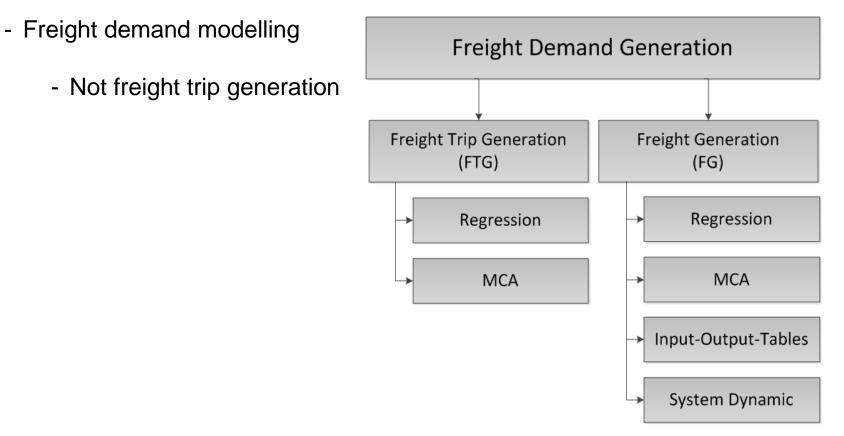
How to translate economy into freight transportation?

Stephan Müller and Jens Klauenberg

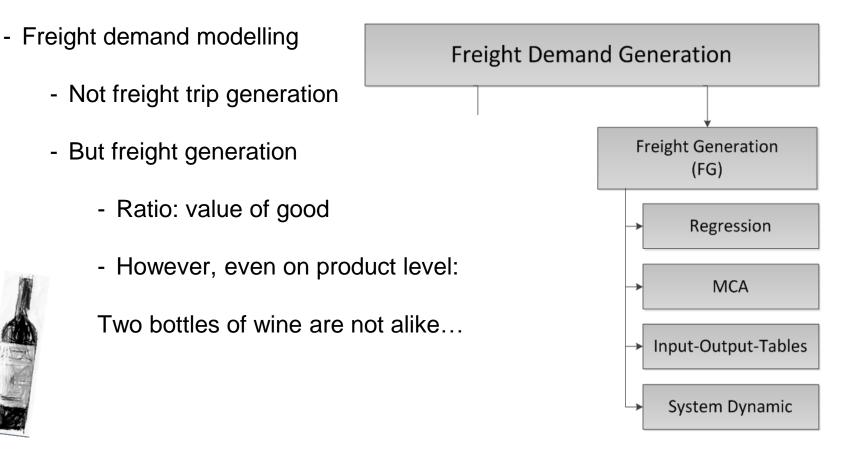
What is the challenge?

- Economy implies freight transport!



- How much?
- How much of which specific goods?
- How much of which specific goods by which economic activity?

Picture source: ec.europa.eu/transport/, adapted

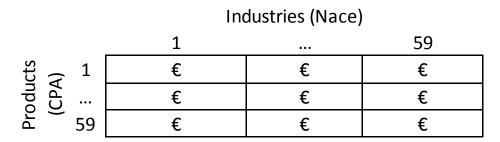

Who is mainly adressed by this challenge?

see Holguin-Veras et al. (2011): Freight generation, freight trip generation, and the perils of using constant trip rates

Who is mainly adressed by this challenge?

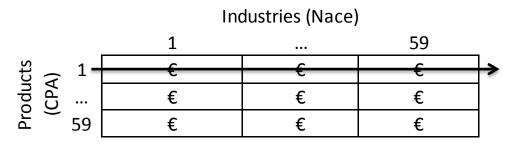
see Holguin-Veras et al. (2011): Freight generation, freight trip generation, and the perils of using constant trip rates

The idea is:


- Using disaggregated economic indicators to estimate freight generation
 - 1. Build a production and a consumption function (PF, CF) based on supply-use tables
 - 2. Derive weighting factors for PF and CF from supply-use tables
 - 3. Weight GVA and calculate the indicators for goods (CPA-classified)
 - 4. Transform CPA goods into NSTR-24 classified goods

Perform a regression analysis

Step 1: production and consumption function


- Supply Use Table is the base
 - Supply tables containing producers prices
 - Use tables containing purchaser prices

Step 1: production and consumption function

- We utalize supply tables to extract weighted production function
 - Using the supply tables' information per row enables us to know which industries produce the same products.
- We utalize use tables to extract weighted consumption function
 - Using the use tables' information per row enables us to know which industries use the same products.

Step 1: production and consumption function

- We utalize supply tables to extract weighted production function
- We utalize use tables to extract weighted consumption function

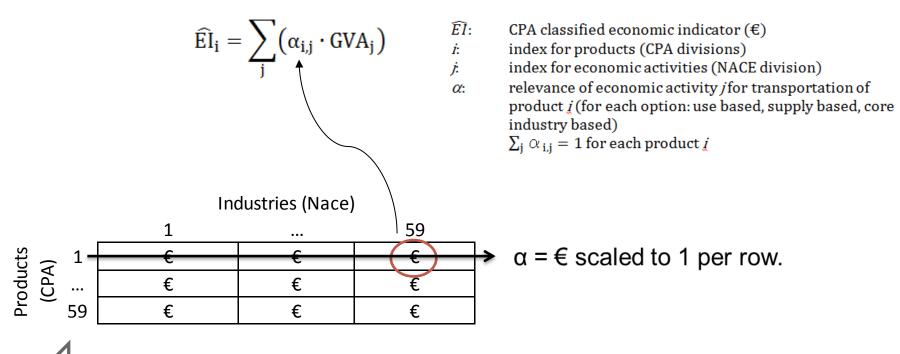
$$\widehat{EI}_{i} = \sum_{j} (\alpha_{i,j} \cdot GVA_{j})$$

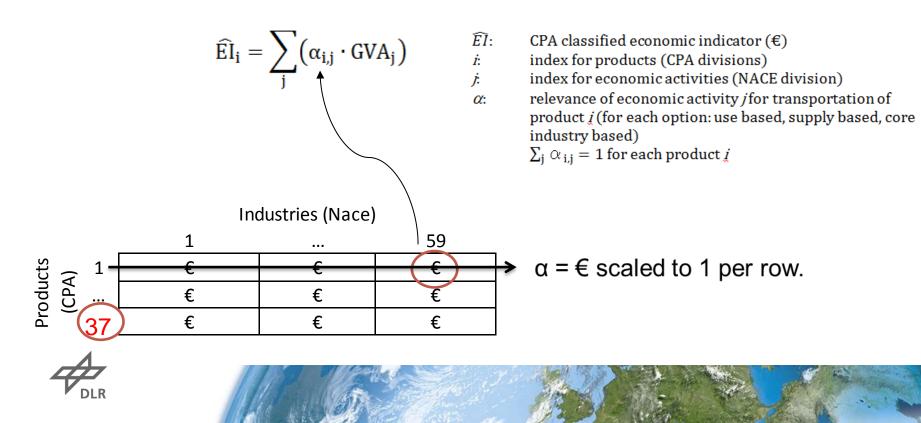
 \widehat{EI} : CPA classified economic indicator (\mathfrak{E})

i: index for products (CPA divisions)

j: index for economic activities (NACE division)

 α: relevance of economic activity *j* for transportation of product *i* (for each option: use based, supply based, core industry based)


 $\sum_{j} \alpha_{i,j} = 1$ for each product \underline{i}


Step 2: Derive weighting factors for PF and CF

- We utalize supply tables to extract weighted production function
- We utalize use tables to extract weighted consumption function

Step 2: Derive weighting factors for PF and CF

- We utalize supply tables to extract weighted production function
- We utalize use tables to extract weighted consumption function

Step 3: Weight GVA and calculate the indicators

- We have the PF, CF and weighting factor by empolying SUTs
- GVA from general economic statistics avialable
- Two economic indicators can be calulated now with PF and CF
 - 1 supply table based
 - 1 use table based

Step 3: Weight GVA and calculate the indicators

- We have the PF, CF and weighting factor by empolying SUTs
- GVA from general economic statistics avialable
- Two economic indicators can be calulated now with PF and CF
 - 1 supply table based
 - 1 use table based
- However CPA classified \rightarrow we intend a NSTR classified indicator
 - CPA are products in Euro
 - NSTR are transported commodities in tons
 - We need a brigde matrix

Step 4: Transform CPA – into NSTR-24

- We need a brigde matrix

Statistisches Bundesamt (2008), Amtsblatt der Europäischen Gemeinschaften (1998), WIFO (2010), TRAFICO et al. (2009), Eurostat (2014) and STATISTIK AUSTRIA (2014)]

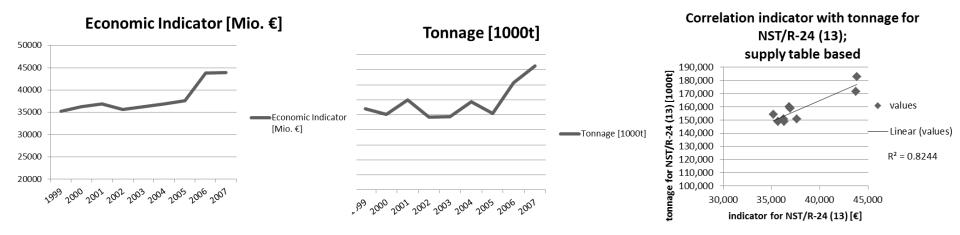
Picture source: blog.archisnapper.com, adapted

Step 4: Transform CPA – into NSTR-24

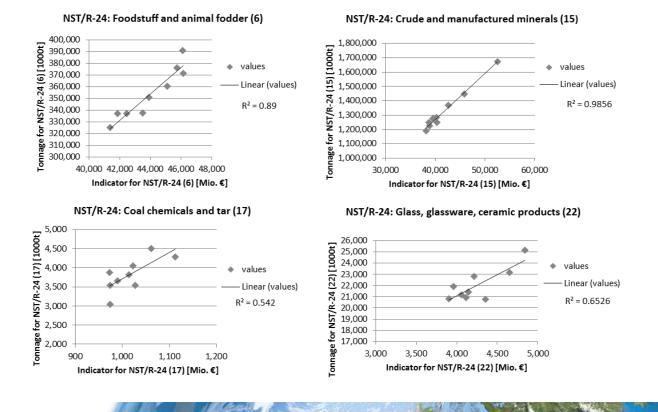
- We need a brigde matrix to re-classify CPA into NSTR

NSTR2	4 CPA	β	NSTR24	СРА	β	NSTR24	СРА	β
01	01	0.33	13	27	0.51	24	01	0.1
02	01	0.36	14	26	0.88	24	05	0.2
03	01	0.12	15	14	1	24	12	1
03	05	0 34	16	24	0.09	24	15	0.1
04	02	1	16	25	0.06	24	16	0.8
04	20	1	17	24	0.01	24	17	0.3
05	17	0.07	17	25	0.01	24	18	0.3
05	18	0.07	18	24	0.85	24	19	0.3
05	19	0.07	18	25	0.59	24	21	0.2
05	36	0.06	19	21	0.8	24	22	1
05	37	0.07	20	29	0.8	24	24	0.05
06	15	0.9	20	30	0.33	24	25	0.34
06	16	0.2	20	31	0.7	24	26	0.05
07	01	0.09	20	32	0.33	24	27	0.05
07	05	0.46	20	33	0.33	24	28	0.1
08	10	1	20	34	0.9	24	29	0.2
09	11	0.01	20	35	0.9	24	30	0.67
09	23	0.01	21	28	0.22	24	31	0.3
10	11	0.99	21	27	0.16	24	32	0.67
10	23	0.99	22	26	0.07	24	33	0.67
11	13	0.92	23	17	0.63	24	34	0.1
11	27	0.25	23	18	0.63	24	35	0.1
12	13	0.08	23	19	0.63	24	36	0.34
12	27	0.03	23	36	0.6	24	37	0.25
13	28	0.68	23	37	0.68			

Step 4: Transform CPA –into NSTR-24


- We need a brigde matrix

NSTR24	CPA	β	NSTP24	CPÁ	β	NSTR24	СРА	β
01	01	0.33	13	27	0.51	24	01	0.1
02	01	0.36	14	20	0.88	24	05	0.2
03	01	0.12	15	14	1	24	12	1
03	05	0.34	16	24	0.09	24	15	0.1
04	02	1	16	25	0.06	24	16	0.8
04	20	1	17	24	0.01	24	17	0.3
05	17	EI	$-\widehat{\mathbf{FI}}$. 0	$51 + \widehat{EI}_2$.06	0	0.3
05	18	EI _{13,3}	у — сіз	$27,y^{+}0.1$	$DI + EI_2$	8,y · 0.0	0	0.3
05	19							0.2
05	36				(1
05	37	EI:	7: economic indicator (€)					0.05
06	15	\widehat{EI} :	T: CPA classified economic indicator (€)					0.34
06	16	LI.	CFA classified economic mulcator (ϵ)					
07	01	у:	year					0.05
07	05	-	-					0.1
08	10	1	20	34	0.9	24	29	0.2
09	11	0.01	20	35	0.9	24	30	0.67
09	23	0.01	21	28	0.22	24	31	0.3
10	11	0.99	21	27	0.16	24	32	0.67
10	23	0.99	22	26	0.07	24	33	0.67
11	13	0.92	23	17	0.63	24	34	0.1
11	27	0.25	23	18	0.63	24	35	0.1
12	13	0.08	23	19	0.63	24	36	0.34
12	27	0.03	23	36	0.6	24	37	0.25
13	28	0.68	23	37	0.68			


Finally: perform a regression analysis

- Now a regression analysis between the economic indicator and the transported tonnage is possible [data available from 1999-2007]
 - Example NSTR-24 (13): Metal Products

Finally: Result evaluation

- Now a regression analysis between the economic indicator and the transported tonnage is possible [data available from 1999-2007]

Result of the regression analysis

- Strong correlation is found for 11/24
- These 11 commodities represent 75% of the Tonnage in Germany (2007)
- Use-table based EI works slightly better 7/11

4
DLR

	2	2	importance in
	R ² supply	R ² use	Germany
	table	table	(share of tons
kind of good (NST/R-24)	based	based	in 2007)
1 Cereals	0.00	0.30	1.0%
Potatoes, other fresh or frozen fruits and			
2 vegetables	0.07	0.01	0.9%
3 Live animals, sugar beet	0.23	0.36	0.6%
4 Wood and cork	0.05	0.16	2.6%
5 Textiles, textile articles and man-made			
fibres, other raw animal and vegetable			
materials	0.07	0.09	0.5%
6 Foodstuff and animal fodder	0.15	0.89	10.2%
7 Oil seeds and oleaginous fruits and fats	0.70	0.67	0.7%
8 Solid minerals fuels	0.37	0.09	2.7%
9 Crude petroleum	0.33	0.03	0.0%
10 Petroleum products	0.10	0.48	5.0%
Iron ore, iron and steel waste and blast			
11 furnace dust	0.00	0.05	2.6%
12 Non-ferrous ores and waste	0.03	0.13	0.3%
13 Metal products	0.82	0.83	4.8%
14 Cement, lime, manufactured building			
materials	0.84	0.86	5.1%
15 Crude and manufactured minerals	0.48	0.99	33.4%
16 Natural and chemical fertilizers	0.27	0.43	1.0%
17 Coal chemicals, tar	0.46	0.54	0.1%
18 Chemicals other than coal chemicals and tar	0.18	0.34	6.7%
19 Paper pulp and waste paper	0.02	0.21	1.0%
20 Transport equipment, machinery, apparatus,			
engines, whether or not assembled, and			
parts thereof	0.97	0.87	4.0%
21 Manufactures of metal	0.79	0.83	1.5%
22 Glass, glassware, ceramic products	0.56	0.65	0.5%
Leather, textile, clothing, other			
23 manufactured articles	0.90	0.53	4.9%
24 Miscellaneous articles	0.92	0.83	9.8%
	explained	tonnage	75.0%

importance in

Discussion of the method

- The key to translate economy into freight transportation is: disaggregated economic indicator involving all industries
- Correlation is found
 - In case of Germany: 75% of the amount of goods is correlated
 - Useful in modeling issues: disagregated goods
 - Goods forecasts possible with time dependent value densities
- Just public available data are used (EUROSTAT)
- Correlation is better than with the core industry

19

		R ² supply table	R ² use table	R ² core industry
-	kind of good (NST/R-24)	based	based	based
	1 Cereals	0.00	0.30	0.00
Discussion of the m	Potatoes, other fresh or frozen fruits and			
	2 vegetables	0.07	0.01	0.04
	3 Live animals, sugar beet	0.23	0.36	0.22
	4 Wood and cork	0.05	0.16	0.01
- The key to translate econor	5 Textiles, textile articles and man-made fibres, other raw animal and vegetable			
disaggregated econ	materials	0.07	0.09	0.53
	6 Foodstuff and animal fodder	0.15	0.89	0.13
	7 Oil seeds and oleaginous fruits and fats	0.70	0.67	0.70
 Correlation is found 	8 Solid minerals fuels	0.37	0.09	0.43
- In case of Germany: 7	9 Crude petroleum	0.33	0.03	0.17
•	10 Petroleum products	0.10	0.48	0.09
 Useful in modeling issu 	Iron ore, iron and steel waste and blast			
 Goods forecasts possil 	11 furnace dust	0.00	0.05	0.11
	12 Non-ferrous ores and waste	0.03	0.13	0.05
	13 Metal products	0.82	0.83	0.81
- Just public available data a	Cement, lime, manufactured building	0.04	0.00	0.70
·	14 materials	0.84	0.86	0.78
-	15 Crude and manufactured minerals16 Natural and chemical fertilizers	0.48 0.27	0.99 0.43	no GVA data 0.27
- Correlation is better than w	17 Coal chemicals, tar	0.27	0.43 0.54	0.27
	18 Chemicals other than coal chemicals and tar	0.40	0.34	0.40
	19 Paper pulp and waste paper	0.18	0.21	0.05
	20 Transport equipment, machinery, apparatus,	0.02	0.21	0.05
	engines, whether or not assembled, and			
	parts thereof	0.97	0.87	0.97
	21 Manufactures of metal	0.79	0.83	0.81
4	22 Glass, glassware, ceramic products	0.56	0.65	0.49
	Leather, textile, clothing, other		_	
DLR	23 manufactured articles	0.90	0.53	0.12
	24 Miscellaneous articles	0.92	0.83	0.91

Discussion of the method

- We cannot derrive a pattern why some goods are explained and others are not
 - Natural resources are more expensive when they become scarce
 - Price decrease/increase for commodities over years
 - The bridge matrix, which converts CPA-classified goods into NST/R-24-classified goods, is a great uncertainty
 - Taking into account the handling in the transport of goods
- Logistics modules needs new formulation
- Classification change (NST2007, NACE rev. 2)

Next steps

- We discussed the results but ultimately we see importance in giving further attention to the reasons why some product groups can still be explained while others cannot.
- Time-dependent value densities
- test the methodology for other European countries
- a regional investigation, on federal state or NUTS 3 level would also be desirable. Especially for SCGE or MRIO modelling needs and for European wide model needs is this investigation reasonable
- Test the methodology for the CPA classified EI

Vielen Dank für Ihre Aufmerksamkeit! (Thank you for your attention)

Contact:

Stephan Müller DLR-Institute of Transport Research

Email: stephan.mueller@dlr.de

