Effects of cloud variability on TROPOMI molecular and cloud property products

Sebastián Gimeno García¹, Thomas Trautmann¹, Rieke Heinze², Diego Loyola¹, Fabian Rohman¹, Pascal Hedelt¹, Olena Schüssler¹ and Franz Schreier¹

> ¹German Aerospace Center (DLR) Remote Sensing Technology Institute Oberpfaffenhofen, GERMANY

²Institut für Meteorologie und Klimatologie Leibniz Universität Hannover Hannover, GERMANY

August 3, 2014

Outline

Motivation

2 Inside-pixel variability effects

Impact on cloud property retrieval

4 Impact on ozone retrieval

5 Conclusions

• The design of spectrometers aboard spaceborne platforms:

- trade-off between spectral and spatial resolutions
- guarantee of high signal-to-noise ratios
- Land/ocean optical imagers favor spatial over spectral resolution
 - designed to highly resolve surface properties
- Atmospheric composition sensors favor spectral over spatial resolution
 - designed to highly resolve molecular absorption features

• The design of spectrometers aboard spaceborne platforms:

- trade-off between spectral and spatial resolutions
- guarantee of high signal-to-noise ratios
- Land/ocean optical imagers favor spatial over spectral resolution
 - designed to highly resolve surface properties
- Atmospheric composition sensors favor spectral over spatial resolution
 - designed to highly resolve molecular absorption features

- broken clouds
- surface cover
- aerosol plumes
- ▶ ...

- broken clouds
- surface cover
- aerosol plumes
- ▶ ...

- broken clouds
- surface cover
- aerosol plumes
- ▶ ...
- Models do not account for inside-pixel variability
 - vertical atmospheric layers of constant properties

- broken clouds
- surface cover
- aerosol plumes
- ...

- broken clouds
- surface cover
- aerosol plumes
- ...
- Models do not account for inside-pixel variability
 - vertical atmospheric layers of constant properties
- Models do not account for photon horizontal transport
 - 1-dimensional (1D) horizontally homogeneous radiative transfer (RT) models

- broken clouds
- surface cover
- aerosol plumes
- ▶ ...
- Models do not account for inside-pixel variability
 - vertical atmospheric layers of constant properties
- Models do not account for photon horizontal transport
 - 1-dimensional (1D) horizontally homogeneous radiative transfer (RT) models
- variability and 3D RT effects:
 - bias modelled radiances
 - bias retrieved atmospheric products
 - ... but, by how much?

Outline

Motivation

Inside-pixel variability effects

Impact on cloud property retrieval

4 Impact on ozone retrieval

5 Conclusions

- heterogeneous cloud field
 - PaLM A PArallelized Large-Eddy Simulation Model for Atmospheric and Oceanic Flows [Heinze et al. (2012)]
 - 6.4×6.4 km² domain
 - \blacktriangleright 10 \times 10 \times 10 m^3 cells of liquid water content (LWC)

- heterogeneous cloud field
 - PaLM A PArallelized Large-Eddy Simulation Model for Atmospheric and Oceanic Flows [Heinze et al. (2012)]
 - 6.4×6.4 km² domain
 - $\blacktriangleright~10\times10\times10~m^3$ cells of liquid water content (LWC)
- atmospheric background
 - ► pressure, temperature, air number density, molecular mixing ratios

- heterogeneous cloud field
 - PaLM A PArallelized Large-Eddy Simulation Model for Atmospheric and Oceanic Flows [Heinze et al. (2012)]
 - 6.4×6.4 km² domain
 - $\blacktriangleright~10\times10\times10~m^3$ cells of liquid water content (LWC)
- atmospheric background
 - > pressure, temperature, air number density, molecular mixing ratios
- solar irradiance spectrum (set to 1)

- heterogeneous cloud field
 - PaLM A PArallelized Large-Eddy Simulation Model for Atmospheric and Oceanic Flows [Heinze et al. (2012)]
 - 6.4 × 6.4 km² domain
 - $10 \times 10 \times 10$ m³ cells of liquid water content (LWC)
- atmospheric background
 - > pressure, temperature, air number density, molecular mixing ratios
- solar irradiance spectrum (set to 1)
- surface properties: height and albedo

- heterogeneous cloud field
 - PaLM A PArallelized Large-Eddy Simulation Model for Atmospheric and Oceanic Flows [Heinze et al. (2012)]
 - 6.4×6.4 km² domain
 - $\blacktriangleright~10\times10\times10~m^3$ cells of liquid water content (LWC)
- atmospheric background
 - > pressure, temperature, air number density, molecular mixing ratios
- solar irradiance spectrum (set to 1)
- surface properties: height and albedo
- Instrument specifications: TROPOMI [Veefkind et al. (2012)]
 - ► spatial resolution: 7 × 7 km² ground pixel
 - instrumental slit function
 - Ozone fitting window FWHM: 0.54 nm
 - O2 A-band window FWHM: 0.38 nm

- heterogeneous cloud field
 - PaLM A PArallelized Large-Eddy Simulation Model for Atmospheric and Oceanic Flows [Heinze et al. (2012)]
 - 6.4×6.4 km² domain
 - $10 \times 10 \times 10$ m³ cells of liquid water content (LWC)
- atmospheric background
 - > pressure, temperature, air number density, molecular mixing ratios
- solar irradiance spectrum (set to 1)
- surface properties: height and albedo
- Instrument specifications: TROPOMI [Veefkind et al. (2012)]
 - spatial resolution: 7 × 7 km² ground pixel
 - instrumental slit function
 - Ozone fitting window FWHM: 0.54 nm
 - ★ O2 A-band window FWHM: 0.38 nm
- 3D radiative transfer model
 - MoCaRT Monte Carlo Radiative Transfer model
 - ★ LBL molecular absorption properties from GARLIC code

- heterogeneous cloud field
 - PaLM A PArallelized Large-Eddy Simulation Model for Atmospheric and Oceanic Flows [Heinze et al. (2012)]
 - 6.4 × 6.4 km² domain
 - $10 \times 10 \times 10$ m³ cells of liquid water content (LWC)
- atmospheric background
 - > pressure, temperature, air number density, molecular mixing ratios
- solar irradiance spectrum (set to 1)
- surface properties: height and albedo
- Instrument specifications: TROPOMI [Veefkind et al. (2012)]
 - spatial resolution: 7 × 7 km² ground pixel
 - instrumental slit function
 - Ozone fitting window FWHM: 0.54 nm
 - ★ O2 A-band window FWHM: 0.38 nm
- 3D radiative transfer model
 - MoCaRT Monte Carlo Radiative Transfer model
 - ★ LBL molecular absorption properties from GARLIC code

 \implies radiance spectrum of a heterogeneous scene as seen by TROPOMI

Inside-pixel variability effects – Study

Goal

- Study the impact of non-resolved in-scene variability on:
 - simulated radiance spectra
 - molecular and cloud products

Design

- Select a high-resolved 10×10×10 m³ PaLM cumulus field embedded in a 6.4x6.4km² domain
- Coarsen n-fold the original 3D LWC field at 9 different horizontal resolutions:
 - ► 10×10m², 20×20m², 40×40m², 80×80m², 160×160m², 320×320m², 640×640m², 1280×1280m², 6400×6400m²
- Calculate spectra at each spatial resolution by
 - averaging over the whole spatial pixel domain
 - convolving the LBL RT calculations with the TROPOMI ILS

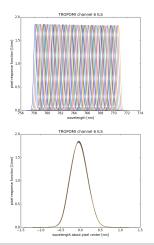
Outline

Motivation

3 Impact on cloud property retrieval

Impact on ozone retrieval

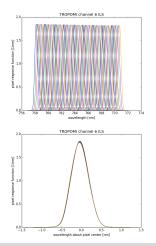
5 Conclusions

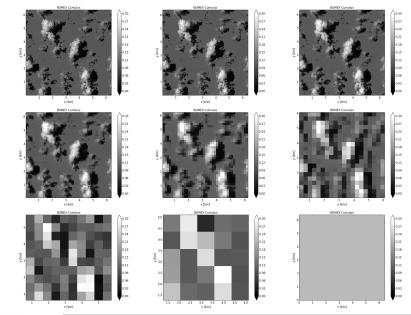

cloud property retrieval - Setup

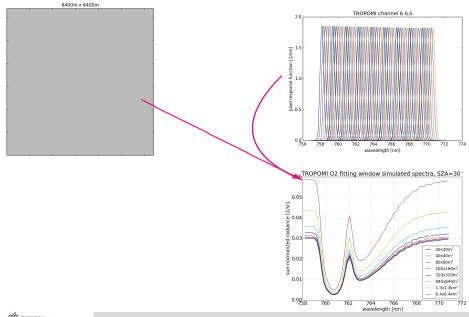
- Observer at TOA = 60 km
- Viewing zenith angle: 15°
- Solar zenith angle: 0°, 30°, 60°
- Relative azimuth angle: 45°
- Surface height: 0 km
- Surface albedo = 0.1
- US standard atmosphere
- O2 LBL absorption coefficients
- Rayleigh scattering
- Cloud PSD:
 - Gamma: N_c=100, α=7
- Mie scattering
 - full cloud phase function

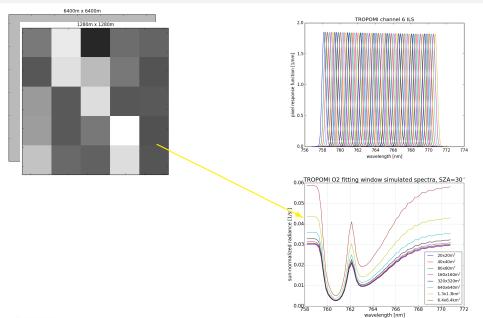
cloud property retrieval - Setup

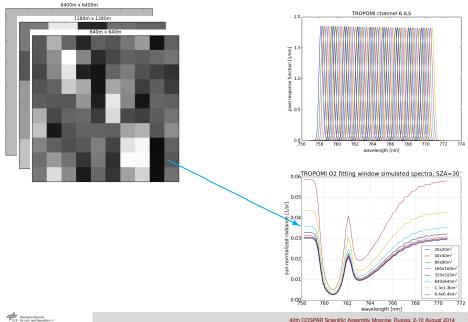
- Observer at TOA = 60 km
- Viewing zenith angle: 15°
- Solar zenith angle: 0°, 30°, 60°
- Relative azimuth angle: 45°
- Surface height: 0 km
- Surface albedo = 0.1
- US standard atmosphere
- O2 LBL absorption coefficients
- Rayleigh scattering
- Cloud PSD:
 - Gamma: N_c=100, α=7
- Mie scattering
 - full cloud phase function

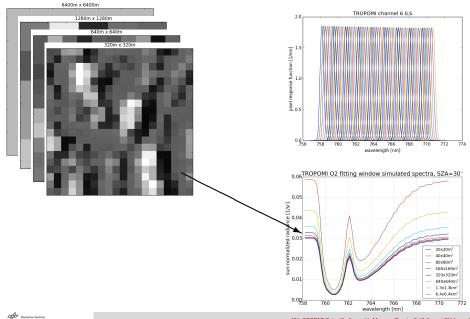

• TROPOMI channel 6 spectral sampling and resolution

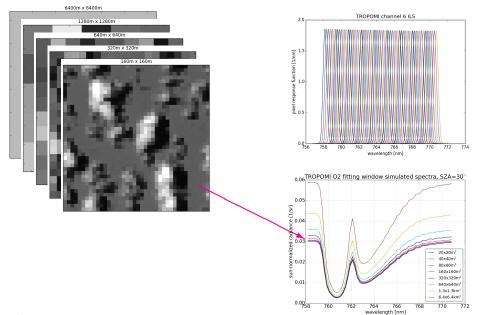

cloud property retrieval - Setup

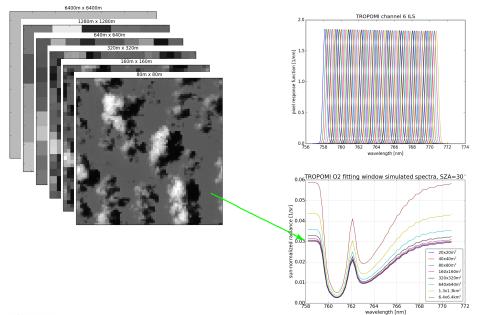

- Observer at TOA = 60 km
- Viewing zenith angle: 15°
- Solar zenith angle: 0°, 30°, 60°
- Relative azimuth angle: 45°
- Surface height: 0 km
- Surface albedo = 0.1
- US standard atmosphere
- O2 LBL absorption coefficients
- Rayleigh scattering
- Cloud PSD:
 - Gamma: N_c=100, α=7
- Mie scattering
 - full cloud phase function

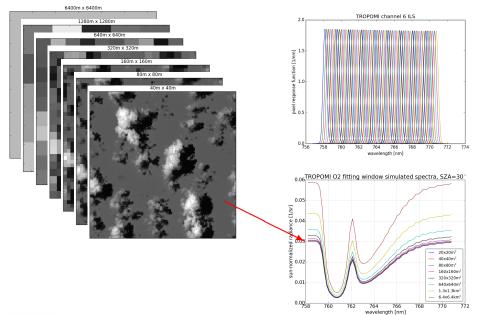

• Actually, GOME2 ch4 spectral sampling and resolution

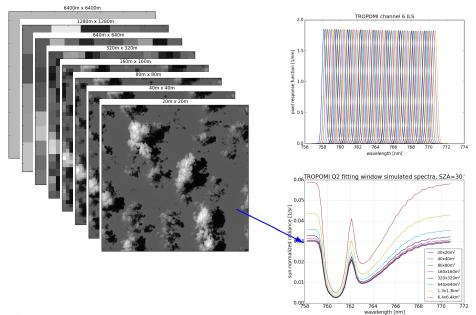

Spatially resolved radiances @ 758 nm

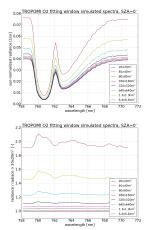


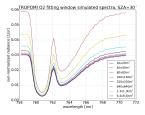


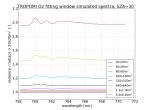


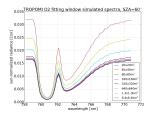


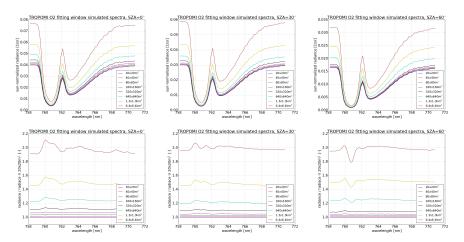


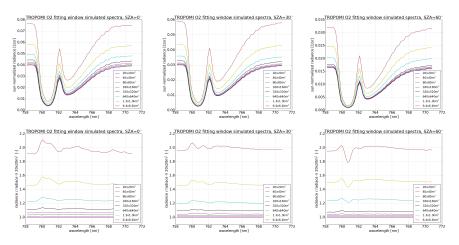






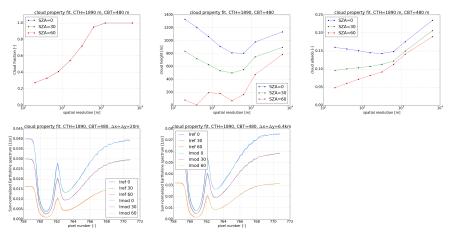






Coarser cloud fields bias the radiances to higher values

- Coarser cloud fields bias the radiances to higher values
- The spectral shape also depends on spatial resolution


Cloud property retrieval – Forward model

- Independent pixel approximation:
 - cloudy and clear sky contributions
- Clouds and surface treated as Lambertian reflectors
- Rayleigh scattering
- O₂ absorption
- geometrical cloud fraction
 - portion of vertical columns where cloud optical thickness is greater than 0

 $I(CH, CA, CF) = CF I_{cld}(CH, CA) + (1 - CF) I_{clr}(SH, SA)$

CF: Cloud fraction CH: Cloud height, CA: Cloud albedo SH: Surface height, SA: Surface albedo

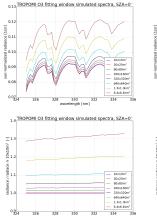
Cloud property retrieval - Results

- Overall good convergence, independently of spatial resolution
- CA increases for decreasing spatial resolution
- CH well bellow geometrical cloud top height
 - ▶ for high solar inclination (SZA=60°), CH bellow cloud bottom height

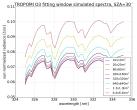
Outline

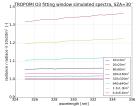
Motivation

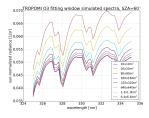
- 2 Inside-pixel variability effects
- Impact on cloud property retrieval
- Impact on ozone retrieval

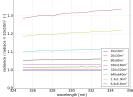

Ozone retrieval - Setup

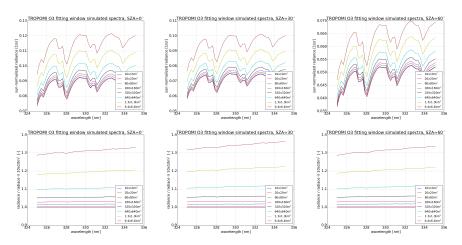
- Observer at TOA = 60 km
- Viewing zenith angle: 15°
- Solar zenith angle: 0°, 30°, 60°
- Relative azimuth angle: 45°
- Surface height: 0 km
- Surface albedo = 0.1
- US standard atmosphere
- O3 cross sections [Brion]
- NO2 cross sections [Vandaele]
- CSs interpolated at all atm. levels
- Rayleigh scattering
- No Raman scattering


- Cloud PSD:
 - Gamma: N_c=100, α=7
- Mie scattering
 - full cloud phase function
- TROPOMI channel 3:
 - Gaussian slit function
 - Spectral sampling: 0.22 nm
 - Spectral resolution (FWHM): 0.54 nm

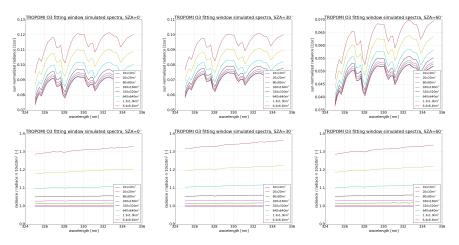

Ozone fitting window spectra


336

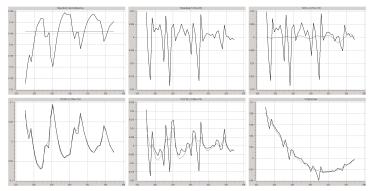

wavelength [nm]



326 328 330

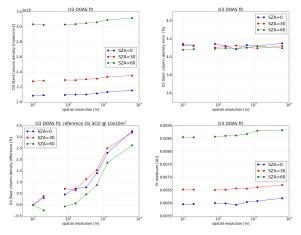

Ozone fitting window spectra

Coarser cloud fields bias the radiances to higher values



Ozone fitting window spectra

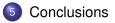
- Coarser cloud fields bias the radiances to higher values
- The spectral shape slightly depends on spatial resolution


- Differential optical absorption spectroscopy (DOAS)
- QDOAS software package developed @ BIRA
- Results presented as O3 slant column densities (SCD)

 Overall good convergence, independently of spatial resolution and illumination

Iow residua

Ozone retrieval - Results



- Ozone SCD increases for decreasing spatial resolution
- Impact of scene heterogeneity on ozone SCDs is relatively small, bellow the fit error (4%)
- However, the effect can be remarkable for tropospheric ozone

Outline

Motivation

- 2 Inside-pixel variability effects
- Impact on cloud property retrieval
- 4 Impact on ozone retrieval

 MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances
 - Sub-pixel resolution also affects absorption features due to changes in photon path lengths

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances
 - Sub-pixel resolution also affects absorption features due to changes in photon path lengths
- Cloud property retrieval

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances
 - Sub-pixel resolution also affects absorption features due to changes in photon path lengths
- Cloud property retrieval
 - Cloud albedo increases for decreasing sub-pixel resolution

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances
 - Sub-pixel resolution also affects absorption features due to changes in photon path lengths
- Cloud property retrieval
 - Cloud albedo increases for decreasing sub-pixel resolution
 - * the radiances are higher at lower sub-pixel resolutions

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances
 - Sub-pixel resolution also affects absorption features due to changes in photon path lengths
- Cloud property retrieval
 - Cloud albedo increases for decreasing sub-pixel resolution
 - * the radiances are higher at lower sub-pixel resolutions
 - clouds shadows more evident at high sub-pixel resolutions, what makes the scene darker

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances
 - Sub-pixel resolution also affects absorption features due to changes in photon path lengths
- Cloud property retrieval
 - Cloud albedo increases for decreasing sub-pixel resolution
 - * the radiances are higher at lower sub-pixel resolutions
 - clouds shadows more evident at high sub-pixel resolutions, what makes the scene darker
 - Cloud height is bellow the geometrical cloud top height

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances
 - Sub-pixel resolution also affects absorption features due to changes in photon path lengths
- Cloud property retrieval
 - Cloud albedo increases for decreasing sub-pixel resolution
 - * the radiances are higher at lower sub-pixel resolutions
 - clouds shadows more evident at high sub-pixel resolutions, what makes the scene darker
 - Cloud height is bellow the geometrical cloud top height
 - ★ sensitive to O2 absorption features

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances
 - Sub-pixel resolution also affects absorption features due to changes in photon path lengths
- Cloud property retrieval
 - Cloud albedo increases for decreasing sub-pixel resolution
 - * the radiances are higher at lower sub-pixel resolutions
 - clouds shadows more evident at high sub-pixel resolutions, what makes the scene darker
 - Cloud height is bellow the geometrical cloud top height
 - ★ sensitive to O2 absorption features
 - the longer the photon path, the deeper the O2 absorption band, the lower the cloud height

- MoCaRT 3D RT model is suitable for heterogeneous scene studies for present and future atmospheric missions
- optical variability and 3D RT effects have a large impact on radiance spectra
 - The coarser the sub-pixel resolution, the higher the radiances
 - Sub-pixel resolution also affects absorption features due to changes in photon path lengths
- Cloud property retrieval
 - Cloud albedo increases for decreasing sub-pixel resolution
 - * the radiances are higher at lower sub-pixel resolutions
 - clouds shadows more evident at high sub-pixel resolutions, what makes the scene darker
 - Cloud height is bellow the geometrical cloud top height
 - ★ sensitive to O2 absorption features
 - the longer the photon path, the deeper the O2 absorption band, the lower the cloud height
 - minimum at resolution of some hundreds of meters, but difficult to generalize the results

Ozone SCD increases for decreasing spatial resolution

- Ozone SCD increases for decreasing spatial resolution
- Impact of scene heterogeneity on ozone SCDs is relatively small, bellow the fit error (4%)

- Ozone SCD increases for decreasing spatial resolution
- Impact of scene heterogeneity on ozone SCDs is relatively small, bellow the fit error (4%)
- It can be remarkable for tropospheric ozone

- Ozone SCD increases for decreasing spatial resolution
- Impact of scene heterogeneity on ozone SCDs is relatively small, bellow the fit error (4%)
- It can be remarkable for tropospheric ozone
- We expect higher inhomogeneous clouds to have a larger effect on ozone

- Ozone SCD increases for decreasing spatial resolution
- Impact of scene heterogeneity on ozone SCDs is relatively small, bellow the fit error (4%)
- It can be remarkable for tropospheric ozone
- We expect higher inhomogeneous clouds to have a larger effect on ozone
- ► We also expect the heterogeneity effects to be larger for tropospheric gases: H2O, CO, CH4, ...

• Study scene heterogeneity effects on other gases

- Study scene heterogeneity effects on other gases
- Use more cloud cases

- Study scene heterogeneity effects on other gases
- Use more cloud cases
- Use other cloud types

- Study scene heterogeneity effects on other gases
- Use more cloud cases
- Use other cloud types
- Use a scattering RT model in the cloud property retrieval

- Study scene heterogeneity effects on other gases
- Use more cloud cases
- Use other cloud types
- Use a scattering RT model in the cloud property retrieval
- Use the (3D) air mass factors to convert the molecular results to vertical column densities

- Study scene heterogeneity effects on other gases
- Use more cloud cases
- Use other cloud types
- Use a scattering RT model in the cloud property retrieval
- Use the (3D) air mass factors to convert the molecular results to vertical column densities

• . . .

