Solar Cracking and Solar Reforming

Established High Temperature Industrial Processes

Cracking of natural gas to produce

- Hydrogen
- Carbon black

Goal: Two valuable products, easy storable solid (really?)

Gasification (see Dr. Meiers talk) and reforming of carbonaceous feedstock for the production of synthesis gas

- Natural gas
- Coal
- Petcoke
- Waste
- Biomass

Goal: Fuels with reduced CO₂ emissions for power production but also for air, land, and, sea transportation

H₂-Production by Solar Cracking of Hydrocarbons

- Decarbonisation of Methane $CH_4 \leftrightarrow C + 2H_2$
 - → Temperature up to 1600° C
 - → Ambient pressure.
 - ✓ Conversion 70%.
 - Theoratical system efficiency: 30%
 - → EU Project SOLHYCARB 2006 2010
 - → Partner CNRS/PROMES (FR) ETH, PSI (CH),
 - WIS (IL), CERTH/CPERI (EL), DLR (DE), TIMCAL

CO₂ Reduction by solar heating of state of the art processes like steam methane reforming and coal gasification

Steam and CO₂-Reforming of Natural Gas

Steam reforming: $H_2O + CH_4 \rightarrow 3 H_2 + 1 CO$

 CO_2 Reforming (Dry): $CO_2 + CH_4 \rightarrow 2 H_2 + 2 CO$

Reforming of mixtures of CO_2/H_2O is possible and common

Use of syngas for methanol production:

e.g. $2H_2 + CO \rightarrow CH_3COH$ (Methanol)

Both technologies can be driven by solar energy as shown in the projects: CAESAR, ASTERIX, SOLASYS, SOLREF...

Solar Methane Reforming – Technologies

- Reformer heated externally (700 to 850° C)
- Optional heat storage (up to 24/7)
- E.g. ASTERIX project

- Irradiated reformer tubes (up to 850° C), temperature gradient
- Approx. 70 % Reformer-h
- Development: Australia, Japan; Research in Germany and Israel
- Catalytic active direct irradiated absorber
- Approx. 90 % Reformer-h
- High solar flux, works only by direct solar radiation
- DLR coordinated projects:
 SOLASYS, SOLREF;
 Research in Israel, Japan

SANDIA-WIS's sodium reflux heat pipe solar receiver-reformer (1983-1984)

ASTERIX: Allothermal Steam Reforming of Methan

- DLR, Steinmüller, CIEMAT
- 180 kW plant at the Plataforma Solar de Almería, Spain (1990)
- Convective heated tube cracker as reformer
- Tubular receiver for air heating

1 = Receiver, 2 = Heißgasleitungen, 3 = Rekuperator, 4 = Elektrischer Heizer, 5 = Kühler, 6 = Kompressor, 7 = Kühler E-106/7, 8 = Reformer V-101 mit Wärmeübertragern E-102/3/4, 9 = Elektrischer Heizer E-105, 10 = Fackel Z-102.

Pilot Scale Solar Chemical Reactors - SolarGas Experimental set-up of the 200 kW SolarGas reactor

Top view of DCORE reactor (right) layout of entire integrated reformer and HRU

Source: R. McNaughton et al., CSIRO, Australia

Direct heated volumetric receivers: SOLASYS, SOLREF (EU FP4, FP6)

- Pressurised solar receiver,
 - Developed by DLR
 - Tested at the Weizmann Institute of Science, Israel
- Power coupled into the process gas: 220 kW_{th} and 400 kW_{th}
- Reforming temperature: between 765° C and 1000° C
- Pressure: SOLASYS 9 bar, SOLREF 15 bar
- Methane Conversion: max. 78 % (= theor. balance)
- DLR (D), WIS (IL), ETH (CH),
 Johnson Matthey (UK), APTL (GR), HYGEAR (NL), SHAP (I)

Pressurized, directly irradiated, volumetric Solar Reformer

The catalytically active absorber is directly heated by concentrated solar energy. Efficiencies above 90% can be achieved. (increase of sensible and chemical power of the gas mixture divided by the incoming solar power).

Receiver Lay-out

Receiver Lay-out

- Nominal layout data for the
- SOLASYS receiver-reactor:
- Absorbed power: 400 kW
- Methane conversion level: 80%
- Operating pressure: 10 bar
- Fluid inlet temperature: appr. 500°C
- Syngas outlet temperature: appr. 850°C

Receiver Unit

Outlet gas composition at $p_{receiver} = 4.9$ bar

Inlet gas composition: 22.7 mole-% CH_4 , 7.6 mole-% CO_2 , 0.0 mole-% CO_3 , 59.3 mole-% H_2O_3 , 10.3 mole-% H_2

SOLASYS - Test Plant in Operation

SOLASYS Economic Analysis (2006)

Comparison of hydrogen production cost by conventional and solar reforming of natural gas (NG) depending on the NG price reported in 2004 by "www.oilenergy.com"

SOLREF Solar Steam Reforming (SES6-CT-2004-502829)

Motivation & Consortium

- Production costs of *partly-solar hydrogen* with less than 5 ct_€/kWh or 1.7 €/kg H₂ (large scale, solar-only) are possible.
- The solar driven process reaches profitability when the price of NG increases to about 40ct_e/Nm³
- Eight participants from seven countries:
 - DLR, coordinator Germany
 - APTL/CERTH/CPERI, Greece
 - Weizmann Institute of Science, Israel
 - ETH Zurich, Switzerland
 - Johnson Matthey Fuel Cell Ltd, UK
 - HyGear B.V., The Netherlands
 - SHAP S.p.A., Italy
 - Region Basilicata, Italy

Project main objectives

- Develop an advanced 400 kW_{th} solar reformer
- Investigate various catalyst systems
- Simulate mass and heat transport and reaction in porous absorber
- Perform thermodynamic and thermochemical analyses to support the system design phase
- Operate the reformer with gas mixtures which represent the variety of possible feedstock on the solar tower at WIS, Israel, producing partly-solar hydrogen
- Evaluate new operation strategies
- Pre-design of a 1 MW_{th} prototype plant in Southern Italy
- Conceptual layout of a commercial 50 MW_{th} reforming plant
- Assess on potential markets including cost estimation and environmental, socio-economic, and institutional impacts

Solar Reformer - Improvements

SOLREF Reformer:

- Absorbed power: app. 400 kW_{th}
- **Feed-temperature: app. 450° C**
- > Outlet-temperature: app. 900° C
 - absorber temp.: max. 1100°C
- Operation pressure: optimal pressure 10 bars; max. 15 bars_a
- > Mass flow: 0.12 kg/s

-inlet

Future Steps

-Areas for market introduction

-Addition of "solar upgraded fuel" into large scale CC power plants with mixing rate 5 -10 %

- -Dual fuel operation
- Solar reforming of biogas or landfill gas

-Further research is directed to

-Flexible feed gas composition

-Modified process parameters including CO₂ separation and reforming

-Next step towards market introduction

-Pre-commercial solar reforming plant of **1-5 MW** size adapted to the specific fuel and process conditions

Acknowledgement

- Thanks to all our funding agencies especially the European Commission for funding the projects.
- Thanks to all colleagues and partners who provided various contributions to this work.

