Experimental Investigation of Anode/Cathode Differential Pressures for a SOFC/Gas Turbine Hybrid Power Plant

German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart (Germany)

Introduction
- Providing electrical energy with a reduced CO₂ footprint and in a sustainable way is a significant challenge for the future
- Therefore the DLR is installing a pilot hybrid power plant consisting of a small gas turbine and a pressurized SOFC
- Figure 1 illustrates the combination of the small gas turbine and the SOFC system

Motivation
- The gas turbine provides air for the SOFC system at approx. 400 kPa
- The combustor burns the exhaust gas of the SOFC which is expanded in the turbine (with optional fuel supply and preheating of the SOFC air)
- Pressure variations caused by the gas turbine do not change the 400 kPa pressure level of the fuel gas
- Pressure differences between anode and cathode cause mechanical stress at the cells and sealings
- Experimental data about differential pressure on electrolyte supported cells (ESC) is needed
- The test procedures shown within this contribution are designed to identify potential failure mechanisms and maximum pressure differences

Stacks
- Two-cell stacks open cathode toward the surroundings
- Therefore the DLR and the stack manufacturer developed a specific design of a stack box to encapsulate the cathode volume from the surroundings to measure and control the cathode pressure

Results
- So far 14 tests with slowly increasing pressure difference (stationary test) have been carried out (compare Figure 5):
 - seven tests with anode excess pressure (A vs. C; blue)
 - four with cathode excess pressure (C vs. A; red)
- Three stacks failed the leakage test
 This is due to potential fabrication or handling issues
- Test results show large spread so additional tests are needed
- No evidence was found for cell failure
- Post mortem analysis indicate sealing failure as single failure mechanism
- For further information of the analysis of the given results and upcoming tests please see contribution B1505 in EFCF 2014 from Mike Steilen (DLR).