Cloud fraction determination for OMI using the OCRA algorithm

Ronny Lutz, Diego Loyola, Sebastian Gimeno Garcia

OMI Science Team Meeting 18, KNMI, 13 March 2014

Outline

- > Introduction
- OCRA adaption to OMI data
- OCRA comparisons with official OMI cloud products
- Discussion
- Outlook

Introduction – Sentinel 5 Precursor L2 Products

Product Coordinator	Algorithm Prototyping	Independent Verification	Operational Processor DLR-IMF	
Coordinator	KNMI	IUP		
O ₃ total column	DLR/BIRA	KNMI	DLR	
O ₃ profile (incl. troposphere)	KNMI	RAL/IUP	KNMI	
O ₃ tropospheric column	IUP/DLR	KNMI	DLR	
NO ₂ total & tropospheric	KNMI	IUP/DLR/MPIC	KNMI	
SO ₂	BIRA	MPIC/DLR	DLR	
НСНО	BIRA	IUP	DLR	
СО	SRON	IUP	KNMI	
CH₄	SRON	IUP	KNMI	
Clouds	DLR	KNMI/MPIC/IUP	DLR	
Aerosols	KNMI	MPIC/IUP	KNMI	

Introduction - OCRA & ROCINN

OCRA: Optical Cloud Recognition Algorithm

ROCINN: Retrieval Of Cloud Information through Neural Networks

Introduction – OCRA adaption to S5P/TROPOMI

Figure from Veefkind et al. (2012)

OCRA for GOME, SCIAMACHY and GOME-2 uses the *PMD data* with a resolution of ~10x40km2

OCRA for OMI uses

radiance data from UV-2

and VIS bands with a

resolution of ~13x24km2

OCRA for TROPOMI will use the UVN *radiance data* with a resolution of 7x7km2

OCRA - OMI data used

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2004												
2005												
2006												
2007												
2008												

Input data products:

OML1BIRR, OML1BRUG, OML1BRVG (product version 003)

All data considered are NOT affected by OMI row anomaly

We define the mean of the radiances in the channels of the UV-2 band as color "B", and the mean of the radiances in the channels of the VIS band as color "G"

OCRA – mapping reflectance to RGB color space

wavelength ranges and bands used by OCRA for different sensors to determine the colors B, G and R

OCRA – normalize reflectance

- monthly median reflectance based on ~650.000 measurements for each of the 60 X-track pixels
- correction values via normalization to pixel #29 (near-nadir) of 4th order polynomial fits
- monthly corrections for each of the 48 months
- "bump" feature at X-track pixels around #20

OCRA – cloudfree background

<u>definition of the cloud-free value via BG- or bg- color diagrams:</u>

BG-color-diagram: measurement with minimum distance from (0,0)

→ based on assumption that a cloudy scene is brighter

bg-normalized-color-diagram: measurement with maximum distance from (½, ½)

→ same principle as for GOME, GOME-2

colors B and G (left) and normalized colors b and g (right) for one arbitrary grid cell

the white point in the bg-diagram is at $(\frac{1}{2}, \frac{1}{2})$

of measurements per monthly grid cell is around 90-100

in BG, use e.g. 3rd smallest to account for e.g. shadowing or aerosol absorption

another approach: histogram analysis for each grid cell

OCRA – cloudfree background

12 monthly background maps for each color B,G

grid resolution: 0.2° in latitude 0.4° in longitude

grid cell: ~22x45 km2 OMI at nadir: ~ 13x24 km2

OMI at Pix#8: ~ 17x55 km2

linear interpolation between the monthly cloud-free maps

OCRA – cloud fraction via histograms

$$\begin{split} f &= \min \left[1, \sqrt{B_{CF} + G_{CF}} \right] \\ B_{CF} &= \alpha_B \cdot \max \left[0, (B - B_{free} - \beta_B) \right]^2 \\ G_{CF} &= \alpha_G \cdot \max \left[0, (G - G_{free} - \beta_G) \right]^2 \end{split}$$

scaling factor alpha:

$$\alpha_X = \frac{1}{(X - X_{free})_{0.99}^2}$$

fits for the daily alphas and betas

offset value beta:

$$\beta_X = (X - X_{free})_{\text{mode}}$$

OCRA – comparison with OMCLDO2 and OMCLDRR

- test results for one day per month, only one example shown here

- → dependence on surface albedo and cloud model
- → e.g. OMCLDO2: *effective CF*, based on Kleipool surface albedo and fixed CA=0.8
- → OCRA: radiometric CF, which is close to the geometrical CF; no further assumptions on CA

- interpret the following comparisons in the context of systematic trends etc...

OCRA – comparison with OMCLDO2 and OMCLDRR

- strong linear correlation between OCRA and OMCLDO2 (corrcoeff 0.915) and OMCLDRR (corrcoeff 0.923)
- signatures at swath edges
- large differences over snow/ice scenes
- mean CF differences close to 0, small standard deviations for low CFs, larger for large CFs
- at high CFs > 0.50, OCRA shows larger CFs

Intercomparison of official products

cloud fractions from OMCLDO2, OMCLDRR, OMDOAO3 and OMTO3 are taken from the following fields: "CloudFraction", "CloudFractionforO3", "CloudFraction", "fc"

OCRA – sensitivity study

three cases:

add 5% gaussian error on cloud-free background (top) add 1% gaussian error on reflectance (middle) add both of the above (bottom)

Conclusion

OCRA provides a fast, robust and accurate determination of (radiometric) cloud fraction

→ 1.5 min for one complete OMI orbit (prototype code in Python)

reflectance normalization compensates possible instrument / L1 issues

cloud-free composites are produced from data of the same instrument

good agreement with official products

caution over snowlice

OCRA, which was developed and is used operationally for GOME-type sensors (using the PMD measurements), can also be adapted to OMI-type sensors (using the radiance measurements)

Outlook

adjust channel ranges used to determine B and G:

→ use only VIS band due to geolocation mismatch

use finer resolution for latitude dependent reflectance correction

→ e.g. 5° latitude bins instead of 20° latitude bins

TROPOMI: additional color informations for OCRA/ROCINN

- → colors B,G,R for OCRA
- → O2-A band for ROCINN
- → initial: cloudfree background: B,G from OMI and R from GOME-2
- → *later*: cloudfree background directly based on TROPOMI data

Thank you for your attention!

Additional slides

channel ranges in OMI UV-2 and VIS bands used by OCRA to determine the colors B and G

reflectance spectra for the arbitrarily chosen Ground Pixel #29 in scan-line 600 on OMI orbit 2472 (2005-01-01)

Sentinel 5 Precursor

- The ESA Sentinel 5 Precursor (S5P) is a Copernicus/GMES mission focussing on global observations of the atmospheric composition for air quality and climate.
- The TROPOspheric Monitoring Instrument (**TROPOMI**) is the payload of the S5P mission and is jointly developed by The Netherlands and ESA.
- > The planned launch date for S5P is 2015 with a 7 year design lifetime.

TROPOMI

- UV-VIS-NIR-SWIR nadir view grating spectrometer.
- ► Spectral range: 270-500, 675-775, 2305-2385 nm
- ► Spectral Resolution: 0.25-1.1 nm
- ► Spatial Resolution: 7x7km2
- ▶ Global daily coverage at 13:30 LT

CONTRIBUTION TO GMES

- ► Total column O3, NO2, CO, SO2,CH4, CH2O,H2O,BrO
- ► Tropospheric column O3, NO2
- ▶ O3 profile
- ► Aerosol index, type, optical depth
- Cloud amount, pressure and optical thickness

