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Optimization of the DLR SpaceLiner inside the integration
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ABSTRACT: In this paper, we would like to present the multidisciplinary analysis and optimization of the
preliminary DLR SpaceLiner design concept using the distributed workflow-driven integration environment,
called RCE (Remote Component Environment). As the considered disciplines together build a coupled system
and a change of input in one simulation tool may affect the output of another one, MultiDisciplinary Optimization
(MDO) techniques have to be applied. To be able to efficiently analyze and optimize the overall system of the
SpaceLiner, the described software and simulation tools have been integrated as a process chain inside the
integration environment RCE. RCE comes with a number of integrated ready-to-use algorithms, but more
importantly, it is furthermore possible to integrate third-party and user-provided algorithms. The described
optimization problem of minimizing the mass of the DLR SpaceLiner design concept is solved using several
publicly available software codes which we compare in terms of quality of the solution and in terms of number
of function evaluations. Most of the integrated engineering simulation tools do not provide derivatives of the
objective and constraint functions such that only optimization methods which do approximate or do not need
derivatives at all can be applied in our case.

1 INTRODUCTION

In today’s world, travelling fast between two places
got very common. For being even faster in the future,
the DLR (German Aerospace Center) studies the con-
cept of ultra fast passenger transport by means of
combining aviation travel with space travel. The DLR
SpaceLiner concept study (M. 2007) is designed to fly
from Europe to Australia in only 90 minutes. Design-
ing such a vehicle creates various challenges as one
would expect. Many disciplines with their own expert
knowledge (e.g. for aerodynamics, structure, thermal
management) must be considered for realizing an opti-
mal design. Every discipline has its own simulation
codes and for optimizing the overall design one must
be aware that the several disciplines are a coupled
system. Multidisciplinary optimization (MDO) tech-
niques are used to realize this coupling (Tröltzsch,
Siggel, Kopp, & Schwanekamp 2014). In our case, for
coupling the simulation codes of each discipline and
apply an automatic optimization loop, the integration
framework RCE (Remote Component Environment)
will be used. This framework provides some advan-
tages for the engineer. It is possible to integrate own
simulation tools into the framework and couple them
in a simple way. There is no need for the user to be
concerned with the data flow as this is done by RCE
in the background. A process chain with several sim-
ulation tools can be executed automatically (Seider,
Basermann, Mischke, Siggel, Tröltzsch, & Zur 2013).

Furthermore, RCE provides the possibility to optimize
these process chains. Some optimization algorithms
are already implemented in RCE, but it is possible to
use self defined methods. For this reason, a Python-
based interface has been developed. In Section 2 of
this paper, we first introduce the disciplines that are
involved in the optimization. Along with that, the
simulation tools for the respective disciplines will be
explained. The multidisciplinary optimization frame-
work for the problem is also described. In Section 3
follows an overview of the integration framework RCE
which was used to solve the problem, along with the
optimization strategy. In Section 4, we will present
some numerical results concerning the optimization of
the SpaceLiner, followed by some concluding remarks
in Section 5.

2 MULTIDISCIPLINARY DESIGN
OPTIMIZATION

Preliminary design concepts are not just the expert
knowlegde of one field of research. Since there are
many disciplines involved, such as structure and mass
optimization, many disciplines have to be coupled and
will effect each other in the whole process. In this
section, the disciplines for the preliminary SpaceLiner
design concept as well as their efficent tools for the
multidisciplinary simulation will be introduced.
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2.1 Involved disciplines and tools

The first discipline needed for the optimization con-
cerns the geometry. For finding an optimal design,
the outer shape of the spacecraft must be parameter-
ized. This obviously impacts many aspects of other
disciplines such as the aerodynamic behavior or the
stability. Changing the geometry in an optimization
requires a changeable representation of it. This is
done by generating a block-wise build up structured
quadrilateral panel mesh with the help of the program
GGH (Grid Generator for HOTSOSE), programmed
by DLR-SART.

Following the geometry calculations, the next
involved disciplines are the aero- and aerothermody-
namics. The method HOTSOSE (HOT Second Order
Shock Expansion) was implemented at DLR and esti-
mates all aerodynamic coefficients as well as surface
parameters and heat loads (Reisch & Anseaum 1998,
Streit, Martin, & Eggers 1994).

The next discipline is the thermal protection sys-
tem (TPS) involving transpiration cooling by water.
The TPS is designed for protecting the structure, the
internal systems and the passengers against the heat
that is produced during the descent when re-entering
the atmosphere.

The total mass of the spacecraft is influenced by
the mass of the TPS. To consider this mass, the tool
CalCoolAid calculates an estimation of the required
cooling water mass based on the calculations of
HOTSOSE.

After that, the mass model of the design can
be approximated. This is done by the tool STSM
(Space Transportation Systems Mass), which was also
developed at DLR-SART.

The last discipline involved is the structural sizing.
Using the analysis program HySAP (A. 2012), which
was developed at DLR-SART, a rapid structural anal-
ysis on a preliminary design level for almost arbitrary
vehicle configurations is calculated.

2.2 Multidisciplinary design optimization
problem

So far, research has been carried out on the mentioned
disciplines separately. The parameters of each major
discipline have been optimized on its own with only
little consideration of the other disciplines.As the con-
sidered disciplines together build a coupled system and
a change of input in one simulation tool may affect the
output of another one, multidisciplinary optimization
(MDO) techniques have to be applied. The objective
of the formulated MDO problem is to locate the design
with the minimal mass including liquids subject to
a lower bound on the glide ratio, an upper bound
on the pitching moment and to several geometrical
constraints.

In our case, the system is coupled with one back
coupling. Note that values which are output to one
discipline and input to another discipline are called
coupling variables.

Figure 1. The coupled system of the disciplines for Space-
Liner flight analysis and optimization.

Several approaches have been developed to solve
multidisciplinary optimization problems. Among
others, Simultaneous Analysis and Design (SAND)
(Haftka 1985), Individual Design Feasible (IDF)
(Cramer, Dennis, Frank, Lewis, & Shubin 1994),
Multidisciplinary Feasible (MDF) (Cramer, Dennis,
Frank, Lewis, & Shubin 1994), Concurrent Sub-
space Optimization (CSSO) (Sobieszczanski-Sobieski
1988) and Collaborative Optimization (CO) (Braun
1996) are well-known methods.

We decided to use the “sequential Individual Design
Feasible” (sIDF) approach which is a version of IDF.
In IDF, the coupling variables are added to the set
of design variables to decouple the discipline analy-
ses so that they no longer rely on each other for their
coupling variable input. To ensure a multidisciplinary
feasible solution at the optimum, one additional feasi-
bility constraint is added to the optimization problem
for each coupling variable. These constraints ensure
that at the optimum, the estimate of the coupling vari-
ables matches the actual coupling variables computed
by each discipline. With f denoting the objective func-
tion and c denoting the constraint functions, IDF can
be stated as,

where yt represents the coupling variables estimates
(or targets) provided by the optimizer, yi are the cou-
pling variable outputs of discipline i given the estimate
of the non-local coupling variables yt

j from discipline j.
Furthermore, x represents the set of local design vari-
ables, which are only involved in one discipline and z
are the global design variables which are involved in
more than one discipline.

This architecture enables the discipline analyses to
be performed in parallel, since the coupling between
the disciplines is resolved by the coupling variable
copies and consistency constraints. The advantage of
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IDF compared to other approaches is that the IDF prob-
lem formulation is very compact and requires minimal
modification to existing discipline analyses. Neverthe-
less, it is not recommended for problems with a large
number of coupling variables.

The sIDF approach is a version of IDF where out-
puts of one discipline which are connected as inputs
to only one other discipline are directly tied with the
receiving discipline. In this case, coupling through the
optimizer is avoided. This technique reduces the num-
ber of coupling variables and constraints which would
be required in the pure IDF approach. On the other
hand, the evaluation of the discipline outputs can not
be fully performed in parallel anymore.

3 THE INTEGRATION
ENVIRONMENT RCE

For finding an optimal solution considering all dis-
ciplines involved, the given simulation tools must be
coupled together. Since the optimization loop should
run automatically, the integration framework RCE
(Remote Component Environment) is used to achieve
this. RCE is an open source project which supports
engineers to manage complex simulations in a collab-
orative environment. It is a software framework which
allows easy creation and execution of process chains
for coupling simulation codes in a graphical user inter-
face. Furthermore, it provides a secure and uniform
access of data also in a distributed environment where
several engineering departments at different sites may
be involved in the design process. As can be seen in
Figure 2, where an integrated process chain of RCE
is depicted, the tools and other parts of the process
chain, such as the optimization algorithm, are dis-
played as boxes which are connected through arrows.
These arrows visualize the data flow between the tools.
If the process chain contains distributed tools in a net-
work, these arrows also represent the transfer of the
relevant data from one site to another without the engi-
neers being concerned with it. All available tools in
the network are listed in the graphical editor and can
be used in the process chain editor by drag and drop.
Each tool is only executed on the machine where it is
integrated in RCE, such that for example dependen-
cies to other libraries must only be configured on this
machine.

3.1 Integration of simulation tools

In order to build up a process chain with its own simu-
lation tools, this tools must be somehow integrated in
RCE. This is not too complicated, as long as the tools
fulfill the following requirements:

• The tool must be executable via command line calls,
and without any user interaction during execution,

• the tool’s input must only be command line param-
eters and files.

In the integration concept of RCE, an integrated
tool is treated as a black box. I.e., it is seen in terms

Figure 2. A process chain in RCE.

Figure 3. Tool integration concept of RCE.

of its inputs and outputs without any knowledge of
its internal working. Figure 3 summarizes RCE’s tool
integration concept.

For integrating the tool, there is a step-by-step wiz-
ard that helps the engineer to configure everything that
RCE needs for executing the tool, e.g. which inputs and
outputs it has.

Once a tool has been integrated into one RCE
instance, e.g., the tool developer’s instance, it is
instantly being distributed in the RCE network the
correspondent machine is part of. As soon as another
machine has received the information, this machine’s
user can immediately start using the tool in his process
chains as if it is installed on its local machine. whereas
the actual execution of the tool is always performed on
the machine on which it has been integrated.

3.2 Optimization in RCE

RCE comes with an already integrated optimizer
component. With this component, it is possible to
define an optimization loop using the ready-to-use
algorithms of the DAKOTA software toolkit from
Sandia National Laboratories (Adams, Bauman,
Bohnhoff, Ebeida, Eddy, Eldred, Hough, Hu, Jakeman,
Swiler, & Vigil 2013). The toolkit provides algorithms
for design optimization, uncertainty quantification,
parameter estimation, design of experiments, and sen-
sitivity analysis, and a range of parallel computing and
simulation interfacing services.
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Figure 4. The optimizer interface in RCE.

But more importantly, it is possible to integrate and
use own optimization algorithms and any other pub-
lic domain or commercial optimization codes. This is
achieved through an interface provided by RCE which
is written in Python. The interface consists of two
parts. The first part is the definition of parameters for
the algorithm to be integrated. This can be parameters
for stopping criteria, trust regions or gradient calcula-
tions for example. The definition of these parameters
is important for being able to configure the new algo-
rithm just with RCE’s graphical user interface. The
second part of the interface is the implementation of
the algorithm itself. This is achieved using a given
Python script that can be modified to fit the algorithm.
It is also possible to use other optimization libraries or
an in-house optimization algorithm with this interface.
The parameters defined above and the definition of
the design variables, objective functions and constraint
functions are automatically written to configuration
files by RCE and read by the interface. At last, there
is one Python script which must not be changed, that
manages the exchange of data between RCE and the
optimization algorithm (see Figure 4).

Once a process chain that should be optimized
is integrated in RCE as described above, several
optimization algorithms can be used to optimize it.
This does not only include the built-in algorithms,
but every other optimization package. Once imple-
mented in RCE, one can switch between the provided
optimization methods very easily. Comparing several
algorithms and finding the best one for the current
process chain can be done very efficiently. Another
advantage of the interface is that some algorithms that
are generic can be adapted for the current problem.

4 RESULTS

The optimization of thermal management of the
SpaceLiner uses RCE as platform to calculate the pro-
cess chain. The different simulation tools mentioned

Figure 5. Optimization of the DLR SpaceLiner.

in 2 are integrated using the in 3 described way. Since
the involved experts for the disciplines are located on
two different sites, RCE supports them to develop and
integrate their own simulation codes and test it directly
with the real world data process chain. This way, prob-
lems with the tools or even in the design of the process
chain can be tracked down much faster. Using the built-
in optimization algorithms, an optimized model of the
SpaceLiner was calculated, shown in Figure 5.

The focus is not only on optimizing the SpaceLiner
itself, but also finding the best solver for it. Therefore,
three solvers were tested. Two of them are from the
RCE built-in DAKOTA library, which are COBYLA
(Powell 1994) and APPS (Gray & Kolda 2006). The
third one is SOLVOPT (Kuntsevich & Kappel 1997)
from the Python Optimization Package pyOpt (Perez,
Jansen, & Martins 2012), which was integrated using
the Python interface described in 3.

The numerical results are presented as histories in
Figures 6(a) and 6(b) where all evaluated function val-
ues are displayed. The values of the objective function
(mass of the spacecraft in kg) are depicted in 6(a) and
the cumulated constraint violation in 6(b).

Regarding the objective function reduction in Fig-
ure 6(a), one could have the impression, that COBYLA
is the best method for the problem. But the compar-
ison of the constraint violation in Figure 6(b) shows
that COBYLA does not satisfy the constraints at ter-
mination. Instead, we see that SOLVOPT is able to find
a feasible solution inside the given time frame and that
it is at the same time able to reduce the spacecraft mass
for more than 1000 kg. The optimizer APPS is not able
to provide a feasible solution nor a reduced objective
function value in the given time frame.

5 CONCLUSIONS

We presented the multidisciplinary analysis and
optimization problem of the DLR SpaceLiner design
concept involving the disciplines geometry, aerody-
namics, thermal protection and structure.The goal was
to find a feasible and possibly optimized solution of the
whole system starting from the best solution of each
single discipline. For this purpose, we implemented
the given simulation tools of each discipline in the
integration framework RCE using the sIDF approach.

We introduced a process chain, where we utilized
the collaboration support provided by the integration
framework RCE. In the presented use case of thermal
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Figure 6. Comparison of COBYLA, APPS and SOLVOPT.

management in spacecraft design, RCE enables effi-
cient collaboration between experts working at differ-
ent sites. The tool specialists use newly implemented
optimization methods immediately. The optimization
specialists develop new methods always against the
latest version of the involved tools. From an end user’s
point of view, the introduced approach allows time
savings and simplifies collaborative work.

Based on experiences made in multidisciplinary
optimization, RCE will be extended continuously.
Currently, tools can be distributed from one expert
to another. This does not ensure that an expert from
another discipline knows how to use the tool correctly.
RCE will address this issue in the future. Documen-
tation of the tool will be directly integrated in RCE
as well as an opportunity for instant messaging. A
new visualization that focuses on multidisciplinary
optimization is also planned.

Concerning the engineering simulation tools of
the involved disciplines, several modifications and
enhancement are planned in the near future.

Furthermore, to enhance the presented multidisci-
plinary analysis framework, we envisage to integrate
an additional tool for a more reliable analysis of the
passive thermal protection system of the SpaceLiner
and another tool for the exact estimation of tank
masses.
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