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ABSTRACT

The wave forcing of the atmospheric mean flow in isentropic coordinates has been investigated intensively

in the past with the divergence of the Eliassen–Palm flux playing a dominating role. These concepts are

reviewed briefly and it is pointed out that angular momentum is attractive in this context because the wave

driving can be written in the form of a flux divergence. This helps to evaluate the wave forcing in other

coordinate systems with a different separation of waves andmean flow. The following coordinates are chosen:

(l, u, z), (l, u, u), and (l, u, z). To be consistent, only one type of zonal averaging should be used. Mass-

weighted averaging is applied in the isentropic standard case and simple averaging is applied in the others.

The wave driving is presented for all three systems. It has to balance essentially the mean-flow part of the

‘‘Coriolis term’’ in the angular momentum budget in (u, z) and (u, z) coordinates but not in the (u, u) system
where the form drag is a mean-flow term and, therefore, the forcing pattern differs from what has been

published so far.

1. Introduction

Zonal mean momentum budgets have been long

considered in order to better understand the structure

and intensity of the zonal mean flow (e.g., Oort and

Peixoto 1983). The contribution of the ‘‘waves’’ to

the budgets—that is, by the deviations from the mean

state—is of key interest. The so-called Eliassen–Palm

(EP) flux played a dominating role in this context be-

cause its divergence ‘‘is a direct measure of the total

forcing of the zonal mean state by the eddies’’ (Edmon

et al. 1980, p. 2600), at least in the context of the trans-

formed Eulerian-mean (TEM) equations. The EP flux

divergence equals in this case the meridional potential

vorticity flux in the quasigeostrophic limit and tends to

be divergent near the surface in midlatitudes and con-

vergent aloft with a subtropical extension (Edmon et al.

1980). The quasigeostrophic EP flux is

Fg5

 
2u0y0, f 2N22y0

›c0

›z

!
(1.1)

in standard notation and height coordinates. The over-

bar stands for zonal integration and a long-term mean

with primed deviations. The observed low-level di-

vergence $ � Fg is closely related to the meridional eddy

temperature transport while the upper-level patterns

reflect mainly the eddy momentum flux. Thus, (1.1)

provides a clear formulation of wave forcing in the

TEM equations. Of course, (1.1) is not the only possi-

bility to quantify a wave forcing. We may switch from

the TEM equations to the standard equations for

momentum or angular momentum. The height co-

ordinates in (1.1) may be replaced by other coordinates

and we may apply a mass-weighted averaging in-

stead of the simple zonal averaging in (1.1). The last

point is surprisingly important, as will be demon-

strated by turning to isentropic coordinates. Follow-

ing Andrews (1983), we start from the equation of

zonal momentum in f-plane notation [Andrews 1983,

his (2.14)]
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with s52g21(›p/›u), Montgomery potential M, hori-

zontal velocity (u, y), and heating _u. When deriving the

wave forcing it is standard to treat the term

s
›M

›x
5sf yg , (1.3)

with geostrophic meridional wind yg, differently from

the Coriolis term in (1.2) although both terms are clearly

of the same type. Zonal averaging is applied to the

Montgomery term, which is then transformed into the

derivative of part of the vertical component of F at least

if yg 5 0 while the Coriolis term is exposed to the mass-

weighted average

~a5 ass21 . (1.4)

The result is

F5 2(sy)0u0,2(su)0 _u01 p0
�
›M

›x

�0
1A0@ (1.5)

for the EP flux vector where steady state is assumed. It is

assumed in (1.5) that the isentropic surfaces do not in-

tersect the ground. This assumption excludes the deep

surface zone (Koh and Plumb 2004) but Andrews (1983)

derived also a flux formula for this more complicated

situation.

This procedure is formally correct, of course, but the

Montgomery term is then counted as wave forcing (form

drag) while f~ys is seen as a mean-flow term. If, however,

both terms are treated equally, when averaging, the

Coriolis term becomes

f ys5 f (y s1 y0s0) (1.6)

and the geostrophic part f (y0gs0) of the eddy term cancels

the form drag. The remaining term f y0ags0, with ageo-

strophic wind component yag, is a wave forcing but

cannot be written as a divergence.

Wemay just as well apply mass-weighted averaging as

consistently as possible. TheMontgomery term becomes

a mean-flow term in that case and we obtain, with

f~y2
› ~M

›x
5 f~yag , (1.7)

a flux as in (1.5), but without the second term of the

vertical component.

It is one of our main points that only one type of av-

eraging should be used. As far as we can see, all evalua-

tions of wave forcing in isentropic coordinates published

as yet mix both types of averaging as in Andrews (1983).

Thus, the averaging conventions strongly affect both

form and meaning of the wave forcing. On the other

hand, there is no difference between these averaging

procedures in pressure coordinates.

As pointed out by Tung (1986), it is conceptually

simpler to consider angular momentum (AM) instead of

zonal momentum because AM satisfies a conservation

equation so that, for example, wave driving becomes

a flux divergence, at least if there are no intersections.

As stated above, the structure of mean flow and eddies

reflects the choice of the coordinate system. Thus, AM-

based evaluations of the wave forcing in isentropic co-

ordinates (e.g., Iwasaki 1992; Tanaka et al. 2004; Koh

and Plumb 2004) should be complemented by work

in height coordinates or other systems that are useful

for general circulation studies. For example, Yang et al.

(1990) evaluated the wave driving in terrain-following

coordinates in the troposphere. This choice was moti-

vated by the wish to avoid the intersection problem.

Three coordinate systems will be considered below.

Height coordinates (l, u, z) are selected as being the

simplest and most obvious choice. As stated above, the

isentropic coordinates (l, u, u) played a key role in

the development ofEPflux concepts andwill be, of course,

included here as well. Finally, an example with an unusual

meridional coordinate—namely (l, u, z)—will be pre-

sented to widen the perspective of the discussion. Nurser

and Lee (2004) and Nycander et al. (2007) used density as

ameridional coordinate in the ocean. Pauluis andMrowiec

(2013) used equivalent potential temperature ue as a co-

ordinate in (ue, z) space in order to analyze convective

motions. The (u, z) system appears to have the same

advantages as the conventional isentropic coordinates

but avoids the intersection problem at the surface. Con-

tortions of isotherms create difficulties, however.

The AM budget equation and the definition of wave

driving will be given in section 2 in general coordinates.

Results are presented in section 3.

2. Angular momentum budgets in general
coordinate systems

Let us formulate the problem in a general (l, q2, q3)

system where

J5 a2 cosu

�
›u
›q2

›z

›q3
2

›u
›q3

›z

›q2

�
(2.1)

is the geometric transformation factor. The equation of

continuity is

2222 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 71



›

›t
(rJ)1

›

›l
(rJ _l)1

›

›q2
(rJ _q2)1

›

›q3
(rJ _q3)5 0 (2.2)

and angular momentum conservation reads

›
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(mJ)1

›

›l
( _lmJ)1

›

›q2
( _q2mJ)1

›

›q3
( _q3mJ)

52
›p

›l

���
z,u

J1 R (2.3)

with angular momentum per unit volume m5 r(u1
Va cosu)a cosu. The rhs pressure gradient will be adap-

ted to the specific coordinate systems below. The ‘‘fric-

tion’’ term R is an eddy term. AM conservation implies

that both rhs terms can be written as a divergence.

The separation of wave and mean flow is problematic

in the surface zone in (l, u, u) coordinates, which con-

tains all those isentropic surfaces that sometimes or al-

ways intersect the ground (Koh and Plumb 2004). Of

course, yg 5 0 above this zone [see (1.3)] but let us

consider the situation when a certain isentrope outcrops

just in the interval l1 , l, l2. We have to define zonal

average procedures adapted to this intersection prob-

lem. It is standard practice to assume a vanishing density

outside the interval l1, l, l2 (e.g., Lorenz 1955) when

averaging zonally but we follow here Koh and Plumb

(2004), who considered only isentropes above the ground.

In what follows, the overbar means as before

b5 (2p)21
ðl

2

l
1

b dl , (2.4)

while

b̂5 (l22 l1)
21
ðl

2

l
1

b dl (2.5)

is the zonal mean of a variable b with respect to the

interval with perturbation b0 5 b2 b̂. Of course, b5
b̂(l2 2 l1)(2p)

21 with l1 5 0 and l2 5 2p if there are

no intersections. Many intersections are treated corre-

spondingly. Using this notation, we average (2.3) over

longitude and time and collect all eddy terms on the rhs

so that

›

›q2
( _q2Ĵm̂)1

›

›q3
( _q3Ĵm̂)

52
›

›q2
( _q2Jm2 _q2Ĵm̂)

2
›

›q3
( _q3Jm2 _q3Ĵm̂)2

›p

›l
J1R . (2.6)

It has been shown by Andrews (1983) for the isen-

tropic system that zonal averaging commutes with the

differential operators in (2.6) even in the presence of

intersections. A similar proof can be given in the general

case, at least if J 6¼ 0. However, specific problems come

up in (u, z) coordinates as will be discussed below.

The transformation to (l, p2, q3) coordinates is pos-

sible only if J is finite and has the same sign throughout

the flow domain. Neither the (u, u) system nor the (u, z)

system satisfy this condition. It is standard custom to

neglect this point in (u, u) coordinates where unstable or
neutral stratification is almost restricted to the boundary

layer. However, points with ›u/›u$ 0 can be found ev-

erywhere in the Northern Hemisphere. Thus, (1.2) and

(1.3) are not directly applicable, nor can (2.4) be eval-

uated on an isentrope. Pauluis and Mrowiec (2013)

solved this problem with respect to mass conservation.

Using similar methods it will be shown in the appendix

how to cast (2.6) in a form that is compatible with the

(u, z) system.

We follow Tung (1986) and Yang et al. (1990) by

equating $ � F to the divergence of AM mean fluxes, so

that the wave forcing

$ � F5
›

›q2
( _q2m̂Ĵ)1

›

›q3
( _q3m̂Ĵ) (2.7)

balances the lhs of (2.6) where $ � F denotes henceforth

the forcing in general. The wave driving is completely

due to eddy action and includes also turbulent subgrid

transfers. Its impact in the AM budget must be balanced

by the divergence of mean AM fluxes. The formulation

(2.7) has the advantage that only zonal-mean-flow var-

iables must be evaluated. Zonal averaging in the case of

intersecting coordinate surfaces enforces, however,

modifications to be discussed below.

Data will be used to evaluate the mean-flow diver-

gence in (2.7), which has to balance all ‘‘wave effects’’

including friction terms. The evaluation of the divergences

is based on the 40-yr EuropeanCentre forMedium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40)

set for the years 1958–2001, which contains winds, tem-

perature, pressure, and also _T as caused by ‘‘physics.’’

The calculations are performed for December–February

(DJF). The horizontal resolution of the data is 2.258 3
2.258. The time resolution is 6 h. Vertical interpolation

creates the values on height surfaces and isentropes when

needed. The vertical resolution isDz5 1000m in (u, z),
Dz5 500m in (u, z), andDu5 3K in (u, u) coordinates.
It is convenient to display normalized flux divergences

J21
N $ � F, where JN is a suitably chosen mean value of J.

This normalization ensures that the dimension of all flux

divergences is kilograms per meter per squared second.
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It is partly a matter of taste if one acceptsm as a basic

variable so that m is a mean-flow variable. This is the

view chosen here except for isentropic coordinates

where the expression rJ52g21(›p/›u)a2 cosu [see (2.1)]

has such a convenient form thatm*5 mr21 is selected as

basic variable.

3. Results

In what follows, the wave forcing will be presented in

(q2, q3) planes according to (2.7). One expects that the

mean ‘‘Coriolis term’’

C522Va2 cosu sinuĴr̂

0@ _q2
d›u
›q2

1 _q3
d›u
›q3

1A;$ � F (3.1)

is the dominant rhs term in (2.7) at least off the equator.

a. (u, z) coordinates

Orography intersects constant-height surfaces. That

causes problems because the local contributions to

friction and mountain torques vary with height. How-

ever, wave forcing is so noisy near the surface that such

effects cannot be properly dealt with here. With JN 5
a2 cosu, (2.7) becomes

J21
N $ � F5 (a cosu)21 ›

›u
(ym̂ cosu)1

›

›z
(wm̂) (3.2)

and (3.1) yields

J21
N $ � F’2r̂yag2Va cosu sinu . (3.3)

Poleward (equatorward) flow implies negative (posi-

tive) wave forcing. The flux divergence in Fig. 1a exhibits

relatively clear structures in the upper troposphere and

lower stratosphere. Noise is the dominant feature in the

lower troposphere. Regions with grid points inside the

orography have been blackened. This procedure excludes

rather noisy domains. Maximum values are approxi-

mately 102 kgm s22. This corresponds with a tendency

›u/›t; 2m s21day21 near z 5 0.

The noisiness of Fig. 1a suggests deletion of the mass-

flow convergence terms in (2.7) and to use the approx-

imate form

J21
N $ � F; r̂

�
ya21 ›

›u
m̂*1w

›

›z
m̂*

�
, (3.4)

which is a slightly improved version of (3.1) with m* 5
mr21. The result is displayed in Fig. 1b. Obviously (3.4)

provides a smooth approximation to Fig. 1a so that the

lowest parts of the troposphere can be included as well.

The only major difference is found near the equator

where (3.4) indicates divergence throughout the depth

of the atmosphere while Fig. 1a indicates mainly con-

vergence for z , 15 km. Figure 1 supports the estimate

(3.3). In particular, the Ferrel cells are clearly repre-

sented in both hemispheres as is the circulation of the

tropical Hadley cell in Fig. 1b.

The wave forcing in Fig. 1 differs profoundly from

what has been found in isentropic coordinates. The wave

driving would not converge to the potential vorticity flux

in the quasigeostrophic limit. Mixing of zonal and mass-

weighted averaging would not lead to strongly different

results in (u, z) coordinates because there is no form

drag and eddy mass fluxes are small (Egger and Hoinka

2011).

b. (u, u) coordinates

For reasons to be explained below, mass-weighted

averaging had to be chosen in standard isentropic co-

ordinates. TheMontgomery term [see also (1.2)] becomes,

with

rJ52g21a2 cosu
›p

›u
(3.5)

FIG. 1. Normalized wave forcing (2.7) in (u, z) coordinates

(101 kgm s22) in height coordinates for DJF. (a) Full representa-

tion (3.2) but with blackening of mountain grid points as explained

in the text; (b) approximate form (3.4); JN 5 a2 cosu.
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and the mean flow term,

T05 g21a2 cosu
g›M
›l

c›p
›u

. (3.6)

It is standard to convert this term to a vertical de-

rivative if there are no intersections (e.g., Andrews

1983). However, we obtain, with intersections,

›M

›l

›p

›u
5

›

›u

 
p
›M

›l

!
2

�
›M

›l
p
›l

›u

������
l
2

l
1

2Rcp(R1 cp)
21p

2R/c
p

0 ( p(R1c
p
)/c

p)j
l
2

l
1

. (3.7)

The wave driving cannot be written as a flux di-

vergence (see also Koh and Plumb 2004) if there are

intersections. The mean-flow term T0 must be trans-

ferred to the lhs of (2.6). Thus, the wave forcing is

($ � F)1 5
›

›u

 
2g21cm*

c›p
›u

~ya cosu

!

1
›

›u

 
2g21e_ucm*

c›p
›u

a2 cosu

!

2 g21a2 cosu
g›M
›l

c›p
›u

, (3.8)

where the symbol ($)1 indicates that the rhs term in

(3.8) is not a divergence. The approximation (3.1) is not

useful in this case because the term 2T0 in (3.8) is im-

portant. Difficulties with the evaluation of zonally av-

eraged mean fluxes led us to adopt mass-weighted

averaging. The ERA set offers values of temperature

tendency owing to physics that allow one to calculate _u.

The resulting values of _u look rather reasonable but

both ›y/›u and › _u/›u are found to be negative close to

the ground. The mean mass flux is, therefore, extremely

convergent near the surface. Although that is possible,

such a feature is rather doubtful. It is likely that this

problem has to do with the intersection of u surfaces

with the ground. The only solution accessible to us was

to compute via

›

›u

0@ _u
›p

›u

1A52(a cosu)21 ›

›u

 
y
›p

›u
cosu

!
(3.9)

the ‘‘vertical density flux’’ from the known horizontal

flux, which can be evaluated directly. This procedure

replaces the products yd›p/›u and _ud›p/›u of the mean

factors in (3.8) by the mean values of the products. It is

demonstrated in Fig. 2 that these changes are not neg-

ligible. The term yd›p/›u in Fig. 2a is smaller than y›p/›u

in Fig. 2b in most of the surface zone. Moreover, the

patterns disagree completely for u . 290K in mid-

latitudes. The total mass flux is directed poleward in the

upper branch of the hemispheric ‘‘Hadley circulation’’

right from the equator to the pole (see Fig. 2b). In con-

trast, the meridional velocities are directed equatorward

above u ; 290K for 308 # juj # 708 (Fig. 2a).
Figure 2 illustrates our remarks with respect to (1.3)

and (1.4). The density-weighted average in Fig. 2b con-

tains important contributions by eddies. To accept ~y as

mean flow implies taking important effects out of wave

forcing.

The term ($ � F)1 [see (3.8)] is displayed in Fig. 3a. In

particular, intersections are fully incorporated. The re-

sults of Iwasaki (1992), Yang et al. (1990), and Tanaka

et al. (2004) are based on hybrid coordinate systems that

circumvent the intersection problem. They all found

divergence in the lower troposphere and convergence

above. Divergences are seen in Fig. 3a near the lower

boundary and higher up near the equator and at mid-

latitudes. Convergence is dominant in most of the

northern troposphere. In particular, the zone of intense

divergence near the surface, as found, for example, by

Tanaka et al. (2004) is missing in Fig. 3a. The deep zone

of divergence in the southern midlatitudes in Fig. 3a is

new. All these differences are due to the consistent

mass-weighted averaging, which treats the Montgomery

FIG. 2. Intercomparison of meridional ‘‘mass fluxes’’

(102 kgK21 s23) for DJF. (a) yd›p/›u; (b) y›p/›u.
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term as a mean-flow term. It is, however, of interest that

the ‘‘form drag’’T0 contains a substantial part due to the

mean geostrophic wind yg in the surface zone (not

shown). This part is quite similar to the full term T0

displayed in Fig. 3b. The term2T0 is substantially larger

than the divergences and convergences in Fig. 3a (note

the different scalings in Figs. 3a and 3b). This means that

substantial cancellation occurs in Fig. 3a. The quasi-

geostrophic wave forcing is at best a crude approxima-

tion to Fig. 3. The large deviations of our results from

earlier ones illustrate vividly the importance of a con-

sistent averaging procedure.

c. (u, z) coordinates

As mentioned above, coordinates similar to (u, z)

coordinates have been used by Nurser and Lee (2004)

and Nycander et al. (2007) in the ocean. Such co-

ordinates are problematic in the atmosphere because

isentropes can be quite convoluted and closed isotherms

may form in a constant-height plane. The percentage of

points along a latitude circle with ›u/›u, 0 has been

evaluated in the Northern Hemisphere. The percentage

amounts to about 90% in midlatitudes but drops to

about 60% near the equator. As stated above, a coor-

dinate transformation as assumed in (2.1) is not possible.

The situation changes, however, with zonal averaging

because we can then apply an area-integrating technique

developed by Butchart and Remsberg (1986), Nakamura

(1995, 1996), and others. Our approach is described in the

appendix and leads to a finite difference version of (2.6)

and (2.7) but with a redefined averaging operator.

The flow domain in these coordinates spans only the

lowest 10 km of the atmosphere because the mean me-

ridional gradient of u changes sign above that height.

The domain slants equatorward with height (see Fig. 4).

The black boundaries in Fig. 4 extending from 300 to

340K represent approximately the equator. All bound-

aries are posed by definition except for the lower one. In

any case, the ‘‘intersection problem’’ is hardly relevant

in (l, u, z) coordinates.

FIG. 3. Normalized wave forcing (2.7) in (u, u) coordinates

(DJF). (a) J21
N � ($ � F)1 (101kgms22) according to (3.8) but with

mass-weighted velocities ~y, ~u [see (1.4)]. (b) J21
N � (2T0) [10

2kgms22;

see (3.6)]. Normalization factor JN 5 6.9 3 1015 cosu (m2K21).

FIG. 4. Normalized wave forcing (2.7) in (u, z) coordinates (102 kgm s22); JN equals the

long-term mean of J.
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Themeanmass circulation is similar to that in (l,u, u)
coordinates with a grand hemispheric cell (not shown).

This pattern is relatively easy to understand because

‘‘meridional’’ motion in these coordinates is propor-

tional to _uwith equatorward flow near the ground and in

the ascending branch of the Hadley cell. There is flow

through the equatorial and the upper boundary. It is

a weakness of (u, z) coordinates that ›u/›u; 0 close to

the equator. Resolution is therefore rather coarse there.

The normalization factor JN is chosen to equal the mean

area of a stripe. This choice guarantees that all stripes

have the same weight in Fig. 4 but leads in turn to rel-

atively large values of the normalized forcing.

The wave forcing adds AM near the ground and near

the equator in the Northern Hemisphere and removes it

elsewhere. There is moderate similarity with Fig. 3a.

Averaging along isentropes at constant height is obvi-

ously not the same as at constant latitude, particularly in

the surface zone. The hemispheres are similar. The es-

timate (3.1) assumes an admissible coordinate trans-

formation and cannot be applied here. Nevertheless,

equatorward (poleward) flow goes essentially with pos-

itive (negative) forcing.

4. Discussion

This work is concerned with a modification and ex-

tension of the wave-forcing evaluations in the literature.

The evaluation of the fluxes fromdata has a long tradition

(see Johnson 1989 and references therein). Following

Tung (1986), the forcing has been calculated for AM

because it can be written as a divergence in this case. It

has been stressed that zonal averaging has to be per-

formed as consistently as possible. Otherwise, dynami-

cally similar terms are counted sometimes as mean flow

terms but sometimes as wave forcing. This requirement

favors simple zonal averaging as has been applied in (u,
z) and (u, z) coordinates. Mass-weighted averaging has

been used in (u, z) coordinates.

Let us turn first to the results in (l,u, u) coordinates that
attracted most of flux research. Iwasaki (1988, 1992) used

both averaging procedures in his wave-forcing calculations

as did Yang et al. (1990) and Tanaka et al. (2004). They all

obtained divergence (convergence) near the surface (aloft)

throughout the northern troposphere in agreement with

(3.1). When evaluating the flux divergence according to

(2.7), unexpected accuracy problems forced us to turn to

mass-weighted averages where the form drag becomes

a mean-flow term. The wave driving with mass-weighted

averaging deviates far from the standard results of Yang

et al. (1990) and Tanaka et al. (2004). There is ‘‘conver-

gence’’ in most of the NorthernHemisphere (Fig. 3a). The

wave motion decelerates the mean AM in most of the

lower parts of the surface zone. The estimate (3.1) for the

wave forcing [see also (3.4)] is satisfied quite well (see Fig.

1). The wave forcing in spherical coordinates supports the

estimate (3.3). The Coriolis term balances the forcing.

The wave driving in (l, u, z) coordinates has the form

of a divergence if we restrict the analysis to isentropic

latitudinal boundaries. Given _u, it is then relatively

easy to estimate the mean vertical motion and the wave

driving. Equatorward motion implies divergence, and

poleward motion implies convergence.

The discussion with respect to averaging shows that

the concept of wave driving is not as clear cut as one

might wish. The structure of the wave part depends not

only on the coordinate system but also on the averaging

methods. Moreover, the separation of waves and mean

flow is not always obvious as is the case, for example, in

the surface zone for (u, u) coordinates. These points are
illustrated in this paper.

Relatively little has been said about the role of friction

processes. We took here the view that friction is closely

related to turbulent motion and is, therefore, part of the

wave forcing. As such, friction is part of $ � F. This view
is convenient because it saves us from evaluating terms

that are not available in the ERA datasets. Moreover,

friction is generally thought to be small in the free at-

mosphere. There is, however, the problem that the sur-

face zone in (u, u) coordinates is deep, so that transfer of

AMbetween the atmosphere andEarthmust be assumed

throughout this zone.A close look at this problem reveals

that this transfer cannot be written as a divergence. It is

not captured by (2.7) and deserves future attention.

In the past, flux investigations where closely related to

nonacceleration theorems (e.g., Andrews and McIntyre

1976) where conditions are explored that lead to van-

ishing wave forcing. Such conditions are, of course, not

found in the global climate datasets used here. The at-

mosphere is always in such a state that wave forcing is

important. No coordinate system will lead to a climatic

state with $ � F 5 0.

All in all, our results show that there is a great vari-

ability with respect to thewave forcing patterns.Wemay

anticipate further variations when considering, for ex-

ample, isertelic coordinates (Juckes 2001).
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APPENDIX

Zonally Averaged AM Equation in (u, z)
Coordinates

The AM equation in spherical height coordinates is
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›

›t
m1 (a cosu)21

�
›

›l
(um)1

›

›u
(ym cosu)

�
1

›

›z
(wm)52

›p

›l
(A.1)

with J5 a2 cosu [see (2.3)] where friction is omitted. Let

us define u tubes that cover the space between two is-

entropic surfaces with u 5 u1 and u2 (Du 5 ju1 2 u2j)
and between two heights z1 and z2 at distance Dz.

Integration of (A.1) over the corresponding volume V

yieldsð
V

›

›t
m dV1

ð
F
( j � n) df 52

ð
F
p(e1 � n) df , (A.2)

where j is the advective AM flux, F the surface of V with

normal vector n pointing outward, and e1 is the zonal

unit vector. Of course, n equals the vertical unit vector

on height surfaces and n 5 $u/j$uj on isentropes. It is

helpful to express j in terms of the covariant basic vec-

tors of the (u, z) system [see Zdunkowski and Bott

(2003) for details]. This has the advantage that two of the

three basic vectors at a point are embedded in the is-

entropic surface on which this point is located. The

corresponding flux components do not contribute to the

isentropic part of the surface integral in (A.2). The only

remaining vector is

j25

�
_u
›y

›u
1

›y

›t

�
e2 (A.3)

with unit vector e2 in the meridional direction and me-

ridional isentrope position y(l, u, z, t). Thus, (j � n)5
m _uj$uj21 is finite even if ›y/›u is infinite and (A.2)

becomes

d

dt

ð
V
mdV2

ð
F
u

m _uj$uj21 dfuj
u
2

u
1

1

ð
F
z

wmdfzjz2z
1

52

ð
p
›u

›x
j$uj21 dfuj

u
2

u
1
, (A.4)

where dfu is an area element of a bounding u surface and

dfz is an element of the bounding height surfaces. The

rhs term in (A.4) is the pressure torque acting on the

isentropes. It is easy to show that the time derivative in

(A.3) helps to move the time derivative in (A.2) out of

the integral. Thus, (A.4) is the zonal mean AM equation

without singularities needed for our analysis. We do not

have to discuss its implementation in the analysis grid

because (2.7) requires only the evaluation of somemean

values where we use the approximation

b5�bikFik

�
�Fik , (A.5)

where Fik is the area of a grid box of the analysis grid at

level z1, say, and where the sum runs over all indices

(i, k) of the boxes of a tube at that level. In particular,

J represents the area of the tube divided by Du.
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