
Fig. 5: Simplified flowsheet of the indirectly heated solar   
reforming process 
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Air Heated Reformer 
Modelling 
• Bundle of identical jacketed tubes, 

reaction in inner tube, annulus for 
heat transfer 

• Pseudo homogeneous 1-D steady 
state model, kinetics by Xu and 
Froment (1989)  

 

 

 

 

 

• Validated with data by Wesenberg 
(2006) (cf. fig.3): Good agreement 
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Fig. 3: Jacketed tube of air heated reformer 
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Fig. 4: Mole fraction over reactor length 
in both models 
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Fig. 2: Axial cut through absorber of OVR 

 

 

 
Introduction & Aim 
• Chemical storage of solar energy by reforming of methane: 

CH4 + H2O + 206
kJ

mol
 ⇌ 3H2 + CO 

 

• Indirectly heated solar reforming: 

– Open volumetric solar receiver converts radiation into 
heat 

– Heat transfer fluid (air) heats reforming reactor 

 

– Overall process efficiency unknown 

Open Volumetric Receiver Modelling 
• One channel model of honeycomb absorber 

structure, acc. to Pitz-Paal (1993) 

 

• Air return ratio (ARR): Fraction of air re-sucked into 
absorber, as varied parameter 

– Reference: 0.6 

Process Efficiency 
• Three forms of energy are involved. Definition of design 

point efficiency: 

ηProcess,DP =
ΔH Gas

Q intercept +
PEl,net
0.34

 

 

ηProcess = ηReceiver ⋅ ηReforming 

 

• Conflicting behaviour of ηReceiver and ηReforming  

 Optimum for hot air temperature exists  

Reference Process 
• 50 MW intercept radiation as reference 

 

• 56 - 65% of absorbed energy is  
available as off-heat 

 

• Tair after feed-water evaporation > 350°C; 
additional cooling possible 

 

Utilization of excess heat for electricity 
generation in water-steam-cycle. 
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Fig. 7: Process efficiency with and without air 
cooling and different no. of tubes and over 
ARR 

Conclusion & Outlook 
• Solar reforming with open volumetric 

receivers has limited efficiency (27% 
in Design-Point, 16% annual) 

• ARR has strong impact on overall 
efficiency 

• Optimization of receiver for high 
temperatures and increase of ARR will 
enhance solar reforming efficiency. 
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Fig. 6: Efficiencies over temperature 
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Fig. 1: Solar tower Jülich in operation 

Additional Air-Cooling, ARR and No. of Tubes 
 

Additional air cooling („Cold“) only benifitial for 
low ARR, for ARR > 0.4 direct return of air to 
receiver („Hot“) is advantageous 

 

Higher number of reformer tubes increase  
efficiency for both cases 

 

 Process effficiency increases significantly with  
ARR 

 

 
 

 


