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Many systems include sensors with large measurement delays that must be fused in a Kalman filter in real time.

Often, the filter statemust bepropagatedat a higher rate than the rate atwhichmeasurements are taken.This can lead

to a significant amount of unusedCPU time during the time steps inwhich nomeasurements are available. This paper

presents a method of fusing delayed measurements for a restricted set of systems, which more efficiently uses

processing resources at the expense of data availability. Thenewmethod splits the filter into a high-rate anda low-rate

task running in parallel. The high-rate taskpropagates thewhole states, and the low-rate taskpropagates andupdates

an error state filter, which can be distributed over several high-rate periods.

I. Introduction

T HIS paper considers the problemof designing efficient real-time
discrete Kalman filters for systems with latent sensor

measurements. The focus is on a particular set of systems in which
new measurements are not taken until delayed measurements are
available, which is a subset of the more general problem of fusing
measurements with general frequencies and delay times. This is a
common situation in the field of vehicle navigation, in which high-
rate (HR) low-latency control data (for example, accelerometer, gyro,
wheel encoder, etc.) are used to propagate a filter in time, and low-rate
(LR) high-latency observation measurements (ex. GPS, star tracker,
vision systems, etc.) are used to update the filter. Often, the designer
has the option to synchronize measurements (for example, by
scheduling sensor triggers) such that multiple sensors are sampled at
the same time. This reduces the frequency of Kalman filter (KF)
update steps, making it more likely that the system fits the particular
set of systems explored by this work.
Often, the timeline for a real-time implementation of a KF looks

like Fig. 1. The KF is propagated at each filter time step k from the
previous time tk−1 to the current time tk. Whenever delayed measure-
ments are available at time step m, the KF must additionally be
updated at that time step (taking the delay into account). Propagation
is done at HR, and updates are done at LR,where the frequency of the
LR operations is less than or equal to the frequency of the HR
operations. A real-time timing requirement is also imposed, which
requires that the operations for each HR period are complete before
the next time step occurs, thus ensuring that the KF results can be
output to the user synchronously. Therefore, the computer must have
enough resources to ensure that during time step m both the propa-
gation and update computations complete within one HR period.
Assuming the propagation computations take the same amount of
time regardless of the time step, there will always be a period of time
between the end of the propagation computations and the beginning
of the next time step for every HR time step that does not include an
update step (such as all time steps except m in the figure). This can
result in a large amount of unused processor time if the LR frequency
is much lower than the HR frequency or if there is a large amount
of computations per LR measurement (such as when additional
processing is needed to convert the measurement into the form
required by the KF).

After an extensive literature survey, no work was found that
addresses the sensor latency problem and effectively uses this unused
CPU time.All real-timeKalman filter implementations use a series of
serial propagate and update steps, similar to Fig. 1, and thus generally
do not effectively use the CPU. This includes methods that spe-
cifically address the problem of fusing latent sensor measurements,
such as incorporating delayed states in themeasurement equation [1],
extrapolating the measurement to the current time [2], augmenting
the state vector with delay states [3], recalculating the filter, and other
nonoptimal methods [4]. There are several papers that present
decentralized (or distributed) Kalman filter architectures [5–7],
which spread out computations by implementing parallel processing
schemes, but these address the entirely different problem of
combining results from multiple parallel filters.
This paper presents a real-time dual rate version of the KF, which

not only solves the sensor latency problem but also generally uses the
CPU more efficiently. In doing so, a new metric for evaluating
algorithm performance is created, which measures the minimum
processing power needed to meet the real-time timing requirement.
The new dual rate filter is similar to Larsen’s measurement extrap-
olation method [2] but has some key differences. Variations of the
dual rate filter using the extendedKF have already been implemented
in a number of systems showing some success [8,9], including the
hybrid navigation system, which flew on the SHEFEX2 sounding
rocket mission [10,11].

II. System and Filter Equations

A linear discrete system with additive Gaussian noise can be
modeled as

xk � Φk−1xk−1 � Bk−1uk−1 � wk−1 (1)

yk � Hkxk � νk (2)

where wk ∼N �0; Qk� and νk ∼N �0; Rk�. Assuming the two noise
vectors are independent, the optimal state estimator is a KF [12].
In this work, it is useful to use the error state formulation of the KF

(commonly used for attitude estimation [13]), which is found by
estimating the error state vector δx rather than the whole state vector
x. The error state vector is defined as in Eq. (3), giving the system
model in Eq. (4). The assumed form of the measurement model is in
Eq. (5), which directly observes the error states:

δxk ≡ xk − x̂k (3)

δxk � Φk−1δxk−1 � wk−1 (4)

zk � Hkδxk � νk (5)
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The error state Kalman filter equations are summarized in the
following text. Equations (6–8) represent the time propagation step,
and Eqs. (9–11) are for the measurement update step:

x̂k− � Φk−1x̂�k−1�� � Bk−1uk−1 (6)

δx̂k− � Φk−1δx̂�k−1�� (7)

Pk− � Φk−1P�k−1��ΦT
k−1 �Qk−1 (8)

Kk � Pk−HT
k �HkPk−H

T
k � Rk�−1 (9)

δx̂k� � δx̂k− � Kk�zk −Hkδx̂k− � (10)

Pk� � �I − KkHk�Pk− (11)

x̂k� � x̂k− � δx̂k� ; δx̂k�←0 (12)

Equation (12) is the reset equation, which includes a two-step process
used tomove information from the error state vector to thewhole state
vector [13]. The current error state estimate is simultaneously added
to the whole state vector and removed from the error state vector,
which resets the error state vector to zero. If the reset equation is used
after each update, then the error state vector is effectively always zero,
and this formulation of the error state KF is mathematically
equivalent to the standard KF.
If the KF used to estimate this system is run in real time, then the

measurement information is not available to the filter until some time
after the measurement was taken, say M time steps later. Assuming
the filter is propagated such that the filter reference time (i.e., filter
time of validity) is always close to the system reference time (i.e.,
real time), then at least some of the information needed from the
measurement model is not known until some time stepm later, where
m � k�M. The delayedmeasurement cannot be fused into the filter
without some modification of the error state KF.

III. Dual Rate Filter

Section I discusses a number of different methods to fuse delayed
measurements, some of which optimally fuse the delayed data and
mainly differ in implementation and computational speed.Adual rate
filter is described here, which not only optimally fuses delayed
measurements but also distributes the computational burden of some
of the filter calculations over time.

A. Filter Description

Generally, the state estimate output is muchmore important for the
user than the covariance output. For example, an autonomous vehicle

control system typically uses the state estimate from the onboard
navigation system and not the covariances. None of the most popular
control methods needs state covariances, including PID, linear
quadratic Gaussian, H2, and H∞. Therefore, the covariance output
could be at a lower rate and/or delayed with respect to the state output
with little or no disadvantage to the user.
The dual rate filter takes advantage of this by processing all

whole state calculations in a HR high-priority task and all error state
and covariance calculations in a LR low-priority task since they are
only needed to process observation measurements. The HR task
propagates the whole states in time and calculates some variables
needed for the LR task. The LR task propagates the covariance
matrix to the measurement reference times using a LR covariance
propagation routine and updates the covariance matrix and error state
vector when measurement information is available. The estimated
error states are then fed back to theHR task to correct thewhole states.
For this discussion, it is assumed that the HR and LR tasks run on a
single processor.
Three assumptions are needed in order to apply the dual rate filter

to the system. These limit the scope of the system but are common
in several types of problems. First, measurement reference times are
known at time step k (i.e., at time step k, it is known that a
measurement is being taken). Second, a delayed measurement is
available before the next measurement is taken (i.e., the next
measurement reference time occurs after time step m). Finally,
covariances are only needed by the user at LR.Without further loss of
generality, it is also assumed that measurements occur at a fixed
period of N time steps (M ≤ N) in order to simplify notation.
The equations needed for the dual rate filter are first described,

followed by the filter structure and timing.
Most of the filter calculations are done in the LR task using a LR

version of the filter propagation equations, which is equivalent to
recursively applying Eqs. (7) and (8) to propagate the error state
vector and covariance from time step k − N to some time step j,

δx̂j− � Φ�k−N�→jδx̂�k−N�� (13)

Pj− � Φ�k−N�→jP�k−N��ΦT
�k−N�→j �Q�k−N�→j (14)

whereΦ�k−N�→j andQ�k−N�→j can be used to propagate the filter from
time step k − N to some general time step j and are calculated in the
HR task using the following recursive equations:

Φ�k−N�→�k−N�1� ≡Φk−N (15)

Φ�k−N�→j � Φj−1Φ�k−N�→�j−1� (16)

Q�k−N�→�k−N�1� ≡Qk−N (17)

Q�k−N�→j � Φj−1Q�k−N�→�j−1�ΦT
j−1 �Qj−1 (18)

All of the filter update equations remain unchanged, except for
the reset equation. Equation (12) cannot be used immediately after
the update, which is completed at time step l (l � k� L, where
M ≤ L ≤ N), since the whole states and error states will be at two
different reference times. Instead, the error states are first propagated
to time step l using Eq. (13) before feeding back the error state
estimates to the whole states. The reset equation must then be
changed to

x̂l� � x̂l− � δx̂l− ; δx̂l−←0 (19)

which maintains the convention that the − and� represent reference
times immediately before and after the update, respectively.
Putting all of these equations together, the dual rate filter structure

is shown in Fig. 2, where the following steps are done:

Fig. 1 Serial real-time KF timeline. P blocks are KF propagations, and
U blocks are KF updates.
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1) At each time step j, the HR task computes x̂j− using Eq. (6) and
Φ�k−N�→j and Q�k−N�→j using Eqs. (15–18).
2) At each measurement reference time k, the HR task computes

and sends Φ�k−N�→k and Q�k−N�→k to the LR task.
3) The LR task then computes Pk− using Eq. (14).
4) When the measurement information is available at time stepm,

the LR task updates the error state filter using Eqs. (9–11).
5) The LR task then sends δx̂k� to the HR task.
6) During the next time step l, the HR task calculates δx̂l− using

Eq. (13) and resets the filter states using Eq. (19).
Note that the HR task has a higher priority than the LR task, so all

LR processing is paused any time HR processing occurs. This is
needed so that the HR task does not overrun and exceed its real-time
timing requirements. It also ensures that the LR task is only running
between HR processing blocks.
Using this dual rate filter, the state vector is not updated until time

step l. This is generally later than using any of the filtering methods
discussed in Sec. I, all of whichwould update the filter at time stepm.
The time difference between l and m is determined by the
computations needed in the update routines and processing power of
the computer. The processing power can be increased such that l � m
or decreased such that l � k� N and fit to the filter designer’s needs.

B. Comparison to Larsen’s Measurement Extrapolation Method

Of all the filtering methods cited in Sec. I, Larsen’s measurement
extrapolationmethod [2] is themost similar. Thismethod is similar to
the standardKF but uses the following equations to update the filter at
time step m when the measurement is available (applied to the
particular problem discussed in this work):

x̂m� � x̂m− �Φk→mKk�zk −Hkδx̂k− � (20)

Pm� � Pm− −Φk→mKkHkPk−ΦT
k→m (21)

Equation (20) is the same as combining Eqs. (10), (13), and (19).
Using Eqs. (14) and (21) can be changed to

Pm� � Φk→m�I − KkHk�Pk−ΦT
k→m �Qk→m (22)

which is the same as combining Eqs. (11) and (14).
Themain difference is in the dual rate filter’s structure and order of

equation execution, which brings two key advantages over the
measurement extrapolation method and other optimal methods that
solve the sensor latency problem. First, distribution of KF processing
allows greater usage of the CPU and thus allows less powerful
computers to be used. Second, the method is easily adaptable to dual
CPU computers since it is composed of two parallel processes.

C. Algorithm Resources

The dual rate filter requires a larger number of calculations
compared to the standard KF. There are additional one-time (per
update) calculations needed for the error state propagation and reset
equations, but the majority of additional calculations come from the
covariance propagation routine. Calculating Φ�k−N�→k and Q�k−N�→k
requires one more n × n × n matrix multiplication per HR time step
(wheren is the length of the state vector) compared to the standardKF
covariance propagation calculations. This is similar to the amount of
calculations needed for Larsen’smeasurement extrapolationmethod.
However, a more important metric for multithreaded processes is

not the number of calculations required but the amount of processing
resources needed to meet the real-time timing requirements (i.e.,
needed processing power). Of course, this depends on the particular
system under analysis. When the difference between HR and LR
frequency is large or a significant amount of computations is required
for the update routine, then the processing power needed for the dual
rate filter may be significantly less than for Larsen’s method.
To show the importance of this metric, one possible example is

explained, as shown in Fig. 3. In this case, N � 10, M � 4, and
L � 8. Larsen’s measurement extrapolation method runs on
computer A, and the dual rate filter runs on computer B. The
processing power of computer A is just enough to compute the KF
propagation and update steps in one HR period. The processing
power of computer B is scaled such that LR propagation (step 3 of the
dual rate filter) finishes before time stepm and the LR update (step 4)
finishes before time step l (where LR processes run in between
HR processes). Since the number of computations needed for the

Fig. 2 Timeline of the dual rate filter. See the text for a description of each numbered step.

Fig. 3 Example of Larsen’s method and dual rate filter timelines. The legend is as follows: propagate (P), update (U), HR propagate (HRP), HR update
(HRU), LR propagate (LRP), and LR update (LRU).
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propagate and update steps in Larsen’smethod is roughly the same as
for the dual rate filter, it is clear that computer B needs less processing
power. This example shows how the dual rate filter running on a
computer with reduced processing power can be used to give the
same state estimate as Larsen’s measurement extrapolation method
running on a more powerful computer, although at a later time step
(Larsen’s method provides an updated state estimate at time stepm).
In terms of memory usage, the dual rate filter and Larsen’s method

both use an equal amount of memory. However, the dual rate filter
may have additional CPU and memory requirements that come from
the overhead of switching between HR and LR tasks. Although, this
is usually minor.

D. Additional Modifications

There are some additional modifications to the dual rate filter that
can be employed, which can shift the computational burden to other
tasks and/or reduce the total burden.
If any calculations for the update routine can be done before the

measurement data are available (for example, calculating H, R, and
K), then this can be done in between the LR propagate and update
steps (between steps 3 and 4 in Fig. 2), which will shorten the time
needed for the LR update, bringing time step l closer to m.
OftenQ is small compared toP, making it possible to approximate

Q�k−N�→k with little change to the filter results. This can result in a
large computational savings, but it makes the filter nonoptimal.
Depending on the system and performance requirements, this could
be approximated by summing the process noise over the LR interval
[Q 0 as inEq. (23)]whichwas usedwith some success by [10] or using
some other lower-fidelity integration approach, like something akin
to Euler integration [Q 0 0 as in Eq. (24)]. For example, usingQ 0 would
save two n × n × n matrix multiplications per HR interval:

Q 0�k−N�→k �
Xk−1
i�k−N

Qi (23)

Q 0 0�k−N�→k �
Xk−1

i�k−N∕2
Qi �Φ�k−N�→k

� Xk−N∕2−1
i�k−N

Qi

�
ΦT
�k−N�→k (24)

IV. Example

Consider a general systemof the formdescribed inEqs. (1) and (2),
where the lengths of x, u, and y are 9, 3, and 3, respectively, and
N � 10, M � 4, and L � 8. The following filters are used to
estimate the state vector and account for delayed measurements:
1) Recalculate the filter at m.
2) Use Larsen’s measurement extrapolation method.
3) Use the dual rate filter.
Since each of these filters optimally fuses measurements, they all

give the same value for x̂j when j ∈= �m; l − 1� and for Pk−.
The standard Kalman filter (with no measurement delays) and

filters 1, 2, and 3 were implemented as a high-priority process
on a CMA157886 CPU module from RTD running the real-time
operating systemQNX. The propagation and update protions of each
algorithm were timed using an accurate real-time clock. The values
listed in Tables 1–3 are normalized by the total time needed for the
propagate and update steps of the standard KF. Since LR operations
for filter 3 are spread out over several time steps, the computational
burden shown for the LR propagate and update steps is the sum total
over one LR period.

The normalized needed processing power (as discussed in
Sec. III.C) for several select values of N, M, and L are listed in
Table 4. This number is equal to themaximum time needed in anyHR
period scaled such that the processing power of the standard KF is 1.
This number can be thought of as the relative CPU speed needed
in order to meet the real-time timing requirements (of course,
processing power is not just determined byCPU speed). These results
suggest that the dual rate filter may need a computer with
significantly less processing power than the other methods, which
(for any applicable system) largely depends on the value of L −M.

V. Conclusions

This work presents a new dual rate method of optimally fusing
delayed measurements using a Kalman filter split into two execution
threads of variable frequencies. After the filter is updated and before
the next measurement is taken, the dual rate filter provides the same
results as the standard KF without measurement delays and is thus
optimal during these times. The dual rate nature of the method
distributes several filter calculations over time, using processing time
that is generally unused in real-time systems, allowing the use of com-
puters with lower processing power thanwhat is needed for most other
methods. It also allows the use of a low-rate process noise covariance
matrix, which may bring significant computational savings. This
method comes at the expense of providing covariance information at a
low rate and restricting the method to systems in which delayed
measurements are received before new measurements are taken.
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