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Abstract— In this paper, we introduce a new image processing
pipeline for scene recognition and pose estimation in robotic
applications. Unknown objects are autonomously modeled re-
sulting in geometric 3D models and color images. Theses models
are then used for object recognition in cluttered scenes by merg-
ing color and geometry information. Our recognition approach
generates new suitable feature vectors and uses RANSAC to
obtain promising hypotheses of recognized object poses for the
scene. RANSAC is widely used for scene understanding. For
making RANSAC applicable, it is very important to implement
this algorithm efficiently and to reject hypotheses as early as
possible in the scene understanding pipeline. By using color
information many hypotheses can be rejected early in the
recognition pipeline. With our approach we provide an efficient
implementation of a scene analyzing pipeline while fusing color
and geometric information. Moreover, we are able to learn new
objects by a fast autonomous scanning process and no further
runs through time consuming learning algorithms are necessary.
The complete pipeline from scanning to scene understanding
is described. The evaluated scenes consist of several household
objects. Some of them vary only in texture and not in shape.

I. INTRODUCTION

Interpretation of complex scenes and pose estimation of
known objects is one of the main topics in computer vision
for robotics. In many industrial and service robotic scenarios,
it is desirable to autonomously acquire properties of new
objects. The fused color and geometry information can then
be stored in a data base, for which important feature vectors
are generated from. One key topic is how to fuse geometric
data with color information. A possibility would be to apply
SIFT-features or SURF-features. Merging these features with
a geometric based model fitting approach has been inves-
tigated, e.g. in [1]. In contrast, we extend a model based
RANSAC approach with color values, such that models can
be matched faster into a scene. The used features can be
computed very fast based on colored point clouds. Through-
out this paper 3D point clouds are denoted by its point sets
P := {p1, . . . ,pn} and its surface normals N = {n1, . . . ,nn},
which can be obtained by principle component analysis of
its neighbors. There, color information is represented in the
RGB color space by C = {c1, . . . ,nn}. The model are ob-
tained by autonomous 3D scanning, instead of applying time
consuming learning algorithms. In the last years, reasonable
and affordable 3D sensors have become available. Instead of
using an active approach such as the Kinect, we haven chosen
a semiglobal matching (SGM) stereo system [2]. It has
the advantage that no additional light sources are necessary
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Fig. 1. The image processing pipeline from scanning to pose estimation.

during the scene understanding process. Pose estimation in
general is equivalent with matching the correct model into
the scene, more formally it is described by estimating the
correct pose Θ := (R, t) with R ∈ SO(3) and t ∈ R3 which
fits best into the point cloud P such that ∑∀pi∈M || pi−p j ||2
is minimized under certain constraints such as collisions or
physics, where pi is a model point and p j is the closest scene
point. Our approach additionally uses color and tries to find
the optimal solution for table top scenes, where we do not
take any assumptions of the object poses. In Fig. 1 our image
processing pipeline for generic scene analysis is shown. At
first a triangle mesh of the unknown object is autonomously
generated with a laser striper. After obtaining the mesh, the
color information is collected from 2D images. In another
step a hash map of features is generated for each object.
After acquisition of a new scene with a stereo camera, the
preprocessing step, i. e. segmenting the scene is triggered.
The RANSAC approach is then started for each segment. The
best assumption regarding certain cost function and physical
collisions is then reported.

II. RELATED WORK

In the following sections, the most recent work on au-
tonomous object modeling and recognition based on geom-
etry and color information is summarized.

A. Autonomous Object Modeling

Kasper et al. [3] present a system for semi-automatic
object modeling. It requires a very large, fixed and expensive



setup and does not allow for scanning the bottom part of
an unknown object. The acquisition time of 20 minutes is
very high and the models in the database are noisy and still
contains holes.

Autonomous object modeling systems usually consists of
a robot and sensor for which a Next-Best-View (NBV)
is iteratively planned until a complete 3D model of the
unknown object is given. In [4], an industrial robot is used in
combination with a turntable, on which the object is placed.
However, the user needs to manually input object size and
stand-off distance for each object individually, which does
not represent a fully autonomous system. Torabi et al. [5] try
to scan a set of points on the occlusion surface which they
call target points using spheres as search space. The average
waiting time in between NBVs was four minutes, resulting
in a total acquisition time beyond one hour. In [6], unknown
objects are autonomously modeled within table scenes utiliz-
ing an industrial robot. Furthermore, in [7] a mirror cabinet
is introduced for partially autonomous modeling of human
bodies. In [8], new objects are learned by grasping them,
moving them in front of a RGB-D camera and planning
NBV regrasps. From all presented approaches, only in [8] the
bottom part and color of the object are obtained. However,
the 3D models are noisy due to the RGB-D camera.

B. Object Pose Estimation

For pose estimation several RANSAC approaches exist.
RANSAC is well understood and can be easily implemented
[9], [10]. Two key issues arise: How to draw samples
and how to evaluate hypotheses. Moreover the generation
of hypotheses is critical. Many feature descriptors for 6D
pose estimation such as (fast) point feature histograms [11],
[12], surflet pair relation histograms [13] or point triplets
exist. Their usage for pose estimation regarding accuracy
is evaluated in [14]. All these features have widely been
used in combination with RANSAC for pose estimation in
robotic applications [15], [16], [17], [18]. Another RANSAC
approach for model fitting into depth images can be found
in [19]. It suggests a very generic penalty term for model
matching in the global scene. In [20] texture information
is combined with depth information for model fitting. Local
descriptors on surfaces patches are applied to find good pose
hypotheses. Among the above mentioned feature descriptors
spin images are introduced [21] or three-dimensional Tensors
are applied for registration [22]. First approaches combining
geometry and texture information for object recognition such
as in [1], estimate the object’s pose with texture-based fea-
tures and verify the pose hypothesis in the depth image using
a geometry model. A voting based approach exists which
uses an image in combination with Hough transforms and
obtains the depth information, where texture information is
available [23]. In [24], [25] a CAD-model and camera images
are used. For their approaches shape edges are applied
to match CAD-model into recognized scenes. Furthermore,
CSHOT [26] was introduced for feature matching, which
adds color difference between points computed in CIELab
space to geometry.

Fig. 2. Autonomous object modeling of a shower gel. Left: Laser striper
and stereo camera are attached to the flange of an industrial robot. The
unknown object is placed on a pedestal. Top right: Image from bottom
mono camera view. Bottom right: Textured 3D Model.

III. AUTONOMOUS MODELING

In this work, the method for autonomous 3D modeling
of unknown objects by Next-Best-Scan (NBS) planning,
presented in [27], is extended. The method does not consider
scanning the bottom part of the objects or mapping color
onto the 3D surface model. We will address both these issues
in this work. The autonomous modeling system consists of
a Kuka KR16 industrial robot, which is used to get the
sensor pose and to move the sensor to and along the Next-
Best-Scan (NBS). Fig. 2 shows the pedestal on which the
unknown object is placed. The geometry is obtained with a
laser striper, the ScanControl 2700-100 from Micro-Epsilon,
and the texture with a mono camera. A stereo camera system
of two Guppy Pro F-125 (1292 x 964 pixels) is mounted
beside the laser striper, which will be used for object pose
estimation as described in the next sections. The autonomous
method generates two different 3D models, a triangular mesh
and a probabilistic voxel space (PVS), online during a laser
scan. Here, the mesh represents the application goal and is
used to generate further scan path candidates and to calculate
a sampling quality, which is used as termination criteria.
The PVS represents the exploration aspect and is used for
occlusion avoidance, collision free path planning and for
selection of a NBS. Scan path candidates are calculated
based on the actual geometry of the current surface model
and not by simply sampling candidates over a sphere. First,
several boundaries in the mesh are detected and for each
the surface trend is estimated and a candidate is calculated
with overlap considering the optimal sensor configuration.
Second, after the object model is fairly complete all around,
holes are detected and scan paths for these are planned. The
system terminates if the model has a certain completeness
and quality level. Using the mono camera, one color image
is obtained from the top of the object and eight on a circular
path around the object considering the dimensions of the now



known object geometry. In order to scan the object from the
bottom, the object needs to be moved onto a defined side.
After the desired mesh completeness for the object without
the underside is reached, the object for now is manually
rotated by 90◦. As the approximate rotation of the object
is known, two scans are performed along the two most
significant edges of the rotated object. The data of the two
scans is merged and transformed by the approximate 90◦

rotation. Then the exact transformation between the previous
object position and the rotated object is estimated using the
Iterative Closest Point algorithm [28]. The transformation is
applied to the scan paths and the generated surface model,
and the NBS planning is continued until also the bottom
part in the triangle mesh is filled and a final color images
is taken from the bottom. Finally, the triangle mesh from
the laser striper and color images from the mono camera are
merged by acquiring a color value for each vertex from the
color image, of which the view direction is most similar to
the inverse of the corresponding surface normal. The time
for acquisition of a textured 3D model is approximately 6-7
minutes per object.

IV. FEATURE GENERATION

Pairs of points have become very popular as feature
vectors, as they can be computed very fast in point clouds,
where normal vectors of surfaces are available. Based on
such features a hashing function is commonly applied to sort
each feature vector into a bin. The more non-ambiguous such
functions are the more efficient the search for good hypothe-
ses is. Certainly, the optimum is a one to one mapping in
between features and hypotheses, but this is not feasible. To
this end, various features and hash functions can be applied.
Furthermore, the RGB values are used to achieve a more
non-ambiguous representation of feature vectors. The feature
vectors used in this paper are surflet pairs in combination
with RGB difference values. Difference values are applied
to become more independent from lighting conditions. The
hash map for each object is filled in such a way that a
constant number of vertex pairs of each object is randomly
drawn with the constraint, that the distance between the
objects is not less than a third of the largest distance of two
points. This requires that at least approximately a third of
the object must be not occluded. In addition to the geometry,
the color differences of the two points in the RGB-space are
taken. Hence, the feature vectors are generated in following
manner: Given two points denoted as pi and p j with their
respective surface normals ni, n j as well as their color values
ci := (ri,gi,bi), ri and di j := pi− p j, the feature vector is
obtained by:

|| di j ||
∠(n j,di j)
∠(n j,di j)

atan2( ni · ((di j×n j),(ni×di j) · (di j×n j)
| ri− r j |
| gi−g j |
| bi−b j |


(1)

Fig. 3 illustrates this feature vector. The size of the bin for
each degree of freedom of the feature vector is adjusted
according to the object size, sensor noise and sensitivity. The
bin size for the first index is between the maximum distance
between object vertexes and one third of it, with a resolution
of 2 mm. The rotational degrees of freedom are set to 30◦

and the difference between colors in the RGB space are each
divided into 5 chunks. In addition for each vertex the color
gradient is estimated and later on used for comparison of
vertexes.

Fig. 3. The 7D feature vector consists of 4D geometry and 3D texture
information. In addition, the color gradients are generated for each vertex.

V. PREPROCESSING THE SCENE

First of all a supporting plane is searched in the scene.
Fig. 4 illustrates the estimated plane in the colored point
cloud. The depth image is obtained by SGM and the plane
is matched into the scene by using RANSAC and a least
square error function. Everything below the plane and the
background is filtered, see Fig. 4.

Fig. 4. Left: A scene acquired by the SGM stereo algorithm; Right: The
estimated supporting plane and clustered scene.

Then, the Euclidean algorithm is applied which is available
in the point cloud library. It separates the scene into clusters.
In the best case, each cluster represents one single object. In
order to accelerate the entire image processing pipeline, the
RGB-spectrum is analyzed for each cluster and compared
with the RGB-spectrum from known objects. It provides
the possibility to exclude improbable hypotheses as early as
possible in the image processing pipeline. This is achieved by
comparing the differential color histograms. Fig. 5 illustrates
the histograms for three objects in the upper lines and the
color histograms of the clusters from the illustrated scene in
Fig. 4. The maximum values of max(r,g,b) are subtracted
from the second largest values in (r,g,b). The histogram
according to theses difference values are determined. Then



Fig. 5. Histograms for three objects and three clusters from the scene in Fig.4
.

the peaks are compared. If for example there is a green peak
in the color histogram of a cluster, but not in the cluster
of the object it is unlikely that this object lies within the
cluster. The first shown cluster (image 4 in Fig. 5) represents
the cluster with the sugar powder, (image 5) represents the
cluster with the tee mint and the last cluster represents the
tee fennel. The shower gel can be excluded from all clusters,
because there are peaks in the red and green bands, which can
not be found in the histogram of the shower gel.The cluster
illustrated in the middle will probably not contain the sugar
powder, which holds also for the cluster represented by the
histogram depicted at the right side.

VI. POSE ESTIMATION
Like in each typical RANSAC implementation, the key

steps are how to draw samples and how to evaluate hypothe-
ses. Usually it is important to reject unlikely hypotheses
as early as possible in the processing pipeline. Thus, the
non-ambiguity in the hash map is an important issue as
discussed in the last section. Furthermore, drawing samples
from the scene which lead to good hypotheses speeds up the
entire scene analyzing approach. Therefore, the following
steps for hypotheses generation, filtering and evaluation are
implemented:

1. For all objects estimate εmin and εmax which serve well
as maximum distance for drawing point pairs.

2. For each segment do: Draw one point pi of the point
cloud P = {p1 . . .pn} at random. Draw a second point
out of a ball with the radius given by either εmax or by
r (for point features) according to the matching model.

3. For the drawn point pairs compute the feature vectors
either f (pi,p j) and try to find corresponding entries in
the hash maps. Let Hk be a set of hypothesis for object
k in the corresponding bin, then for each hypothesis

determine the alignment for rigid motion with R and
t, see Fig. 3. This pose hypothesis Θ := (R, t) can be
alignment with:

t∆ =−pB
i −

pB
j −pB

i

2
+pA

i +
pA

j −pA
i

2
(2)

and the rotational part is yielded by

RW
F :=

(
di j
||di j ||

di j×(ni×n j)

||di j×(ni×n j)||
(di j×ni×n j)×di j
||(di j×ni×n j)×di j ||

)
(3)

By this, the estimated pose can be calculated with
respect to the world’s reference system by RW

A ·RW
B
−1

leading to Θ, which is inserted into Hk.
4. Now, hypotheses for all objects are collected in H :=
∪∀kHk and will be evaluated with two different func-
tions. The first one indicates how well the object
matches into the scene and with the second function one
obtains a quality measure how probable the hypothesis
is regarding the viewpoint. The first cost function is
denoted as

1
∑pi∈Pseg

∑
pi∈Pseg

g(pi)∧h(pi)∧q(pi) (4)

with:

g(pi) =

{
1 if min∀p j∈M{|| p j−pi ||}< εg

0 else
(5)

h(∇(pi))=

{
1 if min∀p j∈M{|| ∇(p j)−∇(pi) ||}< εh

0 else
(6)

q(pi) =

{
1 if min∀p j∈M{|| c j− ci ||}< εq

0 else
. (7)



The functions h and g ensure that only such points
will be counted which fit into the scene regarding color
information as well. For the color gradient ∇, a constant
radius is chosen, within each of theses balls the color
gradient is estimated. In addition, the certain color
values are compared if they do not differ too much,
e.g. if their value is smaller than ε the vertex is counted
as proper match. The second cost function is given by
assuming the view direction with v then for the quality
of a hypothesis Θ = (R, t) follows

1
∑p j∈M|p j ·v>0

∑
p j∈M|p j ·v>0

|| Rp j + t∆−p?
i ||2 , (8)

where p?
i is the closest scene point.

These functions are used for evaluation, where each hy-
pothesis hi ∈H is rejected if it does not lead to a value
above a certain threshold. All remaining hypotheses are
collected in the set Hbest which is sorted in descendant
order hi � h j � . . . � hmin according to a weighted sum
of both cost functions. More hypotheses are inserted into
the set by exploiting the object’s symmetries. Often objects
with symmetrical similar poses need to be distinguished
for grasping and manipulation. Then, with the evaluation
function accurate hypotheses are found.

Fig. 6. Symmetry-axis for the cup and a power socket.

VII. RESULTS
The RGB-D images including depth and color information

are obtained from various scenes with a stereo camera system
(see Fig. 2 left) using the SGM approach. For feature gener-
ation, 1 ·106 point pairs are chosen and their feature vectors
are generated. The radius for color gradient estimation is set
to 8 mm. The applied epsilons are ε∇ = 0.1 and εcolor = 0.3,
where the RGB values are normalized between 0 and 1. The
scenes illustrated in Fig 7 are applied for evaluation. Here,
the number of RANSAC iterations for pose estimation of the
scenes was set to 20 ·104. Tab I illustrates the recognition rate
for each object per scene. Each recognition rate represents an
average value estimated over 20 iterations of different depth
images obtained of the same scene. The object poses are
considered to be well estimated if they lie in the tolerance
space of 4 mm translational and 4◦ rotational error. The
left side of the cells represents the recognition rate, when
depth and color values are included as described in this
paper. The right side contains the recognition rates obtained
without considering color values. As it can be expected
objects with identical geometry (tee packs and shower gels)
can not be distinguished properly without considering color

Fig. 7. From left to right depth images of table top scene A, B, C, and
one with real clutter D.

TABLE I
RECOGNITION RATES IN PERCENT BY POSE ESTIMATION BASED ON

GEOMETRY AND COLOR (LEFT) AND SIMPLY GEOMETRY (RIGHT)
INFORMATION FOR THE EVALUATED SCENES.

Objects (A) (B) (C) (D)
Shower gel (purple) 95 | 55 95 | 45 90 | 90 − | 55
Shower gel (yellow) 95 | 45 95 | 50 90 | 90 95 | 45
Tee pack (fennel) 80 | 45 90 | 40 - | 50 80 | 50
Tee pack (mint) 85 | 45 90 | 50 95 | 45 65 | 40
Sugar powder 75 | 60 80 | 80 80 | 75 −
Sugar mill 90 | 60 90 | 60 80 | 60 90 | 70
Kinder Buono 1 75 | 55 65 | 60 65 | 65 60 | 50
Kinder Buono 2 70 | 50 70 | 50 80 | 70 −
Santa Claus 100 | 100 − 100 | 100 85 | 65
Jam sugar − − 90 | 80 90 | 85
Cereal box 100 | 95 100 | 100 95 | 95 95 | 85
Crisp bread − − 85 | 80 80 | 75

information. With color information, the recognition rate sig-
nificantly increases and the objects with identical geometry
can be separated quite well. The algorithm has problems in
separating the sugar powder from the ’Kinder Buono’ as the
color distribution is quite similar (large white and small red
area), and they differ only slightly in geometry. A ground
truth for the pose of each object in the scenes A, B, and C
was obtained with the laser striper as it is more accurate than
the stereo camera. Therefore, several scans of the scene from
different views were performed and the accumulated depth
images are clustered by the dominant plane of the tabletop.
For each point cloud cluster and each detected object model,
a principal component analysis is applied and the center and
orientation of these are compared. For the scenes A, B, and
C, the pose error regarding the ground truth is illustrated in
Fig. 8 for the translational error (left) and for the rotational
error (right). In scene A (red line), the number of objects with
a translational error of 2 mm or less is 6, only one object has
a translational error of 3.5 mm. Note, that the pose estimation
is done in full 6D neglecting the assumption from the table
top scene within less than 20 sec. The error is estimated in
x,y plane translational and about the z-axis rotational and
contains combined errors from pose estimation, calibration,



Fig. 8. Translation (left) and rotational (right) error for object poses.

and stereo camera system.
Scene D shows a real cluttered scene. In this case the

segmentation of the scene does not support the recognition
process and hence all objects are matched within the clutter.
Due to some occlusions the recognition rate of one of the tee
packs is only at 65 % for the combined color and geometry
based pose estimation. All the other objects reach higher
recognition rate. Note that for the simply geometry based
pose estimation both shower gels (purple and yellow) are
detected although only a yellow one exists in the scene. Due
to the clutter, we could not obtained the ground truth in the
same manner. Furthermore, for scene D the collision checker
used for consistent tests is modified such that objects are
modeled only for the collision test smaller than they are.
This could be improved by using real virtual tests allowing
penetration detection.

Overall, the recognition rates for the pose estimation
algorithm based on both color and geometry information are
significantly better than for just the geometry and also objects
with same geometry and different color can be distinguished,
which was to be assumed.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have described a complete recognition
pipeline for pose estimation of unknown objects. After the
unknown objects are autonomously modeled, the described
feature vectors for object pose estimation are generated based
on the acquired models and mapped into a hash map. Due to
the applied feature vector, the hash map can be computed and
accessed very quickly. A new approach for fusing color and
geometry information for recognizing objects in scenes is
presented. The challenge is to adjust the weighting between
geometry and color in an appropriate way. Moreover, which
feature to select as the most important feature is also an
interesting topic for recognition.

When humans perceive object scenes they acquire a very
inaccurate representation of objects as long as they do not
want to grasp the objects. This implies that a fast uncer-
tain understanding could be implemented in the processing
pipeline before accurate pose estimation is done. Moreover,
another possibility would be to detect features in the 2D
image before they are mapped to the mesh. Further, for
making the modeling process fully autonomous, the rotation
of the objects could be performed by the robot itself.
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