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Abstract— Due to their central location in the control system,
actuation systems of primary control surfaces in modern,
augmented aircraft must show an increased reliability. A
traditional approach is based on hardware redundancy. In this
way, modern actuation systems of one single control surface
consist of up to two actuators and three sensors. These different
dynamic subsystems are all prone to faults themselves and can
be monitored. This paper presents the setup of a fault detection
and diagnosis (FDD) system to systematically detect and isolate
faults in the subcomponents of an actuation system. Based on
the achievable fault signature matrix of the system, a residual
filter is designed using nullspace theory. The residuals of the
proposed filter form the basis of the decision making process
to detect an isolate the faults. The developed FDD system
is implemented into a nonlinear aircraft model, allowing a
profound validation of the FDD system’s detection and isolation
performance for different actuator and sensor fault scenarios.

I. INTRODUCTION

To comply with the safety regulations, the actuation sys-
tem of a single control surface in modern aircraft includes
not only one actuator and one sensor. Up to three sensors
and two actuators are integrated to be able to guarantee
a backup during fault situations. In detail, the redundant
actuator is usually in a passive mode and is activated only
when any fault in the system is detected [1], while the
faulty actuator is switched off. If this switching does not
improve the situation, the whole actuation system of the
control surface is switched off. The detection of actuator
faults is a widely discussed topic in literature. For example
in [1] a nonlinear observer based approach is used to detect
oscillatory failures of the actuator on system level (local),
while [2] proposes a combination of a local and aircraft
system wide (global) approach to detect actuator faults. Pure
global approaches are provided e.g. by [3] and [4]. While
various approaches are able to detect faults in an actuation
system quite well, none of them tries to distinguish between
physical faults of the actuator and faulty sensors, necessary in
the actuation system to close the actuator’s control loop. This
lack of sufficient isolation information leads to the common
procedure in modern, augmented aircraft: as soon as any
fault is detected on the actuator, this actuator is switched
off and the redundant actuator is activated, no matter if the
actuator itself or a single sensor causes the faulty behavior.
This paper proposes an approach, which is not only able to
detect but also to isolate faults on local actuator level. In
case of a sensor fault the isolation information can be used
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to switch to a redundant physical or virtual sensor, without
losing the physical actuator redundancy.

In section II a common model of an electro-hydraulic
aircraft actuator is presented, including the modeling of the
actuator and sensor faults. A linear model of the actuator
description is derived enabling the design of the residual
filter. In section III, based on the achievable fault signature
matrix (AFSM) of the system, the most robust structure
for the desired fault signature matrix (DFSM) is selected
for the synthesis process of the residual filter. To robustly
solve the fault detection and isolation problem (FDIP) a
linear parameter varying (LPV) form of the designed filter
is determined. In section IV the residual evaluation and
decision making algorithms are discussed to complete the
setup of the FDD system. This finally enables in section VI
the validation of the FDD system with a nonlinear aircraft
model, including a nonlinear model of the actuation system.

II. THE FDD SYSTEM FOR FAULT DETECTION AND
ISOLATION

The FDD system to be designed able to detect and
isolate actuator and sensor faults is depicted in Fig. 1: The
FDD system consists of the residual generator, the residual
evaluator and the decision making function. The residual
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Fig. 1. FDD system for detection and isolation of faults in an actuation
system

generator for fault detection and isolation in Fig. 1 processes
the commanded position u and the measurement signals y to
generate the residual signal vector r. The residual evaluator
computes a specific approximation θj of each individual
residual norm ||rj ||. These values are used in the decision
making process, where a threshold-based decision logic is
employed to generate the fault signature vector ς . This vector
is compared to the columns of the fault signature matrix
S, in which a unique signature for each fault is coded,
finally enabling the determination the fault index vector ι
and isolate the occurring fault situation. The employed based
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methodology for the design of the elements of the FDD
system in Fig. 1 has the following main steps:

1) Development of suitable synthesis models of the un-
derlying actuator

2) Synthesis of the residual generator for robust fault
detection based on the achievable fault signature matrix
M

3) Setting up of the residual evaluation and decision
making functions

In what follows these steps are described in more detail.

III. ACTUATION SYSTEM MODEL

The actuation system consists of a hydraulic servo con-
trolled actuator, an actuator in passive mode, and three
sensors, one on each rod of the two actuators and one on
the control surface. This actuation system can be analyti-
cally described by a higher order model presented in [5].
The underlying model of the actuation system used in this
paper is a simplified model, which is commonly used for
the simulation and analysis of aircraft actuators [1]. It is
described by the first order nonlinear state equation

ẋ = kciic

√
∆P (x)− Faero(p,x,ẋ)+kdẋ2

s

∆Pref
, (1)

with the control law ic = kp(u − x). In this equation kp is
the servo control gain, kci is a gain to convert an estimated
current to a corresponding rod speed, ∆P is the hydraulic
pressure delivered to the actuator, ∆Pref is a differential
pressure for a fully opened servo-valve (maximum rod
speed), Faero represents the aerodynamic force at the control
surface, kdẋ2 an estimate of the servo-control load induced
by the adjacent actuator in damping mode and s is the
actuator piston surface area. The aerodynamic force Faero
depends on the position and the velocity of the actuator
and additionally on measurable and nonmeasurable flight
parameters summarized in the vector p. This dependency
usually cannot be analytically described for the whole flight
envelope and is given in a higher-dimensional table only.
Hence, the model (1) cannot be implemented on flight
computers. However, in equation (1) the nonlinear gain

ka(p, x, ẋ) := kci

√
∆P (x)− Faero(p,x,ẋ)+kdẋ2

s

∆Pref
(2)

can explicitly be determined and used together with the
control law in the first order quasi-LPV state equation

ẋ = −kpka(ρ)x+ kpka(ρ)u. (3)

The term k(ρ) = kpka(ρ), with ρ = (x, sign(ẋ), p),
has been approximated in [6] by an analytical function,
only depending on measurable parameters. Together with
(3) this approximation of the actuator dynamics can be
used in model-based fault diagnosis applications [6] and
implemented on flight computers. The output function y of
the model (3) includes three measurement signals. Due the
physical connection of the two actuators, it is assumed that

the rod potions of both actuators are equal. However, their
measurement signals y1 and y3 are influenced by different
stochastic noise influences. The deflection of the control
surface has a proportional relation kf with the rod position
x. The resulting output function is given by

y =
[
1 kf 1

]T
x+ n, (4)

where n is a stochastic noise vector.

A. Linear approximation with faults

To enable a detailed analysis of the underlying system
with faults, the actuator model is enhanced by mf = 4 fault
situations: first, the nominal control law ic = kp(u − x) is
enhanced to

ic = kp(u− x) + fa, (5)

where fa is an additive fault used to describe actuator faults.
For example, with fa = Af sin(ωf t), where Af is the fault
amplitude and ωf the fault frequency, an oscillatory failure
case can be modeled. The enhanced output function of the
actuator model, including three sensor faults, is given by

y =
[
1 kf 1

]T
x+ n+ fs. (6)

The additive sensor fault vector fs allows the modeling of
three sensor faults fs,1, fs,2 and fs,3. For example a freezing
of the third sensor at the position cf is created by selecting
fs,3 = −x+ cf .

Setting the parameters ρ in (3) to constant values and
including the defined fault and noise inputs leads to the first
order linear model of the actuation system

ẋ = −kpkax+ kpkau+ kafa

y =
[
1 kf 1

]T
x+ n+ fs.

(7)

Fig. 2 shows a simplified block diagram of this model,
including the different fault and noise inputs. This description
of the actuator will serve as basis for the residual generator
design. At the end of the design procedure an approach for
the enhancement to a robust residual filter will be given.
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Fig. 2. Simplified block diagram of the actuator

IV. SYNTHESIS OF THE RESIDUAL GENERATOR

The linear system (7) can also be written in the input-
output form

y(s) = Gu(s)u(s) +Gf (s)f(s) + n(s), (8)
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where y(s), u(s), f(s) and n(s) are the Laplace-transformed
quantities of y(t), u(t), f(t) = [fa(t) fs(t)]

T and n(t),
respectively, and Gu(s) and Gf (s) are the corresponding
transfer matrices. To solve the fault detection and isolation
problem for the system (8) the residual filter

r(s) = Q(s)


y1(s)
y2(s)
y3(s)
u(s)

 (9)

shall be generated. y1(s), y2(s), y3(s) are the entries of y(s)
and r(s) is the Laplace-transformed quantity of the residual
r(t). For a physically realizable filter, Q(s) must be proper
and stable, having only poles with negative real parts.

To achieve the desired fault isolation, a bench of residual
generators Qj(s) is designed, using the methods described in
[6], where each of the filter shall generate a unique fault to
residual influence vector. Each of these vectors describes the
influence of the defined faults on one residual. The overall
residual generation system consists of q individual residual
filters, which are designed separately and assembled to one
system at the end according to

Q(s) =

Q
1(s)
...

Qq(s)

 . (10)

To gain the knowledge how to design this set of filters
requires the definition of the fault signature matrix (FSM) is
required.

A. Fault signature matrix

The FSM S of a residual filter describes the effects of the
faults on the residuals. Let Rjfi(s) be the transfer function
of the i-th fault to the j-th residual. Then the entries of S
are defined as

Mj,i =


1 if Rjfi(0) 6= 0

−1 if Rjfi(0) = 0 and Rjfi(s) 6= 0

0 if Rjfi(s) = 0.

(11)

In words, the entry ’1’ indicates a stationary influence of the
fault to the residual (strong detection), the entry ’0’ indicates
decoupled behavior of the residual from the fault, and the
entry ’-1’ indicates that the residual is influenced by the fault,
but its steady state value is 0 (weak detection).

The common way to design a residual generator is as
follows: select a DFSM S̄ and try to design the residual
filter. The matrix S̄ is achievable, if the design has been
successful and the residual filter shows a FSM S = S̄. In
this paper we propose a more straight forward approach:
determine the overall q̄ ×mf AFSM M of a system before
the synthesis of the residual filter. Here, mf is the number of
defined faults and q̄ defines the maximum number of different
fault specifications vectors. This approach adds the design
freedom of selecting the most robust structure for the DFSM
S̄ by selecting and arranging the desired rows of M . The
filter is designed in a systematic way with a reduced number

of design iterations. A systematic approach to determine the
AFSM of a given system is presented in [7].

To answer the question how to adequately select the rows
of M for the residual filter synthesis, the robustness issues
of the fault isolation process have to be discussed: The
robustness of fault isolation concerns mainly so-called false
firing and partial firing [8]. False firing is the case, when
a residual exceeds its threshold in a situation, where it is
supposed to stay below. This may happen due to unexpected
noise/disturbances or inputs and faults acting on the residual
due to uncertainties in the underlying system, when an exact
decoupling is not possible any more. Partial firing appears,
when a fault occurs and some residuals stay below their
thresholds which they are supposed to exceed. This may
simply happen due to a too high threshold. In both cases
the correct fault cannot be isolated: The isolation requires
an exact match of the generated so-called fault signature
vector with the corresponding column of the signature matrix
S. The fault signature vector is a q-dimensional vector,
indicating which residual has exceeded its threshold (entry
is set to 1) and which residual has not (entry is 0). Hence,
it can happen, that a wrong fault signature vector for a fault
matches another column in S and thereby isolates the wrong
fault. To avoid such wrong isolations [8] proposes to use
unidirectional strong isolating structures. Such structures are
characterized as follows: All columns of an unidirectional
strong isolating structure are different and no column can
be transferred into another by turning an arbitrary number
of ’1’s into ’0’s or an arbitrary number of ’0’s into ’1’s.
This requires for each pair of columns of a matrix a row
where one column has a ’1’-entry and the other column has
a ’0’-entry and vice versa.

The described procedure is now applied to the actuator
model. First, for the linear system (7) the AFSM is deter-
mined:

M =



1 1 1 1
−1 0 0 1
1 1 0 1
1 0 1 1
0 1 1 0
−1 1 1 1
0 −1 0 1
0 0 −1 1
0 −1 −1 1
1 1 0 0
1 0 1 0
1 1 1 0



. (12)

The first three columns of the matrix correspond to the sensor
faults while the last column corresponds to the actuator
fault. This matrix directly indicates that the fault detection
and strong isolation problem, where each residual is just
influenced by one single fault and is decoupled from all
other faults, is not solvable. This would require a 4 × 4
identity matrix, which cannot be generated using the rows
of (12). However, the fault detection and weak isolation
problem can be solved. Solving this problem leads to a
residual filter which allows the isolation of all faults. The
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main disadvantage of weak isolation compared to strong
isolation is, that it has to be assumed that faults occur one
at a time [7].

For the residual filter design, a subset of the rows of M
is selected. The only way to generate a unidirectional strong
isolating structure out of (12) is to include one row showing
a −1-entry:

S̄ =



1 1 0 1
1 0 1 1
1 1 0 0
1 0 1 0
1 1 1 0
0 1 1 0
0 0 −1 1


. (13)

−1-entries should usually be avoided for the design of
the residual filter, as they may cause problems during the
detection. As the stationary value of the step response is
equal to zero, no clear correspondence to the columns of S
is given for a constant fault. However, a closer look at the
first 6 rows of the matrix reveals that the only pair which is
missing to make the matrix unidirectional strong isolating is
a ’0’-entry in the first column combined with an ’1’-entry in
the fourth column, which is achieved by the last row in (13).
Hence, the first six rows can be used to isolate the faults fs,2
and fs,3 by comparing the generated fault signature vector
to the columns of S, while all seven rows of the vector must
agree to either the first or fourth column of (13) to isolate
the faults fs,1 or fa respectively. Using this approach the
−1-entry does not cause any problems.

B. Residual Generator

As the 7 × 4 DFSM of the residual filter is known, it
is possible to design the bank of residual generators Qj(s),
with j = 1, . . . , 7. For the DFSM in (13), the bank of residual
filters have to be designed that for all command inputs u(t)

(i) for j = 1, . . . , 7, rj(t) = 0
if fi(t) = 0, ∀ j with S̄j,i 6= 0

(ii) for j = 1, . . . , 7, rj(t) 6= 0
if fi(t) 6= 0, ∀ i with S̄j,i 6= 0

(iii) all residuals rj(t) are asymptotically bounded

with i = 1, . . . , 4 is fulfilled. In words, each detector Qj(s)
has to achieve the desired signature of the j-th row of S̄ and
decouple the residual from the command input. One possible
linear detector for the system (7) fulfilling the conditions
(i)− (iii) can be determined as

Q(s) = (14)

0 − a
s+a

s+kpka
kfkpka

0 a
s+a

0 0 − a
s+a

s+kpka
kpka

a
s+a

kf
a
s+a − a

s+a 0 0
a
s+a 0 − a

s+a 0

− a
s+a

2
kf

a
s+a − a

s+a 0

0 a
s+a −kf a

s+a 0

kpka
a
s+a 0 as

s+a −kpka a
s+a


,

where the parameter a is an arbitrary number above zero,
defining the transfer dynamic of the faults to the residuals.
The detector has been determined analytically, where the
main ideas are described below:

The first two rows as well as the last row of Q(s) use a
model of the actuator dynamics to determine the residuals,
as their entries of the last column corresponding to the
input signal u, are nonzero. For example, the first row of
(14) multiplies the measurement signal y2 with the inverted,
fault and noise free actuator dynamics s+kpka

kfkpka
. The resulting

signal is a kind of virtual input û which is subtracted from
the real input u to determine the first residual. Due to this
subtraction the residual is decoupled from any input. The
transfer function a

s+a is used to make the transfer behavior
from the faults to the residual proper. As the faults fs,1, fs,2
and fa directly influence the measurement signal y2 and thus
û but not u, the coupling of the faults with the residual is
maintained. Hence, the transfer characteristics of the first
row of (14) correspond to the one coded in the row of the
DFSM in (13). The last two rows of the detector (14) are
designed following the same ideas. The other four rows of
Q(s) mainly make use of signal based residual generation,
as they only use the three measurement signals, which are
subtracted from each other to achieve the decoupling from
u. The proportional gain kf is needed to transfer the rod
position to the surface deflection.

To enable a real-time implementation, it is often necessary
to transfer the fault detection filter into the time domain. The
state space matrices of the detector (14) are given by:

A = −aI7 (15)

B =



0 a
kf

(
1− a

kpka

)
0 a

0 0 a
(

1− a
kpka

)
a

kfa −a 0 0
a 0 −a 0
−a 2a

kf
−a 0

0 a −kf 0
kpkaa 0 −a2 −kpkaa


,

C = I7,

D =



0 − a
kfkpka

0 0

0 0 − a
kpka

0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 a 0


This form of the filter enables also the introduction of a
more robust fault detection filter. In matrices B resp. D ka
can be replaced by a parameter-dependent description ka(ρ)
of the actuator gain to robustly solve the fault detection
and isolation problem in the whole flight envelope. Fig. 3
shows the step responses of the overall residual generation
system (linear plant model together with the residual filter).
In this example the parameter a is selected at a value of
a = 5, while the parameters of the actuator are given at
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kp = 2, ka = 7.5 and kf = 1.3. The nominal case is shown
in green clearly indicating that the behavior defined in the
DFSM is achieved (S = S̄). Additionally uncertainties in the
parameter ka of the linear actuator model to be monitored of
up to 25% are considered. The results are depicted in blue.
However, these amplitudes are smaller than the amplitudes
induced by the different faults, enabling the selection of
an adequate threshold to separate the faults from undesired
disturbances. Note, that only residuals based on a filter which
uses a model of the actuator dynamics are influenced by
these uncertainties. As the uncertainties directly influence
all measurements, the decoupling from u can be achieved in
case of the signal based residual generation. In these cases
the exact decoupling is not achieved any more, leading to
small amplitudes of the residuals.
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Fig. 3. Step responses of the actuator input and the possible faults to the
residuals

V. SETUP OF RESIDUAL EVALUATION AND DECISION
MAKING BLOCKS

A. Residual evaluation
The evaluation of residual signals often requires the com-

putation of measures of the signals’ energy, for which the
2-norm of a signal is usually an appropriate choice. For this
purpose, a so-called Narendra signal evaluation scheme of
the form

θj(t) = αj |rj(t)|+ βj

∫ t

0

e−γj(t−τ)|rj(τ)|dτ, (16)

can be used. The filter parameters αj ≥ 0 and βj ≥ 0
are suitable weights for instantaneous and long-term values,
respectively, while γj > 0 is the forgetting factor.

B. Decision making
Each evaluation signal θj(t) is compared to a specific

threshold Jth,j in the decision making process using the
decision logic

θj(t) < Jth,j ⇒ ςj(t) = 0
θj(t) ≥ Jth,j ⇒ ςj(t) = 1

(17)

to determine the components of the fault signature vector
ς(t). Like the residual rj(t), the evaluated residual θj(t) is
ideally equal to zero or sufficiently small in fault free situ-
ations or in fault situation where the corresponding residual
is decoupled from the fault. It shall exceed the threshold
Jth,j when a fault occurs, from which the residual is not
decoupled. Hence, the appropriate selection of the values of
the free parameters αj , βj and γj , together with an appro-
priate threshold Jth,j essentially influences the performance
of the FDD system. Optimization based approaches how to
determine the values of the parameters can be found in [6],
[10].

As discussed in section IV-A, the fault situations are coded
in the columns of the FSM S:

S(q×mf ) =

s1,1 · · · s1,mf

...
. . .

...
sq,1 · · · sq,mf

 =
[
v̄1 . . . v̄mf

,
]

(18)

where every column v̄i has an individual structure of zeros
and ones. Hence, to isolate a fault the determined the fault
signature vector ς has to be compared with the columns of
S according to

ιi =

{
1 if ς = v̄i

0 otherwise
for i = 1, . . . ,mf . (19)

The fault index vector ι has mf entries, where each entry ιi
indicates the presence (0) or absence (1) of the i-th fault.

C. Determination of detection threshold

To handle the requirements with respect to false alarms
(FA) and missed detections (MD), the presented approach
aims to choose decision thresholds which guarantee no false
and partial firing. In case of an aircraft actuator, the whole
nonlinear aircraft model has to be considered, to take all
relevant parameter variations into account. To address the
goal of no false firing the bound

Jfth,j := sup θj(t), (20)

can be defined, where the supremum is taken for all ad-
missible operation points, all relevant aircraft maneuvers, all
admissible variations of uncertain parameters, for all relevant
disturbances as well as for all faults, which shall not generate
a residual higher than the threshold. To avoid false firing, the
threshold Jth,j used in the decision block must be chosen
such that Jth,j > Jfth,j . To address the goal of no partial
firing, for each residual the bound

Jdth,j := inf θj(t), (21)

is defined, where the infinum involves all fault signals,
which are supposed to generated a residual higher than the
threshold. Note that these bounds implicitly limit the de-
tectable fault amplitudes. To avoid partial firing, the threshold
Jth used in the decision block must be chosen such that
Jth,j < Jdth,j . If Jdth,j−J

f
th,j > 0, a constant threshold Jth,j

satisfying Jdth,j ≤ Jth,j < Jfth,j can be chosen to guarantee
no false as well as no partial firing. For the computation
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of Jfth,j and Jdth,j , solving global worst-case optimization
problems to find the worst-case parameter combinations is
the most adequate choice [9].

VI. APPLICATION

The developed FDD system including the residual filter is
used to monitor an elevator actuator of a modern, augmented
aircraft. Therefore, its functionality is validated simulating
a nonlinear aircraft model including the nonlinear actuator
dynamics (1). This allows a realistic validation of the FDD
system, as the aerodynamic force acting on the actuator
dynamics is updated at each time step using the simulation
data of the aircraft model. For each sensor as well as for
the active actuator a faulty situation is generated to illustrate
the fault to residual transfer behavior in the nonlinear case.
The sensors are corrupted with a sensor bias, while the
actuator with a runaway. Note, due to the weak isolation
characteristics, for fault isolation the mentioned faults have
to occur one at a time.

The values of the evaluation function parameters (16)
are selected at αj = 0.2, βj = 0.2 and γj = 0.2 for
all j = 1, . . . , 7, providing a adequate filtering of the
sensor noise. The thresholds are determined using worst
case optimization and are set to Jth = {Jth,1, . . . , Jth,7} =
{0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 5}. The last evaluated residual re-
quires a higher threshold due to the determination of the
derivative of the thirds sensor signal (see eq. (15)). On each
of the two rod sensors a bias of 5mm, while on the sensor of
the surface deflection a bias of 2.85deg is induced at tf = 5s,
which is approximately equivalent to a bias of 5mm on the
rod sensors. As actuator fault a runaway with a rate of around
20deg/s is modeled.

Fig. 4 shows the behavior of the evaluated residuals during
the different fault situations in the first four columns of the
diagram, while in the last column the residual signals due to
the input signal are depicted. The evaluated residuals θj are
plotted in blue, the thresholds Jth,j in red and the elements ςj
of the fault signature vector ς in green. The residuals reflect
the behavior coded in the DFSM 13). Fig. 5 finally shows
the entries ιi with i = 1, . . . , 4, of the fault index vector
ι, each one plotted with a different color. While during the
four fault situations the correct fault is isolated, all signals
of ι remain zero when the system is fault free, confirming
the correct functionality of the proposed FDD system.

VII. CONCLUSION

In this paper a systematic approach for the design of an
FDD system for the detection and isolation of actuator and
sensor faults in actuation systems of modern, augmented
aircraft is proposed. The main steps of the methodology are:
(1) the development of a suitable synthesis model of the
underlying actuator, (2) the synthesis of residual generators
for fault detection and isolation based on the desired fault
signature matrix, and (3) the setting up of the fault evaluation
and decision making including the determination of the de-
tection thresholds. The designed residual generator has been
adapted to cover a wide range of the flight envelope, still
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Fig. 4. Evaluated residuals due to the different faults
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Fig. 5. Signals of the fault index vector ι

showing a low complexity and therefore, low implementation
costs. The validation of the FDD system in a nonlinear closed
loop aircraft model indicates that the suggested FDD system
cannot only reliably detect but also isolate the actuator and
sensor faults. In this way, the proposed approach provides
crucial information about the location of fault and thereby
opens the gate to advanced fault tolerant control approaches
on actuator level in the future.
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