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INTRODUCTION

In this paper we propose an advancement to the problem
of simultaneous, proportional myocontrol of hand/wrist
prostheses [1,2,3]. In particular, we address the prediction
of simultaneous activations of multiple degrees of freedom
(DOFs) by training a machine learning method on single-
DOF activations only — for example, correctly predicting
simultaneous flexion of the index and thumb by training on
index flexion and thumb flexion only. In myoelectric control
this is a very desirable property, since training on single-
DOFs only will in general not correctly predict multiple-DOF
activations; on the other hand, directly gathering multiple-
DOF activation data from the subject quickly becomes
unfeasible as the number of DOFs grows.

So far, to the best of our knowledge, the only successful
approach to this problem is represented by the application
of Non-negative Matrix Factorisation to two/three DOFs
of a prosthetic wrist [4]; we hereby propose an alternative
approach which is able to solve the problem for single-
finger activations. Surface electromyography (sEMG) data
are firstly collected for single-finger forces; the data set is
then augmented with artificial SEMG clusters representing
multiple-DOF activations; lastly, a machine learning method
is trained on the augmented data set. The augmentation
procedure works by linearly combining the single-DOF
SEMG clusters and is therefore called Linearly Enhanced
Training (LET).

To preliminarily validate the procedure, an experiment
was conducted on seven intact subjects engaged in the
production of a simple, repetitive single-DOF activation
pattern (thumb adduction, index flexion and little finger
flexion). The results are very promising.

PROBLEM STATEMENT

Simultaneous and proportional myocontrol
Simultaneous and proportional myocontrol of a

prosthetic or rehabilitation device [6] entails that a (disabled)
human subject can control its m DOFs independently, at
the same time, and in a “graded” fashion, that is, according
to the desired level of activation. For instance, if each
DOF can be controlled in torque, we must build a human-
machine interface consisting of d SEMG electrodes and m

approximant functions f such that T = f (x) where T € R is

the required torque at the DOF and T € R?is the reading from
the electrodes. (In this simplified framework we intentionally
blur the distinction between the muscular activation and the
DOF activation expressed as a torque command.) Machine
learning is usually employed in the regression mode (e.g.,
Support Vector Regression [7,8] or Non-negative Matrix
Factorisation [4]) to build the approximant functions from a
set X={x,t}"_, of (sample,target) pairs previously collected
from the subject — the so-called training set. (Notice that in
the training set one needs to have one target value per each

DOF, hence x, € R’ and 7, € R".)

The usage of machine learning has the advantage of
allowing natural control. The training set X is built by
inducing the subject to activate one DOF (e.g., flexing
a finger, pronating the wrist, etc.) and recording the
corresponding SEMG values. If the input/output relationship
is fairly represented by the values in X, then each f will
correctly approximate the torque 7 required to control
the corresponding DOF; moreover, since X was collected
from the subject while engaged in performing the actions
corresponding to the activations of each DOF, the resulting
approximant will command to each DOF the intended torque
— hence the term natural control, or intent detection.

Clearly, in order for this approach to be feasible, an
appropriate sampling of the input space for each DOF
considered is required; target values can be either gathered
using a torque/force sensor, or more realistically, they can
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be arbitrarily set at 0 or 1 whenever, in turn, a DOF is not
active or maximally active. (Recall that in general the subject
is an amputee who cannot produce any reliable ground truth
in principle.) Following the “realistic approach” outlined in
[5], this corresponds to such a training set:

X={(X,7,),(X,T, ). (X, T )}

where each subset (X, 1, ) corresponds to the (sample,target)
pairs collected when only the th DOF is active, and all others
are inactive. (The subscript 0 denotes the resting state, in
which all DOFs are inactive.) For example, consider the case
in which the selected DOFs are the flexion of the index (I)
and little (L) finger; the corresponding training set, denoted
with sf for single-finger activations, is

X, = {(%,,(00)),(X,.(1 0).,(X,,(0 D)}

where X, and X, denote SEMG samples collected, in turn,
when either the index or the little finger was maximally
active. Given an appropriate machine learning method, two
functions f, (x) and f,(x) trained on X, (namely, £, (x) would
be trained using the first component of each 7, as target
values, and f, (x) would be trained on the second) will return
a sensible approximation of the torques required at the index
and little finger whenever either of the two fingers, or none
of them, is active.

Multi-DOF activations

Indeed, the above method will not generalise to the
case in which both DOFs are active at the same time —
simultaneous flexion of the index and little finger: the
SEMG signal corresponding to a multi-DOF activation,
call it X, in the example above, has, in general, no trivial
relationship to those obtained for the single-DOF activations
it is composed of. Nevertheless, being able to estimate multi-
DOF activations is very desirable: e.g., while grasping, many
fingers are active at the same time; while reaching with the
aid of a prosthetic wrist+hand, the device must flex, pronate
and grasp simultaneously.

Traditionally (see, e.g., [9]), this problem has been solved
by directly gathering from the subject the SEMG signals
corresponding to the required multi-DOF activation(s) — in
the above case, X, would be available, and a new training set
(denoted mf for multi-finger)

X, = {(X, (00)), (X, (10)), (X, 0 1)), (X,. (1 D)}

could be used to determine the /5. This method will yield
the expected approximants, but becomes quickly unfeasible
as the number of DOFs, m, grows, since the number of
possible combinations grows exponentially with it. (The
most advanced hand prosthesis in the world at the time of
writing, the i-LIMB Ultra Revolution by Touch Bionics, see
www.touchbionics.com, has m = 6, which becomes 7 or 8 if a
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self-powered prosthetic wrist is additionally used.)

An alternative way is that of estimating X, from X,
X, and/or X; that is, trying to build a machine which will
generalise to multi-DOF activations although it has been
trained on single-DOF activations only. The only attempt so
far at solving this problem, as far as we know, appears in
[11] for two DOFs of the wrist plus hand opening/closing.
In this work, Non-negative Matrix Factorisation trained on
X, yields a model acting both as a linear predictor of the
required activations and as a linear “un-mixer” of multi-DOF
activation signals into single-DOF ones. Although we have
no comparative results so far, we speculate that NMF will
hardly generalise to the case of single fingers, for which a
linear approach has been shown to produce unacceptably low
prediction accuracy [5].

We rather propose to artificially augment X in order
for it to enable the desired generalisation by any machine
learning method trained on it (possibly non-linear). We
therefore look for a function F such that F(X,, X,, X, ). If
such a function is available, then an “enhanced” training set
X' can be built out ofXSf.,

X' = { ((Xo’ (00))1 (Xp (1 0)): (XL> (0 1))>
(FX,, X, X)), (1 1))

such that training on X"’ will yield the required approximants.
Notice that X’ is built with no explicit knowledge of X,
avoiding the above-described exponential blowup of training
time and effort.

LINEARLY ENHANCED TRAINING (LET)

A very simple idea to build such an F is that of
considering the multi-DOF activation signal as a linear
combination of the single-DOF signals involved in it. This
hypothesis seems reasonable since both sets of motor units
involved in the single-DOF activations must participate
simultaneously in the multi-DOF activation, to different
degrees; we will also assume that the multi-DOF activation

samples lies somewhere on the vector in R? bisecting the two
vectors corresponding to the single-DOF activations:

F (X(): ‘X]/:)(,_s (l) = {X | X = a[(xl - xo) + (JCL - xo)]:
Vx,eX,x €X,x, EXL}

where o, for which we assume , must be found by
exhaustive search. This procedure adds to the original
training set one cluster of linearly-built artificial SEMG
samples per each DOF combination, and is therefore called
Linearly Enhanced Training (LET). Notice that LET is in
principle applicable to any k-ary combination of single-
DOF activations (not only pairs), and to an arbitrary number
m of them, in which case 2" parameters oo must be found,;
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Figure 1: NRMSE for a typical subject for each DOF, DOF combination and training set.
Each block shows the error evaluated over the three repetitions of the related single- or multi-DOF activation.

moreover, it is independent of the machine learning method
of choice. Notice, however, that the LET-enhanced training
set X, 18 exponentlally larger than XA , ('but still just as 'la'rge
as me), which could be problematic in case the training

heavily depends on its size.
EXPERIMENT DESCRIPTION

In order to partially validate the LET procedure, we set
up a simple psychophysical experiment, stimulating human
subjects to apply 3 single-DOF activations, plus all pairs of
them, while recording their sSEMG signals; we then compared
the prediction accuracy of a known regression method trained,
in turn, on X p and X, ; for further comparison, the accuracy
obtained by training on X = was also evaluated. We expected
the performance obtained using X, to lie somehow in the
middle between those obtained using X - and X .

Notice that in this preliminary experiment we do use the
explicit knowledge of X, in order to estimate X, with the
hope of finding that the required coefficients a can be treated

as invariants across multi-DOF activations and subjects.

Subjects
Seven healthy human subjects (age 23+42yrs, 6m/1w)

were recruited for the experiment. Each subject received a
thorough description of the experiment; informed written
consent was obtained from all participants. Experiments with
sEMG have been approved by the Ethical Committee of the
DLR.

Materials and methods

The sEMG signal was measured using ten MyoBock
13E200 electrodes by Otto Bock (www.ottobock.com),
uniformly placed around forearm close to the elbow, using
an elastic biocompatible adhesive bandage. These electrodes
provide an amplified, band-pass filtered and rectified signal.
To reduce noise a Butterworth filter of 1* order is applied with
cut-off frequency of 1.5Hz. The sSEMG data was collected at
approx. 46Hz using a standard analog-to-digital conversion
card connected to a Windows machine via Ethernet. (The
setup closely follows that of [5] — the interested reader is
referred once again to that paper.)
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Experimental protocol

Each subject was comfortably seated in front of a table
with a large monitor, on which two 3D hand models were
shown, one acting as a visual stimulus (i.e., what the subject
was required to do) and the other showing the predicted
forces as finger flexions. The experiment was divided into
three sessions (rest was allowed in between sessions).

The first session consisted of three repetitions of, in turn,
little finger flexion, index finger flexion, thumb adduction,
little and index finger, little and thumb, thumb and index —
that is, three single-DOF activations and three multi-DOF
ones. Data gathered during the single-DOF activations are
while the union of X , and data gathered during the multi-
DOF activations are X, The collected data was used to
determine the three coefficients — one for each multi-DOF
activation — by minimising the Euclidean distance between
the artificial samples in F and the “true” samples in X . For
example, for the index and little finger

a, = arg mianT(Xo ’ X/’ ‘XI , ) - XILH2

Using the as found this way, X, was built and a non-
linear, incremental regression method was then trained using,
in turn, X . X . and X, . The chosen method was Ridge
Regression with Random Fourier Features [12], which we
have already successfully employed in [5]. This method
requires finding three hyperparameters 4, D and o, two of
which (4 and D) were set at standard values of 1 and 700 (see
[5] again), whereas one optimal value of ¢ for each training
set was found by grid search and 3-fold leave-one-repetition-

out cross-validation over each related training set.

In the second and third session, the prediction was
started using, in turn, the model obtained by training on
X, and on X, .; each subject was then again shown, using
the stimulus hand, the same DOF activations as in the first
session, and instructed to have the prediction hand reproduce
them and to keep them stable for 3 seconds. Online testing on
X, was neglected in order to keep the experiment as short
as possible; rather, the performance using X . Was evalauted
offline by training on the first two repetitions and testing on
the third.

EXPERIMENTAL RESULTS

The optimal values of a were determined to lie in the
range 0.7+0.2 across all multi-DOF activations and subjects
(mean plus/minus one standard deviation). The Root Mean-
Squared Error (RMSE) was calculated for each of the 7
different activations (rest, 3 single-DOF, 3 multi-DOF) for
each subject, for each training set and for each single- or
multi-DOF activation. As it happens in [5], the ground truth
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is represented by the visual stimulus values, ranging from 0
to 1; the RMSE is therefore expressed in arbitrary units.

Figure 1 shows the results for one typical subject. As
expected, the prediction error on single-DOF activations (and
rest) is good to excellent in all three cases with a slightly
worse result obtained while training on X, , whereas the
error on multi-DOF activations is high when using X (0.44,
0.54 and 0.49 for little+index, little+thumb and index+thumb
in turn) and reasonably good when using X, ,, (0.07, 0.24 and
0.23). Surprisingly, the error when using X ; is on average
just a little better than when using X, (0.06, 0.27 and 0.14).

ET

Figure 2 shows the results averaged over all subjects.
The trend is confirmed: with respect to training on X,
training on X, makes the error slightly worse for single-
DOF activations but largely better for multi-DOF activations;
and surprisingly, training on X - does not yield a considerably

large improvement.

CONCLUSIONS AND DISCUSSION

The LET procedure, presented in this paper, enables
in principle any machine learning method to predict multi-
DOF activations using data collected during single-DOF
activations only. LET works by approximating the multi-
DOF activation sSEMG signals, which are unfeasbile to gather
directly, using a linear combination of the related single-
DOF signals. In a psychophysical experiment, using the LET
technique, a standard machine learning method was able
to obtain prediction error values on multi-DOF activations
similar to those obtained on single-DOF activations.
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Figure 2: RMSE per training set per DOF
Mean and standard error of the mean across all subjects

We consider this a preliminary result, both because
the number of subjects and DOFs considered is low, and
because multi-DOF activations were explicitly used to build .
However, as the values of the s lie in a quite close range for all
subjects, we plan to enforce LET in a completely automatic
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way, and compare again its performance against the usage of
and . Although initial though, this result looks promising and
future work includes chacking whether it generalises to, e.g.,
the (combined) DOFs of the wrist, possibly in combination
with a few grasping postures.
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