The Impact of Renewable Power Generation on the Profitability of Solar District Heating

Knowledge for Tomorrow

An Economic Point of View

Evelyn Sperber

German Aerospace Centre (DLR) Institute of Engineering Thermodynamics, Stuttgart

2nd International Solar District Heating Conference 3-4 June 2014, Hamburg

Changing Boundary Conditions for CHP...

... Arising Market Potentials for Solar DH?

Increasing power generation by intermittent RES enlarges volatility of electricity spot market prices

CHP production not profitable in periods with low electricity spot prices; CHP utilization decreasing

Data source: pfbach.dk

Can Solar replace reducing DH feed-in of CHP?
 Is Solar DH profitable?

Techno-Economic Analysis of Smart DH Systems

Assessment of the **technical and economic performance** of different DH configurations at **high shares of RES** in the power market

Do smart DH systems including solar produce heat at lower (full) cost than those without?

DH network	Heat demand: 12,700 MWh/a Peak load: 5 MW _{th} , Nominal DH temperatures: 95/60°C
CHP	El. capacity: 1.4 MW _{el} , th. capacity: 1.5 MW _{th} Total efficiency: 85 %
Gas boiler	Th. capacity: 5 MW _{th} Efficiency: 88 %
Thermal storage tank	Storage volume: 1,500 m ³ (i.e. 12 h peak load)
Solar collector field (flat plate)	Collector area: 4,000 m ² η_0 =0.82, α_1 =2.43W/(m ² K), α_2 =0.012W/(m ² K ²) Tilt: 40°, azimuth: 0° Flow rate: 15 l/(m ² h)
Electric boiler	Th. capacity: 1 MW Efficiency: 100 %

DLR

Method and Assumptions

Electricity spot prices

Simulation for two different scenarios related to the RES share in power generation

Meteorological conditions

Würzburg, 2012 Annual GHI: 1,215 kWh/m²

Financial constraints

Natural gas price	40 €/MWh _{Hi} (base) 55 €/MWh _{Hi} (sensitivity)			
Natural gas tax	5.5 €/MWh _{Hs} (CHP is exempted)			
CHP premium	27.5 €/MWh _{el}			
CHP Index	29 €/MWh _{el}			
Avoided network	5€/MWh _{el}			
P2H power charge	45 €/MWh _{el}			
	Spec. CAPEX	Fixed O&M	Variable O&M	
CHP	850 €/kW _{el}	2%/a	12 €/MWh _{el}	
Gas boiler	75 €/kW _{th}	2%/a	0.13 €/MWh _{th}	
Solar collector	200 €/m²	-	1 €/MWh _{th}	
Electric boiler	100 €/kW _{el}	-	-	
Thermal storage	500 €/m³	0.7%/a	-	

Considering legal and economic framework conditions in Germany

1. TRNSYS simulations of the cost-efficient operation of heat producers for different, smart DH configurations

2. Economic analysis

Operational Strategy of Heat Producers in the Model Configuration Flexible CHP + Solar + P2H

Results of TRNSYS Simulations

"Base Scenario" (11% PV, 16% Wind and 13% Adjustable RES in Power Generation)

Heat from gas boiler displaced by solar (and P2H)

Displacement by solar enhancing with higher gas prices

Criteria of Profitability

Levelized marginal cost

Criterion for operating decisions

 $LMC_{conf.m} = \frac{\sum_{comp.i}^{n} an. marginal \ costs_{i}}{\sum_{comp.i}^{n} an. heat \ generation_{i}}$

Levelized cost of heat

Criterion for investment decisions

 $LCOH_{conf.m} = \frac{\sum_{comp.i}^{n} an. full costs_{i}}{\sum_{comp.i}^{n} an. heat generation_{i}}$

LMC and LCOH for CHP are net

(revenues from sale of electricity are subtracted)

Financial constraints

Interest rate	4%				
Lifetime	20 a				
Natural gas price	40 €/MWh _{Hi} (base) 55 €/MWh _{Hi} (sensitivity)				
Natural gas tax	5.5 €/MWh _{Hs} (CHP is exempted)				
CHP premium	27.5 €/MWh _{el}				
CHP Index	29 €/MWh _{el}				
Avoided network	5€/MWh _{el}				
usage charge	45 6/8 814/1				
P2H power charge	45 €/MWh _{el}				
	Spec. CAPEX	Fixed O&M	Variable O&M		
СНР	850 €/kW _{el}	2%/a	12 €/MWh _{el}		
Gas boiler	75 €/kW _{th}	2%/a	0.13 €/MWh _{th}		
Solar collector	200 €/m²	-	1 €/MWh _{th}		
Electric boiler	100 €/kW _{el}	-	_		
Thermal storage	500 €/m³	0.7%/a	-		

Costs of the DH network are not included

Results of the Economic Analysis

"Base Scenario" (11% PV, 16% Wind and 13% Adjustable RES in Power Generation)

- Flexible operation of CHP reduces LMC
- Solar assisted DH systems have lowest LMC
- Systems including solar are less sensitive to gas price increases

- Flexible operation of CHP lucrative despite necessary investment in large heat storage
- Solar DH profitable even from a full cost perspective
- P2H feasible equipment in flexible CHP based DH systems

Operation of Heat Producers in an Autumn Week Configuration Flexible CHP + Solar + P2H

Sensitivity: Higher Share of PV in the Power Market

"PV Scenario" (20% PV, 16% Wind and 13% Adjustable RES in Power Generation)

Higher **penetration levels of PV** in the power system reasonable due to immense cost reductions of PV modules

Larger heat storages and larger solar collectors required to cover heat demand in periods when CHP operation not feasible (especially in summer)

Sensitivity Analysis:

Investigation of the technical performance and cost of different DH configurations, incorporating a **10,000 m² solar collector** and a **3,000 m³ heat storage**

(compared to 4,000 $m^{\rm 2}$ / 1,500 $m^{\rm 3}$ in the base case)

Results of the Economic Analysis

"PV Scenario" (20% PV, 16% Wind and 13% Adjustable RES in Power Generation)

- LMC of configurations without solar rise due to decreasing spot prices and higher shares of heat from gas boiler
 - Solar DH especially attractive in power systems with high PV share
- LCOH of solar assisted DH slightly higher at low gas prices
- Profitability of Solar DH increases
 with increasing prices of natural gas
 - DH systems including solar are more independent of rising gas prices

Conclusion

 Increasing share of RES in the power market leads to volatile electricity spot prices

Flexible operation of CHP required

- Utilization and heat production of CHP for DH feed-in decreasing
- Solar (and electric heaters) can displace environmentally harmful and expensive heat from peak load boilers based on fossil fuels, especially in power systems with high shares of PV

RES in the power sector pave the way for RES in the heat sector

• Solar heat reduces operating costs of CHP-based DH systems and is even economically attractive on a full cost base

Thank you for your attention!

Evelyn Sperber German Aerospace Center Institute of Engineering Thermodynamics Systems Analysis and Technology Assessment Department Wankelstraße 5, 70563 Stuttgart, Germany Tel.: +49-(0)711-6862-8145, Fax: +49-(0)711-6862-8100 Email: <u>evelyn.sperber@dlr.de</u>, Web: <u>www.dlr.de/tt</u>

