Influences on shape accuracy of parabolic trough mirror panels mounted onto solar collectors

Simon Schneider

DLR, Institute of Solar Research, Cologne, Germany

10th Sollab Doctoral Colloquium, June 2014

Motivation Parabolic Trough Technology

Optical losses

<u>Many</u> different effects influencing the amount of intercepted radiation, <u>practically impossible to measure up to perfection</u>

... That cries out for statistics!

Combined Uncertainty σ_{total} (for EuroTrough)

	σin mrad
Mirror Shape*	2
Beam Spread	0.2
Mirror Support*	1
Absorber Position	1.5
Collector Torsion (Loads)	1
Module Alignment	1.5
Tracking Accuracy	1
Sun	3.5
Total	6.24
Intercept Factor	98.7%

Influences on mirror shape

- Internal stress in mirror material due to manufacturing process
- Dead load depending on collector angle and support structure
- Inaccurate mounting of mirrors on support structure

Methods

Slope Deviation – Quality of mirror surface

Slope Deviation (mrad)

$$sdx = \alpha_x = \gamma_x - \beta_x$$

$$SD_{x} = \sqrt{\sum_{k=1}^{n} \left(s dx_{k}^{2} \cdot \frac{a_{k}}{A_{total}} \right)}$$

Quality assurance parameter characterizing impact on yield

$$fdx = 2 \cdot d \cdot sdx$$

$$FD_{x} = \sqrt{\sum_{k=1}^{n} \left(f dx_{k}^{2} \cdot \frac{a_{k}}{A_{total}} \right)}$$

Intercept Factor (0-100 %)

Fraction of reflected power that actually reaches the receiver tube

Workflow for evaluating mirror shape accuracy

Input parameter

DEFORMATION

SLOPE DEVIATION OPTICAL EFFICIENCY

ANNUAL YIELD

Results

- ANSYS
- Simulation for different load cases and input parameter
- MATLAB
- Postprocessing of ANSYS results
- Comparison with measurement results
- Preprocessing for ray tracing

- STRAL
- Evaluation of optical performance via ray tracing
- MATLAB
- Postprocessing of ray tracing results for evaluating collector efficiency
- Visualisation of results

FEM EuroTrough (ANSYS WB)

- torque-box not included
- no screws or bolts modeled

- Solid Shell hex8 elements (mirror panels)
- 20 Joints / 72 Joint Loads
- 16 Command Snippets
- 4 Substeps
- Angular deviation of brackets
- Angular deviation of mounting pads
- Positonal deviation of brackets
- Dead-load by gravitation

Dead Load + Angular deviation of brackets

Scale factor: 190

For gravitational results – Investigated Cases

I. Ideal case

Mirrors + Mounting pads + Silicone adhesive

II. Bracket case

Ideal case + L/Z - brackets

III. Cantilever case

Bracket case + cantilever arms

Influence of cantilever arms – Slope Deviation

Ideal case

Bracket case

Angular deviation of brackets / mounting pads

Zenith collector position

Positional deviation of brackets

Zenith collector position

Conclusion

- Various influences on mirror shape accuracy exist (small changes = huge impact)
- Tools for investigating mirror shape accuracy have been developed
 - FE-Model in ANSYS WB
 - Specific methods to simulate different influences in the model
 - Workflow (Deformation > Mirror Shape > Optical Performance > Efficiency)
- Influence of support structure investigated (SDx inner mirror in zenith position):
 - Dead load (only pads): 0.98 mrad
 - Dead load (with brackets): 1.60 mrad
 - Dead load (with cantilever arms): 1.65 mrad
 - Dead load + Angular deviation of brackets (10 mrad):
 1.70 mrad
 - Dead load + Angular deviation of mounting pads (10 mrad): 1.91 mrad
 - Dead load + Positional deviation of brackets (2 mm)
 3.20 mrad

Outlook

- "What happens in the collector?"
 - Influence of other assembling inaccuracies
 - Forces onto the mirrors that origin from the support structure
- Long-term aims:
 - Maximum allowed forces → How to ensure that?
 - Better initial mirror shapes than ideal parabola?
- Comparative measurements at KONTAS test bench (Shape accuracy, Geometric precision, Forces)

measured in collector

Transferability from laboratory to field

Thank you for your attention!

