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I. INTRODUCTION AND MOTIVATION

While there exists no generally accepted theory explaining
human brain functions, there are large scale projects aiming
to elucidate it in the near future [1]. There are several theories
on how the brain perceives and reacts to the world, and
these provide promising research directions also for robotics.
The one most relevant to the integration approach presented
here is the Bayesian brain principle [2], which assumes
a continuous update of hypotheses about the world, and
correcting them through sensory information. The authors
of [3] detail how ideas related to artificial neural networks
might explain the real network of the brain’s neurons and
its capability for inference, adaptation and plasticity, using
Bayesian filtering in a neurobiologically plausible way.

In this work, we explore how discrete Bayes filters
(specifically histogram filters [4]) can improve perception
capabilities, while holding specific benefits for robotic ap-
plications. Sensing is an important component of embodied
agents as feedback about the body’s and the environment’s
state allows for control and learning strategies. Manipulation
tasks are heavily aided by object recognition, for which
visual perception is probably the most important modal-
ity [5]. Conversely, perception is itself aided by locomotion
and manipulation skills. Piaget discovered for example that
humans “calibrate” their near and far vision by reaching
and locomotion, respectively [6]. In the robotics domain as
well, interaction and multiple viewpoints (spatio-temporal
integration) aid model learning and recognition [7].

However, perception systems are struggling to reach the
level of a two year old child [8], with the pose estimation
systems for example just coming into the reach of allowing
robust tool use. In [9] the careful inching forward of current
robots is contrasted with a person running through a crowd
(without injuring anyone), highlighting not only the agility of
humans, but also the understanding of the dynamics of the
surrounding that is unmatched by robotic perception. Per-
ception, however, is identified as one of the key challenges
that need to be solved generally, for a multitude of research
endeavors. In contrast to perception in industrial settings, one
of the impediments is, as described by [8], that vision (in an
unknown and “un-cooperating” environment) is an inverse
problem, where the perceived image needs to be understood
without sufficient information (see Figure 1).

There have been many advances in theories of percep-
tion [11], [12] and cognition, with applications to the large
goal of AI [13]. The cognitivist and emergent philoso-
phies disagree on how high level concepts should be rep-
resented/learned, however, getting feedback from the outside
world and reacting to it seems to be an important aspect
of cognition [14]. At least that is how we can intuitively
judge intelligence (noting however the issues brought up
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Fig. 1. Application scenarios for model-based object pose estimation in
industrial and household settings. For more details on the setup see [10].

by Searle’s Chinese room argument). The idea that a cog-
nitive agent needs to be embodied to learn from gathered
experiences has been around since Turing [15]. He proposed
equipping computers “with the best sense organs that money
can buy” and teaching them in order to pass his famous
test [16]. Similarly, the authors in [17] and [14] argue for
embodiment, and present different paradigms on how to
approach the learning and grounding of new information. The
common coding theory [18] argues that perception and action
are treated together in the brain, one generating the other
in order to achieve a desired configuration. This calls for a
closer integration for perception and action than the classic
perception-cognition-action loops. This research direction is
starting to gain momentum both in the robotic vision and
action planning domains (e.g. inspired by mirror neurons).

We address object pose estimation, an important prerequi-
site for model based robotic grasping, that uses pre-computed
grasp points [19]. For an overview of the previous works
in this field, please see the related work sections of [10],
[20]. While in our previous work we discussed how to
model objects [10], [21] and estimated the pose of previously
learned objects [20], [22], here the focus is on integrating
multiple views and priors about possible errors. We build
on our work on merging different information sources for
classification [23], [24], and multi-view/interactive recog-
nition [10], [25], [26], extending them to pose estimation.
We present the principles and the design of experiments for
integrating different views, methods, error/symmetry models,
priors, and enable the selection of disambiguating actions.

II. BAYESIAN FILTERING FOR POSE-ESTIMATION

Histogram filters are related to particle filters, but have
a fixed set of particles that cover the whole search-space,
representing discretized cells of it. Thus, they avoid the
problem of particle depletion, at the cost of the rigidity of
the particles, which can result in the need of a huge number
of them. In the case of pose estimation, the search-space is
the 6 degrees of freedom (DOF) pose space SO(3). As this
is quite large, several pose estimation methods separate the
translational and rotational parts, as we discussed in [20].

Here we abstract away from the pose estimation methods,
and treat only their output as estimates of the pose, and
integrate the rotation estimates using a histogram filter.
(As the translational part is in the 3D Euclidean space, it
is intuitive to deal with.) This way we can consider the



measurement (and movement) model in the updating step,
and can consider detections from multiple viewpoints and the
results of multiple detectors at once. As errors from different
views have a large chance of being uncorrelated, their com-
bination increases the overall accuracy, as we shown in [10].
Additionally, if multiple detectors are used, and the mistakes
they make amongst themselves are somewhat uncorrelated,
their combination should also improve performance (for
example using accuracy and confidence weighted voting),
as we showed in the case of classification tasks [23].

To represent the rotations, we evenly divided the space of
quaternions, and selected those cells that contain unit quater-
nions. This does not result in a perfectly even sampling, but
the area of SO(3) that falls into each cell was estimated,
and used as a uniform prior. We found that a 32x32x32x16
division of the 4D quaternions with dimensions between ±1
(considering only half of w values is enough) allows for an
accuracy of 4-6 degrees, and resulted in merely 68414 cells.

To test the idea, several Asus Xtion frames were captured
using an industrial robot, where ground truth object poses
were known and the changes in camera positions could be
accurately measured. More information on the data/method
can be found in [10] – here we compared against the simple
pose clustering employed there. Fig. 2 shows the results
for the three industrial objects being more accurate using
the histogram filter. Additionally, it offers the advantage
of implicit handling of symmetries and estimator biases
through an estimated error model, as discussed in the next
section. To compare against a particle filter implementation,
we performed 20 runs of it per object as well.
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Fig. 2. Top: improvements in pose estimation for the three industrial objects
from Fig. 1. Bottom: particle filter errors (frame 0 had extreme variations).

III. ERROR MODEL ESTIMATION

As discussed earlier, results can be improved further if not
the standard Gaussian measurement error model is consid-
ered, but ground truth data is used to estimate it. We currently
do this by simulating scans of the objects from each pose
in the histogram, and record the number of confusions by
the method. However, to speed up the computations for our
initial test, we perform the evaluation on a downsampled set
of 8480 rotations (therefore we use a 16x16x16x8 division)1.

The most important question is the required number of
tests needed for each of the 8480 poses, in order to guar-
antee a narrow confidence interval for the cells holding no
detections. As we can treat the tests falling into such a cell
as coming from a binomial distribution, we can compute
the Jeffreys interval for them given a significance level. In

1We plan to capture the confusions of the 8480 rotations with the original
68414 rotations, and obtain the final error model by interpolating the results.

this case this is equivalent to the Bayesian credible interval,
and depends on the Beta distribution. The non-informative
Jeffreys prior is Beta(0.5, 0.5), which gets updated using
Bayes’ theorem after each trial. In the case of the Beta
distribution this fortunately yields another Beta distribution:
Beta(0.5, n+0.5), where n is the number of steps (trials).
Thus, we can find the minimum number of trials, such that
the confidence/credible interval for the 0 value is [0,5%] as:

min{n|n ∈ N,

∫
0.05

0

Beta(0.5, n+ 0.5) ≥ 1− α}

Since we test multiple cells for confusions (8480 or
68414), we need to perform Bonferroni correction as well.
For α = 5% this results in 250 trials for each of the 8480
evaluated rotations, which is manageable, and allows for
mistakes of up to 6 (for 68414 possible detections) in 95%
of the cases for the cells that were not hit during evaluation.

For our initial experiments we required a fast pose esti-
mation method, s.t. we can generate the confusion matrices
as quickly as possible. Therefore, we used PCL’s registration
module to create a RANSAC-based feature correspondence
estimator (similar to [27], using SHOT feature correspon-
dences as they worked best in [22]). Thus we can directly
balance runtime and accuracy through the number of iter-
ations (i.e. the desired probability of success). To obtain
results quickly, we built the error model based on a low
quality (but fast) configuration. After simulating the scans
from each of the 8480 poses we used 5 as pseudocount.

First results are shown Fig. 3, visualized by the location
of the (1, 1, 1) vector after the detected or predicted rotation
is applied to it (color coded according to the density). The
detected orientations are rather bad (mostly rotated around
Z), but still, the prediction is reasonable. Due to object
symmetries and pose estimator bias, the distribution of the
predicted orientations shows multiple peaks with 90◦ offset.

(a) 23 detections (b) after frame 0 (c) after frame 12 (d) after frame 23

Fig. 3. Histogram filtering (H.F.) results using an estimated error model.
An industrial filter object is used, having four similar sides (perpendicular
to each other and parallel to the Z axis). Probabilities of orientations are
visualized as a color coded projection to the 3D sphere – the maximum
value (blue) is 0.613%, 0.468% and 0.451%, respectively in the H.F. results.
Due to object symmetries and pose estimator bias, the distributions show
multiple peaks (roughly 90

◦ rotated around the Z axis) at the first and last
H.F. step. The correct solution is at 0◦ (maxima starting with step 12).

As a conclusion, the learned error model did capture the
properties of the method, but it remains to be seen how it
can deal with variations that are not easy to simulate (e.g.
occlusions, different surface types, etc.). The representation,
however, can be used to consider object symmetries when
selecting the final orientation, and different priors on the
orientation can be employed (e.g. if we expected the object’s
pose to be physically stable and not simply uniformly dis-
tributed – according to cell area). Additionally, the estimated
probability distribution and the error models can be used for
selecting the best method [28], and in theory also for next-
best-view selection (similarly to [29]). These capabilites are
of key importance for embodied agents to reach their full
potential in visual perception. and we presented a statistical
analysis for their design and an experimental evaluation.
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