

 
Figure 4.14: Visualization of PS pixels with one, two and three scatterers per cell 

 

Figure 4.14 includes three scatterers per cell as well. The location of the pixels with three 

scatterers in the SAR image looks reasonable. However, the verification of the result is 

much more difficult. 

4.5  Summary 

1) The model order selection criteria which try to find a balance between how good the 

model fits to the data and the complexity of the model were described. With the aim of 

retrieving the true number of scatterers within one specific resolution cell, the model 

selection criteria were applied to the spectrum estimation results from simulated data 

for the purpose of performance evaluation. Good detection rates and elevation 

estimation accuracy were obtained. 
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2) Combining model selection criteria and spectrum estimation and applying them to real 

data was successful and reasonable results were obtained for the case of irregular 

sampling and small datasets. However, there is still much space for further 

improvement.
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5  Concluding Remarks 
 

5.1  Discussion and Conclusion 

 

Based on the theoretical formulation of spectrum estimation problem for SAR tomography 

and its application on model selection, the simulation results, and results from TerraSAR-X 

high resolution data, we can draw the conclusion as the following: 

 

1) SAR tomography, as a spectrum estimation problem, is capable to distinguish multi- 

scatterers within one resolution cell. The observations within the same resolution cell 

obtained by SAR sensor at different satellite positions is actually sampled FT of the 

reflectivity function along the elevation direction. Baseline distributions, which 

determine the frequencies where the FT of the reflectivity function are sampled, has a 

significant effect on the estimation results when a certain number of samples are 

available.   

 

2) With the difficulties that only few and irregularly sampled datasets are available, the 

performance of spectrum strategies such as Singular Value Decomposition (SVD) and 

Nonlinear Least Squares estimation (NLS) were investigated based on the simulated 

data using baseline distribution of real data. With different noise level, spectrum 

estimation strategies show different performance. SVD has its particular ill condition 

problem due to noise propagation.  Therefore, regularization tools, singular values 

truncation and Wiener filter, are implemented. Due to the small number of samples, 

truncated SVD has unavoidable information lose. By contrast, Wiener filter as an 

optimal filter shows a more stable and better performance even though the resolution 

might be slightly reduce due to the smoothing effect. As a deterministic method, NLS 

shows perfect performance under low noise level. However, it needs a priori knowledge 

about the number of scatterers and is time consuming since multi dimensional search is 

required. 

 

3) For the purpose of validation, SVD, with singular values weighting by Wiener filter, is 

implemented to high resolution TerraSAR-X data at test site Las Vegas and compare to 

probable ground truth and shows reasonable results. 

 

4) With the aim of application, model selection criteria, such as Bayesian Information 

Criterion (BIC), Akaike Information Criterion (AIC) and Minimum Description 

Length criterion (MDL), were implemented to the spectrum estimation result of SAR 

tomography to determine the number of scatterers within one resolution cell which is 

the important prior knowledge of precise PSI processing. By examining the detection 

possibility and detection accuracy under one and two scatterers simulation conditions, 
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this application are considered to be very successful with different noise levels. The 

model selection criteria are also applied to real data with 12 acquisitions, a reasonable 

result are obtained.  

5.2  Outlook 

After the investigation of this master thesis, more possibilities of extension of this work in 

the future would be outlined as follows: 

 

1) Instead of implementing the discussed strategies on particular structure with choosing 

one reference point for the sake of penetrating the atmospheric effect, a reference 

network can be built for large-scale processing. 

 

2) For further development and perfecting, Spectrum estimation strategies can be 

developed with help of Digital Elevation Model (DEM) as it can be used as a priori 

knowledge the extent of SAR image which may improve the elevation estimation 

stability and accuracy. It can be also treated as a reference to validate the estimate 

result. 

 

3) The potential of more precise earth surface displacement might be realized by 

combining PSI techniques and SAR tomography which provides the possibility of 4D 

Space-Time Monitoring of Geodynamic Processes. 
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Terminology and Abbreviation 
 

SAR                      

InSAR                    

D-InSAR                  

PSI                       

TomoSAR                             

CAT                      

SLC                      

DEM                     

PSF                      

PTA                      

SVD                      

NLS                      

DFT                      

SNR                      

RSS                      

ARMA                    

AIC                      

BIC                      

SIC                      

MDL                     

SIC     

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synthetic Aperture Radar 

Interferometric Synthetic Aperture Radar 

Differential Interferometric Synthetic Aperture Radar 

Persistent Scatterer Interferometry 

Synthetic Aperture Radar Tomography 

Computed Axial Tomography 

Single Look Complex 

Digital Elevation Model 

Point Spread Function 

Point Target Analysis 

Singular Value Decomposition 

Nonlinear Least Squares 

Discrete Fourier Transfer 

Signal to Noise Ratio 

Residual Sum of Square 

Auto Regressive Moving Average 

Akaike Information Criterion 

Bayesian Information Criterion 

Schwarz Information Criterion 

Minimum Description Length 

Subspace Information Criterion
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