Performance of Block Jacobi-Davidson EigenSolver Algorithms

Melven Röhrig-Zöllner, Jonas Thies, Moritz Kreutzer, Andreas Alvermann, Andreas Pleger, Achim Basermann, Georg Hager, Gerhard Wellein, and Holger Fehske

1. **DLR, Simulation and Software Technology, Erlangen Regional Computing Center, University of Greifswald**

Numerical method

Eigenvalue problem definition

- Calculate a small number of extremal eigenpairs \((\lambda, \mathbf{x})\) for a sparse, large matrix \(A\) if \(A\) is Hermitian.
- With an unshifted basis \(Q = \{\mathbf{q}_1, \ldots, \mathbf{q}_n\}\), each \(A\)-invariant subspace \(V = \text{span}(\mathbf{v}_1, \ldots, \mathbf{v}_m)\) one obtains the same stable block framework: \(AQ = QD\).

Block correction equation

- For more than 20 eigenpairs, the block Jacobi-Davidson method may be beneficial.

Block vector operations

- Required in each inner iteration (iterative solver for the block correction equation).
- Calculate block vector \(y\) for given \(X = \{\mathbf{x}_1, \ldots, \mathbf{x}_m\}\) with \(Ay = \lambda y\).
- Shifted sparse matrix–multiple-vector multiplication (spMMVM) can be applied in one step.

Applications from quantum physics

Spin matrices

- Generic benchmark problem from quantum physics.
- Chain of \(J\)-electron spins \((s = 1/2)\) closed to a ring (Fig. 6).
- Computational representation of Hamilton operator in terms of bit patterns & bit swap/flip operations.
- Block vectors required as input to the spin vector.

References

Software

- **ESSEX (General Hybrid Optimized Sparse Toolkit)**
 - General hybrid optimized sparse toolkit
 - High-level parallel programming model for scalable and efficient sparse matrix computations
 - Support for CUDA, OpenMP, Pthreads, etc.

- **PHYSICS**
 - Electronic structure and quantum chemistry applications
 - Large-scale quantum chemistry problems

- **GHOST**
 - General hybrid optimized sparse toolkit
 - High-level parallel programming model for scalable and efficient sparse matrix computations
 - Support for CUDA, OpenMP, Pthreads, etc.

- **SGHOST**
 - High-level parallel programming model for scalable and efficient sparse matrix computations
 - Support for CUDA, OpenMP, Pthreads, etc.

Setup

- Spin matrices and vectors distributed on a cluster of 16 nodes (using MPI)
- Dual socket nodes with 10 cores per socket using OpenMP parallelization
- Intel Xeon E5-2660 v2 CPU (8 cores) at 2.20 GHz

Results

- Significant speedup of Jacobi-Davidson through blocking in contrast to the conclusion [1];
- For more than 20 eigenpairs blocking may be beneficial.
- Experimentation with different block sizes (2-4) and different numbers of MPI processes.
- Performance improvements for blocking numbers.

Future work

- Further research on the performance of the Jacobi-Davidson method by blocking.
- Use of hybrid parallelization strategies in the future.

Performance engineering of key operations

Jacobi-Davidson operator

- Required in each inner iteration (iterative solver for the block correction equation).
- Calculate block vector \(y\) for given \(X = \{\mathbf{x}_1, \ldots, \mathbf{x}_m\}\) with \(Ay = \lambda y\).
- Shifted sparse matrix–multiple-vector multiplication (spMMVM) can be applied in one step.

Spin

- Single-electron spin operators.
- Computational representation of Hamilton operator in terms of bit patterns & bit swap/flip operations.
- Block vectors required as input to the spin vector.

Applications from quantum physics

Spin matrices

- Generic benchmark problem from quantum physics.
- Chain of \(J\)-electron spins \((s = 1/2)\) closed to a ring (Fig. 6).
- Computational representation of Hamilton operator in terms of bit patterns & bit swap/flip operations.
- Block vectors required as input to the spin vector.

References

