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Abstract—1In this paper we apply model-based synthesis
methodologies for the development of robust fault detection
and diagnosis (FDD) systems for the loss of efficiency (LOE)
type of faults of flight actuators. Typical LOE faults can be
modeled as either additive or multiplicative faults. For additive
LOE fault robust fault detection techniques in conjunction with
signal processing based fault identification is used to design a
robust FDD system. For the detection of multiplicative LOE
faults model detection techniques are employed, which allows to
simultaneously perform fault identification. The developed FDD
systems have been tested in a full nonlinear aircraft simulation
model to validate its detection and identification characteristics
under realistic conditions.

I. INTRODUCTION

The detection and identification of a loss of efficiency
(LOE) fault for a flight control surface actuator has been
intensively studied (e.g., see [1], [2], [3] and references cited
therein). The early detection of a LOE is important to prevent
undesired effects on the flight mechanics, aircraft stability
and fuel consumption. Two main types of LOEs are relevant
for practical applications. A first type of LOE is caused by an
unmeasurable change in the actuator’s input signal, caused,
for example, by incorrect signal transmissions from the flight
control computer to the actuator or induction of an undesired
current by external effects. The result is a corrupted input-
output transfer gain [4], which can be assimilated with an
additive input fault. A second type of LOE can be caused
by a leakage within the actuator, or by an occurrence of a
stall load, or by the disconnection of the actuator due to a
brocken rod, or a damage of the control surface. The last two
cases lead to increased bandwidth of the actuator due to the
reduced aerodynamic loads, while first two cause a decrease
of the bandwidth. This is due to a reduced available pressure
in case of leakage and a convergency of the size of the acting
aerodynamic force and the size of the force delivered by the
actuator in case of the stall load. The type of LOE faults
changing the actuators bandwidth can be assimilated with
parametric (or multiplicative) faults. For the development of
a fault tolerant flight control system, the robust detection and
identification of LOE faults over the whole flight envelope,
for different pilot maneuvers and wind conditions, and over
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the whole range of uncertain parameter variations is an
important prerequisite.

In literature barely no approaches can be found explaining
the detailed physical reasons for the possible LOE types of
faults on electro-hydraulic actuators nor trying to detect and
clearly identify them while respecting the mutual influence
in the fault diagnosis process. This paper aims to close
these gaps. Therefore, in this paper we address the problem
of detecting and identifying the two types of LOE faults
by proposing a complete methodology for the design of a
dedicated model based fault detection and diagnosis (FDD)
system. The main factors which contributed to a satisfactory
solution of the LOE identification problems are: (1) accurate
modeling of the fault-free and faulty actuators via simple
linear parameter-varying (LPV) models; (2) an improved
model based fault detection combined with signal based
identification techniques; (3) the integrated tuning of the free
parameters of the FDD system using multi-objective opti-
mization techniques. In what follows, we describe more in
detail the above aspects and apply the proposed methodology
for the detection of LOE in the case of an aileron failure.

II. THE FDD SYSTEM FOR LOE DETECTION AND
IDENTIFICATION

The FDD system for the monitoring of LOE faults is
depicted in Fig. 1. For each type of LOE, a separate channel
is used to detect and identify the respective type of fault.
Besides a dedicated residual generator, each channel includes
blocks for residual evaluation, decision making and fault
identification (only for the additive case). The fault identifica-
tion consists in the determination of the main characteristics
of the LOE from the generated residual signal r in the case
of an additive fault, or the estimation of the gain of the faulty
actuator (e.g., by detecting the corresponding fault model), in
the case of a parametric fault. Both types of LOE faults can
be only detected if a sustained control activity is provided.

The FDD system structure in Fig. 1 includes two residual
generators for fault detection of additive faults or model
detection in the case of a parametric fault. The residual
generators process the commanded actuator position u and
the measured current actuator position y and generate the
scalar residual signal r in the additive case and the residual
vector r,, in the parametric case. For the robust fault detec-
tion considered in this paper, LPV gain-scheduled detectors
are used, where p is the vector of scheduling variables
as described in Section III. The residual evaluation blocks
compute specific approximations 6 or 6,, of the norms of
the components of the residual signals. These values are
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Fig. 1. FDD system for LOE monitoring

used in the decision making blocks. In the additive case,
a threshold-based decision logic is employed to generate
the decision signal ¢, which, if nonzero, triggers a specific
signal based fault identification processes. The output of
the fault identification block is the classification signals 7,
which indicates the presence or absence of an additive LOE
fault. In the parametric case, the threshold-based decision
logic determines the signature vector ¢,,,, which codifies the
detected fault model. In this case, the fault identification is
implicitly performed.

The employed model-based methodology for the design of
the elements of the FDD system in Fig. 1 has the following
main steps:

1) Development of suitable synthesis models of the un-
derlying actuator;

2) Synthesis of residual generators for robust fault detec-
tion;

3) Setting up of the residual evaluation and decision
making blocks;

4) Development of signal processing based fault identifi-
cation schemes;

In what follows we describe these main steps and present an
application of the proposed LOE identification techniques in
the case of a civil aircraft elevator.

IIT. LPV MODEL GENERATION FOR THE
NONLINEAR ACTUATOR MODEL

In this section we describe the development of a quasi-
LPV approximate model for a system formed from an
actuator and the associated control surface. For the details on
the derivation of the quasi-LPV model see [5]. The resulting
actuator model has a first order LPV-system representation
of the form

& = k(p)(u—x) ey

with the output y = z, where « and y are the rod position
and u is the commanded position. The gain k(p) generally
depends on both measurable and unmeasurable parameters
contained in a vector p.

For the actuator we employ a simplified nonlinear dynamic
model of a hydraulic servo controlled actuator described by
a first order nonlinear state equation of the form [2]

&= K(p,z,&)(u—x), 2)
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where K, is the servo control gain, K; is a gain to convert
an estimated current to a corresponding rod speed, AP
is the hydraulic pressure delivered to the actuator, AP, .y
is a differential pressure for a fully opened servo-valve
(maximum rod speed), F,.r, represents the aerodynamic
forces at the control surface, K 42 represents the estimated
servo-control load of the adjacent actuator in damping mode
and S is the actuator piston surface area. The components
of the vector p are the calibrated airspeed Vs, the aircraft
altitude A and the angle of attack o.

To get a simple quasi-LPV model approximating (2) with
good accuracy, we approximated the nonlinear gain (3) by an
easily computable gain k(p, z, &), which is then used in the
first order actuator model as given in (1). The main variations
of K are caused by the aerodynamic force Fj.,, that acts
on the control surface, where F,.,, itself usually depends on
the parameters in p, the actuator position z and the sign of
the actuator position rate . To develop a simpler version of
this nonlinear gain (3), a Taylor-series is developed, leading
to the form

k(p,x, &) =
Co(p) + C1(p)sign(z) + z(Ca(p) + Cs(p)sign(s)),

where for fixed p, Cy(p) can be interpreted as the nominal
gain, C3(p) describes the influence of the deflection angle x
on k, while the factor sign(z) allows to distinguish between
upward and downward movements of the control surface.

The chosen functional dependence on x and sign(i)
reflects the actual behavior of the actuator dynamics for
different control surface positions and signs of deflection
rate. For C;(p), ¢ = 0,1,2,3, affine approximations have
been used, where the intervening constant coefficients have
been determined using parameter fitting techniques based on
comparing the output responses of the nonlinear actuator
model (2) and LPV-model (1). The final form of k(p), with
p = (x,sign(&),p) is simple enough to be used in LPV-
model based fault diagnosis applications.

4)

IV. DETECTION AND IDENTIFICATION OF
ADDITIVE LOEs

A. LPV residual generator for detection of additive LOEs

Assume temporarily that the parameters in p are constant.
In this case we can use an input-output representation of the



actuator fault model in the form

y(s) = Gu(s,p)u(s) + Gf(87 p)E(s), &)
where y(s), u(s), and f(s) are the Laplace-transformed
quantities of y(t), u(t), and f(t), respectively, where the
additive fault signal can be defined as f(t) := (1—v,)u(¢). In
(5), Gu(s, p) and Gy (s, p) are parameter dependent transfer
functions corresponding to (1)

Gulsrp) = —O G p) = (1 - v)Gulssp) (6)

s+ k(p)’
The value v, = 1 corresponds to the fault-free case, while
0 < v < 1 corresponds to a LOE fault. In the case of the
aileron actuator model we use p = (x, sign(z), Vegs, h, @).
As residual generator we use a parameter dependent filter
of the form

r(s) = Q(s, ) [ ﬂgg } : )

where Q(s,p) is the 1 x 2 transfer-function matrix of the
filter, which explicitly depends on the measurable parameter
p (e.g., via an equivalent state-space realization of the filter).
For a physically realizable filter, Q(s, p) must be robustly
stable, having only poles with negative real parts for all
values of p. The robust fault detection synthesis problem
addresses the robustness of the fault detection system with
respect to the measurable parameter p by attempting to
achieve robustness using an LPV gain scheduling approach.
To address the robust detection of LOE, we employed the
synthesis method described in [5]. Accordingly, we can use
a first order detector of the form
Qs p) = kgs+k(p) ~_k(p)a
o s+ta ko(s+ a)
where a is an arbitrary positive value specifying the dynam-
ics of the detector and kg is a typical nominal value of the
gain k(p). By replacing in (7) y(s) by its expression in (5),
we obtain the internal form of the detector

r(s) = Ru(s.p)u(s) + Ry(s, p)E(s) ©)

; ®)

where
[Ru(s,p) | Ry(s,p)] =

G (s, Gy(s, (10)
Q(&p){ (1 p) f(o P) ]

The choice (8) of Q(s, p) guarantees an exact decoupling
of control inputs in (10), thus R, (s, p) = 0. The correspond-
ing fault-to-residual transfer function is

k(p) a

Ry(s,p) = (1_Va)T08+a

Thus, as long as f = (1—v,)u # 0, the additively formulated
LOE fault can be easily detected.

The LPV state-space realization of the residual generator
(7) can be always obtained in the form

iolt) = Aqro(t)+ Balr)| U1 |
Y
"0 = Canglt) + Dals) | 415 |

For the detector (8), the state-space matrices are

Ao =-a. Bolp)=a[ 5552 2]

k() ko

— a
The chosen form (8) of the detection filter leads to a state-
space realization with a constant feed-through matrix Dg,.
This has the major advantage to prevent all direct effects

on r of the discontinuities in the scheduling signal p (e.g.,
jumps due to the presence of the signum-function in (4)).

(12)
Co=1,

B. Residual evaluation

The evaluation of the residual signals often requires the
computation of a measure of the residual signal energy, for
which the 2-norm of the signal is usually an appropriate
choice. For this purpose, the so-called Narendra signal eval-
uation scheme can be used of the form

t
6(t) = afr(t)] + B / D p(r)ldr,  (13)

where 6(t) can be generated by the first order differential
equation

£(t) —&(t) + Blr(t)]
0(t) £(t) + alr(t)],
The filter parameters o > 0 and 3 > 0 are suitable weights

for instantaneous and long-term values, respectively, while
v > 0 is the forgetting factor.

(14)

C. Decision making

The evaluation signal 6(¢) is compared to a specific
threshold 7 in the decision making process to determine the
decision signal «(t) using the decision logic

0 = {é

The signal 6(t) is ideally equal to zero or sufficiently
small in fault free situations, whereas it shall exceed the
threshold 7 when a fault occurs in the system. Hence, the
appropriate selection of the values of the free parameters «,
[ or v, together with an appropriate threshold 7 essentially
influences the performance of the FDD system.

ifo(t) >

15
otherwise. (15

D. Determination of the detection threshold

The free parameters «, 8 and ~ of the residual evaluation
blocks and the threshold 7 used in the decision blocks must
be chosen to ensure that the requirements regarding typical
performance criteria used in the industry as the false alarm
rate (FAR), the missed detection rate (MDR) or the detection
time performance (DTP) are fulfilled. The simultaneous min-
imization of these quantities (e.g., by using multi-objective
optimization techniques) would provide the best achievable
detection performance. Unfortunately, analytical expressions
of FAR and MDR are not available, and only surrogates can
be used which are suitable only when we require FAR = 0
and MDR = 0. The applicability of such surrogates based
tuning has been demonstrated in [5].



For an optimization based tuning setup, the requirements
for the lack of false alarms and missed detections can be
formulated as either optimization criteria or constraints. In
the absence of faults, the requirement for no false alarms
leads to a constraint on the false alarm bound

T i =supf(t) <, (16)
f=0
where the supremum is taken for all admissible operation
points, all relevant aircraft maneuvers, all admissible vari-
ations of uncertain parameters and for all relevant distur-
bances.
The requirement for no missed detection can be also

expressed as a constraint on the detection bound

inf  0(t) > T,

tEltf,tdetec)

Ty = (17)
which must be satisfied for all relevant fault situations. Here,
tgetec 18 the maximum admissible fault detection time and
ty is the fault occurrence time. To ensure simultaneously the
lack of false alarms and of missed detections, the condition
Tp < 7q must be fulfilled. Different optimization strategies
are presented in [6].

E. Fault identification

Starting from the detailed actuator description (2), we can
assume that if the additive LOE occurs the behavior of the
actuator can be described by

(18)

with § = 2, where we assume v, is a constant parameter
which describes the loss of efficiency of the actuator. The
output values y of the fault free actuator can be generated
using (1), as an LPV reference model. It follows that the
outputs of the faulty actuator §j(¢) and the fault free actuator
model y(t) are related at all time moments simply as §(t) =
vy(t). Thus, the time-dependent ratio of the two outputs

oty — 10

y(t)
can be used to check the assumption of constant scaling v,.
Let n be a given number of samples, 1" a given sampling
period, ¢4 the fault detection time, and 7, 1, := D, (tq + (k —
1)T"). The variance o, of ¥, can be determined in real-time
using the numerically stable recursive algorithm [8]

&= K(p, &, &)(vqu — #)

19)

M1 + (Do — mi—1)/k

Sk—1 + (Ua 1 — Mp—1) (Vg1 — M)

for kK = 2,...,n, where my = 7,1 and s; = 0. Then,
0y, = 8n/(n — 1) and the LOE is confirmed if 0y, <75, _,
where 7, is a suitable threshold for zero variance. Typical
values of the main parameters of the identification procedure
are 77 = 0.01s and n = 50 = 300. The confirmation signal
of the LOE fault can be set as

B {1 if ([[u]] > 7u) A (05, < To, )

mp =
Sk =

: (20)
0 otherwise.

where 7, is a threshold for nonzero inputs. For the com-

putation of ||u|| the Narendra-filtering scheme (13) can be

employed.

V. DETECTION AND IDENTIFICATION OF
PARAMETRIC LOES

Several LOE actuator faults like leakage in the hydraulic
system, stall load, broken actuator rod or surface damage
lead to changes in the actuator gain (3) and thus can be
interpreted as parametric faults. Due to low fault sensitivities
(only during transients), the detection of such actuator faults
using methods for additive faults is often difficult, while the
fault identification is often questionable. In this section we
describe an alternative approach to simultaneously achieve
the fault detection and identification using an approach based
on model detection techniques.

A. Multimodel residual generator for detection of parametric
LOEs

The actuator gain (3) of the fault-free actuator can be
modified to express the effects of faults in the form

Vp,’.’Faero(pvxﬁi;)"l‘Kd-'tQ
S

AV

AP(z) —
Ki(p,x, &) == Kc,;Kp\/Vp’l (2)

(2D
where 0 < v,1 < 1 and 0 < v, < 1 are factors used
to describe the effects of the parametric changes due to
leakage or surface damage/disconnection, respectively. To
account for gradual degradation of actuator performance (i.e.,
different degrees of LOE), consider N + 1 distinct values

(uf,f},u;f;), for i = 0,1,...,N, of the pair (vp1,Vp2),
where (V;?I),VI()?Q)) := (1,1) corresponds to the fault free

case. An exception is the stall load, as it always occurs, if
Vp 1 AP(2)S & vy 2 Fuero(p, z, @) + Kgd? in (21). However,
also this case, which cannot be explicitly modeled using
Vp,1 and vy, o, is classified as faulty behavior, which has to
be detected and identified. This is achieved by a distinct
modeling of the very slow actuator dynamics in case of a stall
load, while the its effect is not considered in the modeling
of the fault free behavior. Note that the effect of leakage in
the system supports the occurrence of a stall load, as the
available pressure in the system is decreased.

Let ) (p) be a parametric approximation of the gain
(21) of the form (4), obtained for (1, vp2) = ('), v}).
Assume that we employ N + 1 parametric models of the
form

y(s) = G (s, p)u(s) (22)
for: =0,1,..., N, where
: k) (p)
GW = —— 23
u (S) p) s + k(l) (p) ( )

The model detection problem can be formulated as follows
[7]: Determine a batch of N + 1 filters with scalar outputs
of the form

z(s)

r(i)(s) = Q(i)(&p) [ u(s)

such that for all u(¢) we have:

() T(i)(t) =0 when z(¢t) = y(®) (t);
(i) T(i)(t) = 0 when 2(t) = y(j)(t) for i # 7
(iii) 7 (t) is asymptotically bounded.

},izO,l,...,N 24)

(25)



To fulfill condition (i) we choose
QW(s,p) = [ 1 -G, p) } i=0,1,....,N (26)

which is by construction stable, so condition (7i7) is auto-
matically fulfilled. Furthermore, we have for z(t) = yU)(t)
and for j # ¢

106 = Q0. |3 )| = €9 61 -6 s puts)
27
which shows that condition (i7) is also fulfilled, provided
u(t) is nonzero. Due to the presence of a zero in the origin
of Gg)(s, p) — G,(f)(s, p), u must be also nonconstant.
The overall residual generator used for model detection
results in the form

() = Qi) | 50 | e8)
where

r(©)(s) QW (s, p

(s M)
e = | Qs | T o)

r(N)(5) $,{V>.(s, 5

B. Residual evaluation and decision making

For the detection of the i-th model, all components of
the residual vector 7,,(t) must be nonzero, excepting the
i-th component. For each component () (¢) of the N + 1-
dimensional residual vector 7, (t) an evaluation signal 6(*) (t)
of the form (13) can be generated to build the evaluation
vector

O (t) = [0(2), ..., 0 (1) ]"
and define the decision vector ¢,,, as
b (t) = [O),. ... N @)]T

whose i-th component is defined as

. 1. if G > (@)
CIORS SR (30)
0  otherwise.

where 7(*) is a suitable threshold for nonzero gains. For the
threshold selection we can exploit (27) and choose

7= inf |G (s,0) =GP (s,0)le  BD
J#4p

Furthermore, with suitable scalings of the filters (26), it is

possible to use a unique value, say 7,,, for all thresholds

@,

Regarding the decision making, note that the only valid
signature vectors for model detection are those with a single
zero component. Therefore, all other signatures, as for exam-
ple, all components nonzero or all components zero rule out
cases when there is no LOE fault or the detection conditions
u # 0 or u nonconstant are not fulfilled.

VI. APPLICATION EXAMPLE

In this section we describe the application of the method-
ology described in this paper to the detection LOE faults
of an aileron surface controlled by an electro-hydraulic
actuator. The nonlinear actuator model of the aileron is part
of a nonlinear model of a closed-loop aircraft including a
nonlinear control law ensuring robust stability over the whole
flight envelope. For tuning purposes, the closed-loop aircraft
model has been augmented with an FDD system as in Fig. 1,
which includes the LPV residual generator for additive fault
detection and the multi-model based residual generator for
parametric fault detection.

A. Additive LOE

Fig. 2 shows the input and output signals of the actuator
before and after the occurrence of a LOE fault. In the first 15
seconds the output signal y follows the commanded signal u
almost instantly. At ¢y = 15s an additive LOE of 20% occurs,
leading to a significant difference between the two signals.
To avoid false alarms and missed detections, an optimization-
based tuning of the values of the parameters («, 3,7) of the
residual evaluation block and the threshold 7 of the decision
making block has been done by maximizing the detection
gap 7% — 77 [6]. The optimal setting with o = 0, 3 = 1,
v = 0.2 and 7 = 0.1 leads to a completely satisfactory
fault detection performance. Fig. 3 shows the detection times
for four input amplitudes ||u|l~ (defined in terms of the
maximum allowed amplitude w,,q;), for different values of
the additive efficiency loss up to 90%. The results show
that higher degradations of the actuator effectiveness lead to
shorter detection times. Furthermore, as it is to be expected,
if the input amplitude is decreasing, the detection of the
faults becomes slower and there exists a well defined least
detectable fault amplitude (see the dash-dotted line in Fig. 3).
For fault identification, n = 50 additional values of the
outputs (faulty and fault-free) have been collected using
a sampling period of T' = 0.01s. This led to quit fast
confirmation times of LOE of about 0.5s.
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B. Parametric LOE

Fig. 4 shows the output signals of the fault-free actuator
and of a faulty actuator with a loss of the hydraulic pressure
of 25% occurring at 15s. As only the dynamical behavior
of the actuator is influenced, there is only a small difference
in the two signals, making the parametric LOE fault nearly
undetectable using additive fault based approaches. This is
the reason why the model detection based approach has been
used for the detection and identification of this type of LOE
fault. For the case of parametric LOE fault, we employed six

fault free

10.5 | —— 25% loss of efficiency| q
7+ R
asp J
0 J
a5t
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Fig. 4. Effect of the parametric LOE

actuator models for the following pairs of fault parameters:
(1/1(,?1), V;?%) := (1,1) for the fault free case, (1/1(7’11)71/1()’12)) =
(1,0), (2, v%) := (1,0.33), and (], v9) := (1,0.66),
for 100%, 66% and 33% loss of the control surface effec-
tiveness, respectively, and (yzgfll), 1/1(:2) :=(0.85,1), for a 15%
loss of the hydraulic pressure. Additionally, to describe the
situation when AP(2)S = Fuero(p,x,3) + Kqi? holds,
a constant first order linear model is employed. Corre-
spondingly, approximations of the actuator gains k() (p) of
the form (4) have been determined using parameter fitting
techniques described in Section III. For the special case of
100% LOE due to either actuator disconnection or a total
surface damage, the following easily implementable exact

gain can be alternatively used

AP(x)

ED(p) = KK, N

(32)

For the case of a stall load the constant gain k() (p) = 0.1,
describing the decreased actuator dynamics during a stall
load, is employed. Note, that the effects decreasing the actua-
tor bandwidth are not considered in the fault free model, to be
able to clearly identify the stall load. The six actuator models
of the form (23) have been used to define the corresponding
six scalar output detectors (26), which enter in the overall
detector (28). For all six Narendra filters in the evaluation
block, the same values of the parameters have been used,
namely o = 0, 8 = 1, v = 0.1. Using suitable scaling of
the individual detectors, the same detection threshold value
of 7, = 0.15 has been used for all 7(9.

Fig. 5 shows the results of the model detection for
degradations of the control surface between 0% and 100%
as well as for leakage in the pressure supply of up to 20%.
The maximum leakage value corresponds to an appearing
stall load, as the available pressure is too small to move
the surface against the acting aerodynamic force. The red
vertical lines indicate the grid values corresponding to the
faults for which a LPV model has been developed and used

in the detector. The blue circles show the results of the
model identification obtained using the closed-loop flight
control system augmented with the developed FDD system.
Important to notice is that all nearby models to a grid value
have been correctly detected (i.e., there are no switching
between models) and therefore no false classification of
the fault occurred. A more accurate fault identification can
be obtained by increasing the number of models (with the
associated increased computational load).
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Fig. 5. Detected model during fault simulations

VII. CONCLUSIONS

In this paper we proposed a model-based synthesis and
tuning methodology for the development of an FDD system
for the detection and identification of loss of efficiency
failure cases for aircraft actuators. The main features of the
proposed approach which confers superior performance over
existing approaches are: (1) relying on accurate LPV models
allowing the synthesis of robust fault detection filters, (2)
application of advanced synthesis methods of LPV residual
generators guaranteeing robust fault detection, (3) employing
integrated optimization-based tuning of the parameters of the
fault evaluation and decision making blocks, including the
determination of detection thresholds to guarantee no false
alarms and no missed detections, (4) employing real-time
implementable fault identification method. The proposed
methodology has been successfully applied for the design
of an FDD system for the identification of the additive and
parametric LOE faults of an aileron actuator.
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