Cloud fraction determination from GOME-2 on MetOp-A/B using the OCRA algorithm

Ronny Lutz, Diego Loyola, Sebastian Gimeno Garcia (DLR-IMF) Rüdiger Lang (EUMETSAT)

EUMETSAT Meteorological Satellite Conference, Geneva, Switzerland, 24 September 2014

Knowledge for Tomorrow

Introduction

What is our aim?

 \rightarrow determine radiometric cloud fraction from GOME-2A/B data (as input for GOME-2 trace gas retrievals in the framework of O3M-SAF)

How do we want to achieve this?

 \rightarrow use the information from the Polarization Measurement Devices (PMDs)

Which tool do we use?

 \rightarrow Optical Cloud Recognition Algorithm (OCRA), developed for GOME/ERS-2 and used operationally with GOME, SCIAMACHY and GOME-2

What is the basic idea?

 \rightarrow distinguish between cloud / no cloud via RGB-color approach

The GOME-2 instrument

- GOME-2 (Global Ozone Monitoring Experiment 2)

 → GOME-2A on MetOp-A (launched Oct 2006)
 → GOME-2B on MetOp-B (launched Sept 2012)
- nadir-viewing optical spectrometer UV/VIS 240-790nm
- Polarization Measurement Devices (PMDs)
 - \rightarrow linear polarization (parallel and perpendicular to entrance slit)
 - \rightarrow 15 spectral bands in the region 312-800nm
 - \rightarrow 192 across-track PMD pixel (resolution 10km x 40km)
 - \rightarrow 1920km nominal swath size

Cloud parameter with OCRA & ROCINN

OCRA: Optical Cloud Recognition Algorithm ROCINN: Retrieval Of Cloud Information through Neural Networks

Chart 4

RGB definitions for OCRA

wavelength ranges and bands used by OCRA for different sensors to determine the colors B, G and R

Chart 5

Data input and reduction

- OCRA for GOME-2 uses the *PMD data* with a resolution of 10km x 40km
- mapping of PMD data to RGB-colors
- GOME-2A: data since February 2007
- GOME-2B: data since January 2013
- for the cloud free composites, we use only 1920km swath data from
 → April 2008 until June 2013 (GOME-2A)
- PMD reflectances are corrected for
 - \rightarrow instrumental degradation
 - \rightarrow dependencies on viewing angle and latitude

Data input and reduction

- PMD reflectances are corrected for
 - \rightarrow instrumental degradation: here G2A, 3rd order polynomial component
 - \rightarrow dependencies on viewing angle and latitude

Data input and reduction

- PMD reflectances are corrected for
 - \rightarrow instrumental degradation

 \rightarrow dependencies on viewing angle and latitude: 4th order polynomial + linear splines

• define grid with resolution of $0.2^{\circ} \times 0.2^{\circ}$

- define grid with resolution of $0.2^{\circ} \times 0.2^{\circ}$
- determine cloud free reflectance for each grid cell

- define grid with resolution of 0.2° x 0.2°
- determine cloud free reflectance for each grid cell
- merge all cloud free cells to obtain global cloud free maps for all 12 months and colors R, G and B (and polarizations P, S)

- define grid with resolution of $0.2^{\circ} \times 0.2^{\circ}$
- determine cloud free reflectance for each grid cell
- merge all cloud free cells to obtain global cloud free maps for all 12 months and colors R, G and B (and polarizations P, S)

• determine cloud fraction c_f

$$= \min \left\{ 1, \sqrt{\sum_{i=R,G,B} \alpha(\lambda_i) \cdot \max \left\{ 0, \left[\rho(\lambda_i) - \rho_{CF}(\lambda_i) - \beta(\lambda_i) \right] \right\}^2} \right\}$$

reflectances for
$$\underset{R,G,B}{\mathsf{R},G,B} \rho = \frac{\pi \cdot I_E}{I_{\odot} \cdot \cos \vartheta_{\odot}}$$

cloud-free reflectances

• final product: radiometric cloud fraction (G2A+G2B merged together)

- both products on PMD resolution
- general features agree well

fraction

0.6 0.5 0.4 0.4 0.3 0.3 0.2

geometric cloud

AVHRR CF for 2012-12-01 (MetOp-A)

- both products on PMD resolution
- general features agree well
- AVHRR geometrical cloud fractions AVHRR are as expected systemetically higher than GOME-2 radiometric cloud fractions

- both products on PMD resolution
- general features agree well
- AVHRR systematically higher

- both products on PMD resolution
- general features agree well
- AVHRR systematically higher
- GOME-2: no IR channels

 → insensitive to clouds with
 low opt. thickness, e.g. cirrus
- similar to GOME/ERS-2 versus SEVIRI/MSG

Summary

- OCRA is a fast way to determine radiometric cloud fraction (ca. 20s per GOME-2 orbit)
- OCRA is simple (RGB color approach) and robust
- OCRA concept is transferable to future instruments (e.g. TROPOMI on Sentinel-5p)
- new OCRA features: → PMD corrections for degradation and viewing angle dependencies
 → cloud free composites based on GOME-2 data (2008-2013)
 → improved Sun glint flagging and removal
- GOME-2 vs. AVHRR comparisons consistent with published GOME vs. SEVIRI comparisons
- The updated OCRA algorithm will be used for reprocessing the operational GOME-2 trace gas products from O3M-SAF

Thank you for your attention!

Additional slide – histogram analysis for scaling factors and offset values • determine cloud fraction $B_{CF} = \alpha_B \cdot ma$

$$f = \min\left[1, \sqrt{B_{CF} + G_{CF} + R_{CF}}\right]$$

$$B_{CF} = \alpha_B \cdot \max\left[0, (B - B_{free} - \beta_B)\right]^2$$
$$G_{CF} = \alpha_G \cdot \max\left[0, (G - G_{free} - \beta_G)\right]^2$$
$$R_{CF} = \alpha_R \cdot \max\left[0, (R - R_{free} - \beta_R)\right]^2$$

Additional slide – OCRA

OCRA provides a fast, robust and accurate determination of (radiometric) cloud fraction

reflectance normalization compensates possible instrument / L1 issues

cloud-free composites are produced from data of the same instrument

caution with direct comparison of cloud fractions:

- \rightarrow dependence on surface albedo, cloud model, wavelength bands, ...
- \rightarrow distinguish between effective CF, radiometric CF, geometrical CF

caution over snow/ice

transferability to other sensor types: OCRA, which was developed and is used operationally for GOME-type sensors (using the PMD measurements), can also be adapted to OMI-type sensors (using the radiance measurements)

Additional slide – References and Acknowledgements

- Loyola (1998) A new cloud recognition algorithm for optical sensors

- Loyola et al. (2007) Cloud properties derived from GOME/ERS-2 backscatter data for trace gas retrieval

- Loyola et al. (2011) The GOME-2 total column ozone product: Retrieval algorithm and ground-based validation

- Thanks to Rüdiger Lang (EUMETSAT) for providing the pre-operational AVHRR CFs collocated to GOME-2 PMD ground pixels

