Einführung in die elektrochemische Impedanzspektroskopie (EIS)

Dr. Norbert Wagner

Das Deutsche Zentrum für Luft- und Raumfahrt Institut für Technische Thermodynamik – Stuttgart

DLR Standort Stuttgart

Mitarbeiterinnen und Mitarbeiter : 560 Grundstücksfläche: 25.860 m²

Forschungsinstitute:

- Institut für Bauweisen- und Konstruktionsforschung
- Institut für Fahrzeugkonzepte
- Institut für Technische Physik
- Institut für Technische Thermodynamik
- Institut für Verbrennungstechnik

Elektrochemische Energietechnik

Personal

- Ca. 101 Mitarbeiter (inkl. Studenten)
- 4 Forschungsbereiche
 - Hochtemperatur-Elektrochemie Günter Schiller
 - Polymerorientierte Elektrochemie Erich Gülzow
 - Batterietechnik

- Norbert Wagner
- Elektrochemische Systeme
- Josef Kallo

Expertise der DLR-Abteilung "Elektrochemische Energietechnik"

- Elektrochemische Energietechnik:

 Elektrolyse (Alkalische, Polymerund Hochtemperatur-Elektrolyse NaCI-Elektrolyse)

System

- Brennstoffzellen (PEFC, SOFC, DMFC, AFC)
- Batterietechnologie (Li-Ionen und Li-Metall)

Prinzip einer elektrochemischen Zelle

Die Metall-Elektrolytgrenzfläche

Die Metall-Elektrolytgrenzfläche

DLR

Die Metall-Elektrolytgrenzfläche

Begrifferklärung Impedanz (Wechselstromwiderstand)

Anregungssignal: $U(t) = U_{ac} \cdot \sin(\omega t)$

Antwortsignal: $I(t) = I_{ac} \cdot \sin(\omega t + \varphi)$

Impedanz wird definierd als $Z \equiv (U_{ac}/I_{ac} \text{ und } \varphi)$

Impedanz (bei einer Frequenz):

Wird definiert als $Z \equiv (U_{ac}/I_{ac} und \varphi)$,Komplexe Zahl $Z \equiv U_{ac}/I_{ac} \cdot e^{i\varphi} = |Z|cos(\varphi) + i \cdot |Z|sin(\varphi)$ Eulersche Formel

$$\min |Z| = Z_{abs} \equiv U_{ac} / I_{ac} \text{ und } i \equiv \sqrt{-1}$$

Impedanz in der komplexen Zahlenebene:

$$Z^{*}(\text{ReZ}^{*}, \text{ImZ}^{*})$$

$$Z^{*} = \text{ReZ}^{*} + i \cdot \text{ImZ}^{*}$$

$$Z^{*}(\text{AbsZ}^{*}, \varphi)$$

$$\text{ReZ}^{*} = \text{AbsZ}^{*} \cdot \cos(\varphi)$$

$$\text{ImZ}^{*} = \text{AbsZ}^{*} \cdot \sin(\varphi)$$

Impedanzspektrum (bei verschiedenen Frequenzen, (ω =2 π f)):

Spektrum: typischer Frequenzbereich $10^{-3}/s < \omega < 10^{+7}/s$

Spektrendarstellungen:

 $Z \cdot e^{i\varphi} \equiv Z \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) = \operatorname{Re}(Z) + i \cdot \operatorname{Im}(Z);$ Nyquist Darstellung: Im(Z) vs. Re(Z)

 $\ln(Z \cdot e^{i\phi}) \equiv \ln(Z) + i \cdot \phi$

Bode Darstellung: $lg(Z_{abs})$ vs. lg(f)und φ vs. lg(f)

Impedanzspektrum eines einfachen elektrochemischen Systems: Nyquist Darstellung

Impedanzspektrum eines einfachen elektrochemischen Systems: Bode Darstellung

Elektrochemische Impedanzspektroskopie: Anwendung in der Brennstoffzellenforschung

Elektrochemische Impedanzspektroskopie: Anwendung in der Brennstoffzellenforschung

Funktionsschema einer Polymer-Elektrolyt-Membranbrennstoffzelle (PEFC)

Allgemeines Ersatzschaltbild einer Brennstoffzelle

Allgemeines Ersatzschaltbild einer Brennstoffzelle

Allgemeines Ersatzschaltbild einer Brennstoffzelle

REM-Aufnahme einer PEFC-Elektrode

Auswertung der Impedanzspektren mit dem porösen Elektrodenmodell nach H. Göhr

Schematische Darstellung der verschiedenen Reaktionsschritten in Abhängigkeit vom Elektrodenabstand

 $\mathbf{Ox} + \mathbf{ne}^{\mathsf{T}} \leftrightarrow \mathbf{Red}$

N. Wagner, K.A. Friedrich, *Dynamic Response of Polymer Electrolyte Fuel Cells* in "Encyclopedia of Electrochemical Power Sources" (Ed. J. Garche et al.), ISBN-978-0-444-52093-7, Elsevier Amsterdam, Vol.2, pp. 912-930, 2009

Übersicht der dynamischen Vorgänge in Brennstoffzellen

Bode-Diagramm der EIS gemessen bei verschiedenen Stromdichten an einer PEFC bei 80°C im H2 / O2 Betrieb

Wagner in "PEM Fuel ell Diagnostic Tools" aijaing Wang, Xiao-Zi Yuan, Hui Li (Eds.)

Aufteilung der Gesamtimpedanz in einzelne Widerstände

Berechnung der U-i Kennlinien aus Impedanzmessungen

WILEY

DLR

Norbert Wagner, "Electrochemical power sources – Fuel cells" in Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition, Edited by Evgenij Barsoukov and J. Ross Macdonald, John Wiley&Sons, Inc., 2005, pp. 497-537, ISBN: 0-471-64749-7 ◆ gemessene Kurve: $U_n = f(i_n)$ ■ berechnete Kurve: $U_n = i_n R_n$ (ohne Integration) △ berechnete Kurve nach II: $U_n = a_n i_n^2 + b_n i_n + c_n$ × berechnete Kurve nach I: $U_n = a_n i_n + b_n$

$$R_{n} = \frac{\partial U}{\partial I} \Big|_{n}$$

Integrationsformel I:

$$U_{n} = U_{n-1} - \frac{1}{2} \left(\frac{\partial U}{\partial I} \Big|_{n-1} + \frac{\partial U}{\partial I} \Big|_{n} \right) * (I_{n} - I_{n-1})$$

Integrationsformel II:

$$U_{n} = a_{n}I_{n}^{2} + b_{n}I_{n} + c_{n} \text{ mit:}$$

$$a_{n} = \frac{R_{n+1} - R_{n}}{2(I_{n+1} - I_{n})}$$

$$b_{n} = R_{n+1} - 2a_{n}I_{n+1}$$

$$c_{n} = U_{n-1} - a_{n}I_{n-1}^{2} - b_{n}I_{n-1}$$

Beiträge der einzelnen Überspannungen zum Spannungsabfall an der PEFC

Zellanordnungen für Impedanzmessungen

Segmentierte Zellanordnung

DLR

CE RE

Impedanzspektren aufgenommen während der Sauerstoffreduktion an Ag-GDE in 10 N NaOH, 80°C bei verschiedenen Stromdichten

Bode Darstellung

Nyquist Darstellung

Reforming of Methane

Zeitaufgelöste Impedanzspektroskopie (TREIS) CO-Vergiftung der Pt-Anode

Zeitliche Veränderung der Zellspannung und Überspannung während des galvanostatischen Betriebes einer PEFC bei 5 A (217 mAcm⁻²) Pt-Anode , H_2 + 100 ppm CO bei 80°C

Nyquist Darstellung der zeitabhängigen **EIS** gemessen während der CO-Vergiftung der Anode

Änderung der Zellspannung während des Dauerbetriebes einer PEFC, bei 80°C und 500 mA cm-2

DLR

Änderung der Impedanzspektren während des Dauerbetriebes einer PEFC, bei 80°C und 500 mA cm⁻²

Änderung des kathodischen Durchtrittswiderstandes während des Dauerbetriebes einer PEFC, bei 80°C und 500 mA cm⁻²

Änderung des anodischen Durchtrittswiderstandes während des Dauerbetriebes einer PEFC, bei 80°C und 500 mA cm⁻²

Auswertung und Analyse der Spannungsverluste während des Dauerbetriebes

N. Wagner, M. Schulze, T. Kaz, K.A. Friedrich, *Electrochim. Acta* 52 (2007) 2328–2336

Weitere Anwendungen der Impedanzspektroskopie

Impedanzmessungen aufgenommen an Li-S Batterie bei verschiedenen Ladezuständen

Temperaturabhängigkeit von R_{ct} und R_{el} gemessen im adiabatischen Reaktionskalorimeter an einer 18650 LFP-Batterie

Impedanzmessungen an einer 24 Ah-LIB bei verschiedenen Temperaturen

Versuchsaufbau EIS Messungen an Brennstoffzellenstack

Experimental Set Up of the **Synchronous Parallel** EIS Measurement and the Short SOFC Stack

On the left: Electrochemical Workstation with synchronous impedance inputs for cell 2-5, on top a slave power potentiostat, connected to the current lines (black & red) of the total stack and to the sense lines of cell 1. In the middle: SOFC short stack. Operation under dry fuel gas (50 % H_2 + 50 % N_2), alternatively 45 % H_2 + 45 % N_2 + 10 % H_2 0 and air at 750 C°. On the right: components of the stack.

C.A. Schiller, N. Wagner, ISE 2010, Nice, France

42

On the left: Nyquist impedance diagram of the five individual cells of the SOFC short stack at OCP. Operation under dry fuel gas ($50 \% H_2 + 50 \% N_2$, no H_20) and air. Symbols: measurement data, solid lines: model fit. On the right: model used for fitting the SOFC EIS data (parameter values referring to cell 1).

www.DLR.de • Chart 44

Vielen Dank für Ihre Aufmerksamkeit !

