

Hydrogen from Regenerative Energy Power Sources: pressurised alkaline electrolyser with high efficiency and wide operating range The Project "RESelyser"

R. Reissner¹, G. Schiller¹, E. Guelzow¹, Y. Alvarez Gallego², W. Doyen², A. Funke³, J. Vaes³, J.R. Bowen ⁴ et al.

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° [278732] 10

Overview presentation

- Project Overview
- Project partners
- Motivation
- Problem to be solved: gas purity
- Project Approach: "E-by-pass separator"
- Problem to be solved: electrode efficiency and stability
- Project Approach: VPS Raney Nickel coating
- Cell and Stack Construction
- Electrolyer System and BOP
- Summary

Project Overview

- "Hydrogen from RES: pressurised alkaline electrolyser with high efficiency and wide operating range"
- Duration Nov. 2011 Oct. 2014
- Total budget: 2.89 Mio. €, FCH-JU contribution: 1.48 Mio. €; Regional support: 594,000 DKK from ForskEl program of Energinet.dk
- Consortium:

DLR Dt. Zentrum f. Luft- und Raumfahrt - Germany (coordinator)
VITO Vlaamse Instelling voor Technilogisch Onderzoek N.V. - Belgium
Hydrogenics Europe NV – Belgium
DTU Danmark Techniske Universitet, Risoe Lab - Denmark

Project Overview

The project develops **high pressure**, **low cost** alkaline water electrolysers that can be integrated with **renewable power sources** using

- an advanced membrane concept,
- highly efficient electrodes
- and a new cell concept

Project partners: DLR

DLR has a long background of alkaline electrolysis research from electrodes to systems.

HYSOLAR project 1985-1997

350 kW solar hydrogen production demontration plant

Project partners: DLR

DLR coordinates or participates in several PEM-Electrolysis projects in Germany

Study Over-	view	Plan-DelyKaD (BMWE) 14 months Investigation of cost effective electrolysis systems with hydrogen storage in salt caverns	LIUdwig bölkow systemtechnik DLR TT-STB ■ Fraunhofer
tific-	technical modelling	LastElSys (BMUB) 3 years Improvement of efficiency and durability in intermittent operation	HYDROGENICS
and scien		WESpe (BMWE) 3.5 years Modelling and experimental validation of electrolysis systems	Deutsche Linwelthilfe Fraunhofer ISE DLR TT-STB
Experimental		KompElSys (BMVI) 3 years Development of cost-effective components for PEM-electrolysis	SolviCore Fraunhofer HYDROGENICS
Expe		Talstraße (LMU BW) 3 years System integration study PEM electrolysis at fuelling stations	HYDROGENICS ——EnBW

Project partners: VITO

Facts & Figures

- · Founded in 1991
- Autonomous public research company
- Bridge between academia government and industry
- 5-year framework contract
- Nearly 600 people, 10 nationalities
- Yearly budget of 70 MEUR

Project partners: VITO

Membrane/module development

- Casting and spinning of polymeric membranes
- Functionalisation of ceramic NF
- New module concepts
- Separators and electrodes

Membrane application testing/development

- MF, UF, NF, RO, PV, ED, MBR
- Solvent resistant NF
- Membrane distillation

Extraction

- Supercritical technology
- Biomass downstream processing
- Detection and isolation of high value compounds

Project partners: Hydrogenics

- Provider of clean solutions based on hydrogen
- 120 employees
- Listed on NASDAQ (HYGS) and TSX (HYG)
- Sales offices, R&D & Production facilites:
 - Canada (HQ): Fuel Cells
 - Belgium: Water Electrolyzers & Systems
 Integration
 - Germany: Fuel Cell Systems
 - Sales & Service offices: China, India, Russia
- + 1,700 products deployed worldwide since 1948

Project partners: Hydrogenics

Lines of business:

Onsite Generation Water Electrolyzers

Industrial hydrogen

Hydrogen fueling

Power Systems Power Modules

Backup power

Mobility power

Energy Storage

Project partners: DTU

DTU Risoe now "DTU Energy conversion"

Research and Competences:

- Ceramic processes
- Scale-up
- Materials development
- Characterization
- Advanced test
- Modelling
- Technology transfer

Project partners: DTU

- Fuel cells (SOFC)
- Electrolysis (SOEC and AEC)
- Magnetic refrigeration
- Membranes for oxygen or hydrogen separation
- Electrochemical flue gas purification
- Thermoelectrics
- Batteries
- Test and approval centre:
 Fuel cells and hydrogen technologies

Motivation

Unique feature of storing energy as a chemical

Motivation

- Intermittent Renewable Sources wind and solar preferred route for future european energy mix
- Intermittent production needs storage technologies
- Grid stabilization Renewable integration
- Building blocks for MW alkaline electrolysis
- Dynamic operation rapid response
- Idle production power based steering
- Extending range of operation 10%-100% -> 1%-120%
- Higher pressure
 - Skip compression stages for H₂ fueling
- Higher efficiency without lowering output
 - Coatings
 - Cost/performance business modelling

Motivation

Alkaline water electrolysis

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

 $H_2O \implies H_2 + \frac{1}{2} O_2$

Cathode: $2H_2O + 2e^- \longrightarrow H_2 + 2HO^-$

Anode: $2HO^{-} \longrightarrow \frac{1}{2}O_{2} + H_{2}O + 2e^{-}$

- Well established technique up to large scale systems
- Cheap materials
- Gas purity problems at low load and high pressure
- Electrode stability when electrolyser off
- System adaptation to use with RES

Problem to be solved: Gas purity

High H₂ impurity in oxygen at low power and high pressure → safety problem anode gas

Reason for the problem:

- Diffusion of H₂ in O₂ und O₂ in H₂ dissolved in electrolyte depending on T, p
- At low current density and at high pressure H₂ to O₂ ratio becomes too high

 double layer diaphragm with internal KOH supply ("E-by-pass separator") and adapted cell concept (3 compartment electrolyser)

Goals: develop the "E-by-pass separator" diaphragm with internal electrolyte bypass

and properties for maximum benefit of the cell develop technical scale fabrication methods

Progress achieved: double side coated PPS spacer-fabric

- Various thicknesses realised: total thickness approx. 2.4mm to 2.9mm
- Zirfon®(ZrO₂/polymer composite) dual layer, each layer ca. 0.5 mm.
- interposed free electrolyte channel ca. 1.5 mm
- Variation of permeability: from 120 l/(h m² bar) to 900 l/(h m² bar)

Progress achieved:

- Separator of 300 cm² delivered for cell and stack integration
- Technical scale (2500 cm²) producibility demonstrated; relevant physico-chemical properties (R, Lp, BP) maintained upon upscaling

Cell construction integrating the e-by-pass separator -

Concept 1 Glue concept

Glueing of the membrane and electrode to the structure ring

Cell construction integrating the e-by-pass separator -

Concept 1 Glue concept

Glueing of the membrane and electrode to the structure ring

Glueing of the membrane and electrode to the structure ring

Cell construction integrating the e-by-pass separator -

Concept 1 Glue concept

Glueing of the membrane and electrode to the structure ring

Glueing of the membrane and electrode to the structure ring

Cell construction integrating the e-by-pass separator -

Concept 1 Glue concept

Cell construction integrating the e-by-pass separator - Concept using

graphite seals

Problem to be solved: electrode efficiency and stability

State of art low cost electrodes: Nickel or Ni coated Fe

Deactivation by:

- Nickel-corrosion
- Absorption of hydrogen with formation of hydride
- Adsorption of organic impurites (mostly from lye or separator)
- Deposition of metals (e.g. Fe),

Better results using:

- Noble metal catalysts like Pt with high surface
- Ruthenium oxide (RuO₂)
- Raney-Ni und Ni-alloys, especially NiMo

Electrode development for low overpotential, long lifetime and low costs

Goal: Using the VPS coating, electrodes are developed with low-cost materials that have a high efficiency/low overpotential and little degradation in intermittent operation

Electrode development for low overpotential, long life-time and low costs

Progress achieved:

Overpotential reduction to uncoated Ni electrode:

Cathode 210 mV using NiAlMo

coating

Half cell measurement 70°C in 35 % KOH, potentials IR-

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Anode 150 mV for NiAl

Al is removed by leaching, high Ni surfaces are opened

XRD metal phase composition:

NiAlMo-coated electrode after coating: many different phases Ni_xAl_vMo_z

Leached at 80°C: still clear NiAl signal

Leached at 90°C: mostly Ni

SEM image original powder

SEM image leached, activated powder:

Long term test of first generation of NiAlMo coated cathodes:

Serious degradation and layer delamination after 10 days period at OCV (half cell test)

Improved by changing plasma spray parameters

Full cell test 300 cm²:

serious efficiency improvement when going from uncoated to coated electrodes.

Characterisation of porosity of unused and used electrodes by 3D SEM reconstruction

Goal: understanding the mechanisms in electrode degradation due to evolution

of the pore size distribution

Technical University of Denmark

Electrode microstructure

- Highly heterogeneous microstructure with many subdomains.
- Dendritic structures stemming from the dissolution of Al from the Raney type NiAl alloy particles.
- Desert rose like nano flake structures (NiO and Al₂NiO₄ like phases) observed in the pores of several samples.
- Implications and causes still being investigated.

3D reconstruction of the electrode pores

- Coarse scale planar like pores parallel to the electrode surface.
- Significant pore volume fraction of sub 100 nm wide pores in the dendritic structure.

Cell and Stack Construction

Single cell, 10 kW and 30 kW stack development, construction and test

Goal: realisation of electrolysers with the new concept up to technical size, up to 25 bar, concept development for 150 bar

Progress achieved: Cell concept developed and construction ready for single cell with double layer membrane

Cell and Stack Construction

- 10 kW stack with e-by-pass membrane and Plasma-spray coated electrodes to be operated up to 10 bar
- Cell stack leakproof, values of permeability from ex-situ measurements in good agreement with those determined in-situ

Electrolyser-System

Improvements suggested to adapt to fluctuating power and reduce costs:

- Modular electrolyser (modules off or close to nominal power)
- High pressure -> no compressor
- Adapt IV-characteristics to IV-characteristics of renewable power supply (solar field..)
- Reduce number of components by higher system component integration
- Power changes induce internal pressure changes -> reduce by control
- Reduce power consumption of BOP components e.g. cooling
- Power control strategy of BOP componts in fluctuating operation

BOP and System

E-by-pass concept needs additional electrolyte pump and electrolyte degassing but no more H₂ compressor Possible concepts for electrolyte degassing:

- Pressure release over KOH in flow towards cell + gas separator, subsequent pressurisation with feed pump
- Liqui-Cel[®] Membrane Contactor
- Ultrasonic treatment in gas separator
- Membrane filter with only liquid permeability to avoid micro-gas bubbles to remain in the electrolyte supplied to the pump
- Temperature increase of KOH in flow towards cell + gas separator

Summary, outlook

The RESelyser project adresses some of the points to make alkaline electrolysers even more fit to be integrated with fluctuating renewable energy sources

- Cost reduction
- Suitable for fast power fluctuations
- Fast startup, no problems with shutdown
- Long lifetime
- High efficiency

There is much more potential for improvement of alkaline electrolysers than what can be worked out in one project

Thank you for your attention

www.reselyser.eu

Regine Reissner

Deutsches Zentrum fuer Luft- und Raumfahrt
Regine.reissner@dlr.de

The end

