
1 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Parallel solution of large sparse eigenproblems
using a Block-Jacobi-Davidson method

Melven Röhrig-Zöllner

Simulation and Software Technology
German Aerospace Center (DLR)

April 25, 2014

2 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Background

Aim: Calculate a set of outer eigenpairs (λi , vi) of a large sparse
matrix:

Avi = λivi

Project: Equipping Sparse Solvers for Exascale (ESSEX) of the
DFG SPPEXA programme

3 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outline

Block-Jacobi-Davidson algorithm

Performance analysis

Implementation

Results

Conclusion

4 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outline

Block-Jacobi-Davidson algorithm
Jacobi-Davidson QR method
Block JDQR method

Performance analysis

Implementation

Results

Conclusion

5 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Jacobi-Davidson QR method

Background
I Introduced 1998 by Fokkema et. al.
I Motivated by inexact Newton / Rayleigh quotient iteration (RQI)

Sketch of the algorithm
1: while not converged do . Outer iteration
2: Project problem to small subspace
3: Solve small eigenvalue problem
4: Calculate approximation and residual
5: Approximately solve correction equation . Inner iteration
6: Orthogonalize result
7: Enlarge subspace
8: end while

5 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Jacobi-Davidson QR method

Background
I Introduced 1998 by Fokkema et. al.
I Motivated by inexact Newton / Rayleigh quotient iteration (RQI)

Sketch of the algorithm
1: while not converged do . Outer iteration
2: Project problem to small subspace
3: Solve small eigenvalue problem
4: Calculate approximation and residual
5: Approximately solve correction equation . Inner iteration
6: Orthogonalize result
7: Enlarge subspace
8: end while

6 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outer iteration

Subspace iteration

I Galerkin projection onto small subspace W ⊂ Rn:

Av − λv ⊥ W, v ∈ W
⇔ (W TAW)s − λ̃s = 0, for orth. basis W

I Approximation λ̃ with ṽ = Ws

Deflation

I Project out already known eigenvector space Q:

Ā := (I − QQT)A(I − QQT)

6 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outer iteration

Subspace iteration
I Galerkin projection onto small subspace W ⊂ Rn:

Av − λv ⊥ W, v ∈ W
⇔ (W TAW)s − λ̃s = 0, for orth. basis W

I Approximation λ̃ with ṽ = Ws

Deflation

I Project out already known eigenvector space Q:

Ā := (I − QQT)A(I − QQT)

6 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outer iteration

Subspace iteration
I Galerkin projection onto small subspace W ⊂ Rn:

Av − λv ⊥ W, v ∈ W
⇔ (W TAW)s − λ̃s = 0, for orth. basis W

I Approximation λ̃ with ṽ = Ws

Deflation

I Project out already known eigenvector space Q:

Ā := (I − QQT)A(I − QQT)

6 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outer iteration

Subspace iteration
I Galerkin projection onto small subspace W ⊂ Rn:

Av − λv ⊥ W, v ∈ W
⇔ (W TAW)s − λ̃s = 0, for orth. basis W

I Approximation λ̃ with ṽ = Ws

Deflation
I Project out already known eigenvector space Q:

Ā := (I − QQT)A(I − QQT)

7 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Jacobi-Davidson correction equation

Basic approach
I Based on current approximation Aṽ − λ̃ṽ = r

I Avoid (near) singularity of (A− λ̃I)−1 in RQI/Newton through a
projection with Q̃⊥ =

(
Q ṽ

)⊥
→ Solve approximately:

(I − Q̃Q̃T)(A− λ̃I)(I − Q̃Q̃T)wk+1 = −r

I Use some steps of iterative solver (GMRES, BiCGStab, . . .)
→ inner iteration

I Provides new direction wk+1 for the subspace iteration

7 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Jacobi-Davidson correction equation

Basic approach
I Based on current approximation Aṽ − λ̃ṽ = r

I Avoid (near) singularity of (A− λ̃I)−1 in RQI/Newton through a
projection with Q̃⊥ =

(
Q ṽ

)⊥

→ Solve approximately:

(I − Q̃Q̃T)(A− λ̃I)(I − Q̃Q̃T)wk+1 = −r

I Use some steps of iterative solver (GMRES, BiCGStab, . . .)
→ inner iteration

I Provides new direction wk+1 for the subspace iteration

7 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Jacobi-Davidson correction equation

Basic approach
I Based on current approximation Aṽ − λ̃ṽ = r

I Avoid (near) singularity of (A− λ̃I)−1 in RQI/Newton through a
projection with Q̃⊥ =

(
Q ṽ

)⊥
→ Solve approximately:

(I − Q̃Q̃T)(A− λ̃I)(I − Q̃Q̃T)wk+1 = −r

I Use some steps of iterative solver (GMRES, BiCGStab, . . .)
→ inner iteration

I Provides new direction wk+1 for the subspace iteration

7 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Jacobi-Davidson correction equation

Basic approach
I Based on current approximation Aṽ − λ̃ṽ = r

I Avoid (near) singularity of (A− λ̃I)−1 in RQI/Newton through a
projection with Q̃⊥ =

(
Q ṽ

)⊥
→ Solve approximately:

(I − Q̃Q̃T)(A− λ̃I)(I − Q̃Q̃T)wk+1 = −r

I Use some steps of iterative solver (GMRES, BiCGStab, . . .)
→ inner iteration

I Provides new direction wk+1 for the subspace iteration

7 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Jacobi-Davidson correction equation

Basic approach
I Based on current approximation Aṽ − λ̃ṽ = r

I Avoid (near) singularity of (A− λ̃I)−1 in RQI/Newton through a
projection with Q̃⊥ =

(
Q ṽ

)⊥
→ Solve approximately:

(I − Q̃Q̃T)(A− λ̃I)(I − Q̃Q̃T)wk+1 = −r

I Use some steps of iterative solver (GMRES, BiCGStab, . . .)
→ inner iteration

I Provides new direction wk+1 for the subspace iteration

8 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block JDQR method

Idea
I Calculate corrections for nb eigenvalues at once
→ hopefully improves performance

I Block correction equation with Q̃ =
(
Q ṽ1 . . . ṽnb

)
:

(I − Q̃Q̃T)(A− λ̃i I)(I − Q̃Q̃T)wk+i = −ri i = 1, . . . , nb

→ Approximately solve nb linear systems at once
I Provides nb new directions wk+i for the subspace iteration

8 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block JDQR method

Idea
I Calculate corrections for nb eigenvalues at once
→ hopefully improves performance

I Block correction equation with Q̃ =
(
Q ṽ1 . . . ṽnb

)
:

(I − Q̃Q̃T)(A− λ̃i I)(I − Q̃Q̃T)wk+i = −ri i = 1, . . . , nb

→ Approximately solve nb linear systems at once
I Provides nb new directions wk+i for the subspace iteration

8 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block JDQR method

Idea
I Calculate corrections for nb eigenvalues at once
→ hopefully improves performance

I Block correction equation with Q̃ =
(
Q ṽ1 . . . ṽnb

)
:

(I − Q̃Q̃T)(A− λ̃i I)(I − Q̃Q̃T)wk+i = −ri i = 1, . . . , nb

→ Approximately solve nb linear systems at once

I Provides nb new directions wk+i for the subspace iteration

8 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block JDQR method

Idea
I Calculate corrections for nb eigenvalues at once
→ hopefully improves performance

I Block correction equation with Q̃ =
(
Q ṽ1 . . . ṽnb

)
:

(I − Q̃Q̃T)(A− λ̃i I)(I − Q̃Q̃T)wk+i = −ri i = 1, . . . , nb

→ Approximately solve nb linear systems at once
I Provides nb new directions wk+i for the subspace iteration

9 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outline

Block-Jacobi-Davidson algorithm

Performance analysis
Required linear algebra operations
spMMVM single node
Block vector operations
spMMVM inter-node

Implementation

Results

Conclusion

10 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Required linear algebra operations

Sparse matrix-multiple-vector multiplication (spMMVM)

I distributed CRS format (stores non-zero entries row-wise)
I avoid loading A several times (memory bounded)

Block vector operations

I different types of operations: (V ,W ∈ Rn×nb)

local all-reduction
BLAS 1 V + W ‖vi‖
BLAS 3 VM V TW

I message aggregation for all-reductions
I better code balance for BLAS 3 operations (memory bounded)

10 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Required linear algebra operations

Sparse matrix-multiple-vector multiplication (spMMVM)

I distributed CRS format (stores non-zero entries row-wise)
I avoid loading A several times (memory bounded)

Block vector operations

I different types of operations: (V ,W ∈ Rn×nb)

local all-reduction
BLAS 1 V + W ‖vi‖
BLAS 3 VM V TW

I message aggregation for all-reductions
I better code balance for BLAS 3 operations (memory bounded)

10 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Required linear algebra operations

Sparse matrix-multiple-vector multiplication (spMMVM)

I distributed CRS format (stores non-zero entries row-wise)
I avoid loading A several times (memory bounded)

Block vector operations
I different types of operations: (V ,W ∈ Rn×nb)

local all-reduction
BLAS 1 V + W ‖vi‖
BLAS 3 VM V TW

I message aggregation for all-reductions
I better code balance for BLAS 3 operations (memory bounded)

10 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Required linear algebra operations

Sparse matrix-multiple-vector multiplication (spMMVM)

I distributed CRS format (stores non-zero entries row-wise)
I avoid loading A several times (memory bounded)

Block vector operations
I different types of operations: (V ,W ∈ Rn×nb)

local all-reduction
BLAS 1 V + W ‖vi‖
BLAS 3 VM V TW

I message aggregation for all-reductions
I better code balance for BLAS 3 operations (memory bounded)

11 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM single node

Setup
I Matrix dimensions: n ≈ 106 with nnzr ≈ 10 non-zeros per row
I CRS format
I 6-core Intel Westmere CPU

I Roofline performance model:

Pideal = min
(

Ppeak ,
bdata

Bcode

)
I Code balance:

BCRS,NT =
6
nb

+
8

nnzr
+
κ

2

[
bytes

flops

]

11 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM single node

Setup
I Matrix dimensions: n ≈ 106 with nnzr ≈ 10 non-zeros per row
I CRS format
I 6-core Intel Westmere CPU
I Roofline performance model:

Pideal = min
(

Ppeak ,
bdata

Bcode

)

I Code balance:

BCRS,NT =
6
nb

+
8

nnzr
+
κ

2

[
bytes

flops

]

11 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM single node

Setup
I Matrix dimensions: n ≈ 106 with nnzr ≈ 10 non-zeros per row
I CRS format
I 6-core Intel Westmere CPU
I Roofline performance model:

Pideal = min
(

Ppeak ,
bdata

Bcode

)
I Code balance:

BCRS,NT =
6
nb

+
8

nnzr
+
κ

2

[
bytes

flops

]

12 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM single node (2)

Bandwidth

0

5

10

15

20

1 2 4 8

ba
nd

w
id
th

[G
B
/s
]

block size nb

meas. bandwidth
row-major

row-major, NT stores
col.-major

Performance

0

1

2

3

4

5

6

7

8

1 2 4 8

pe
rf
or
m
an
ce

[G
Fl
op

s/
s]

block size nb

row-major
row-major, NT stores

col.-major

κ
=
2.4

κ
=
2.3

κ
=
2.8

κ
=
3.2

κ
=
2.4

κ
=
2.3

κ
=
2.5

κ
=
2.8

12 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM single node (2)

Bandwidth

0

5

10

15

20

1 2 4 8

ba
nd

w
id
th

[G
B
/s
]

block size nb

meas. bandwidth
row-major

row-major, NT stores
col.-major

Performance

0

1

2

3

4

5

6

7

8

1 2 4 8

pe
rf
or
m
an
ce

[G
Fl
op

s/
s]

block size nb

row-major
row-major, NT stores

col.-major

κ
=
2.4

κ
=
2.3

κ
=
2.8

κ
=
3.2

κ
=
2.4

κ
=
2.3

κ
=
2.5

κ
=
2.8

12 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM single node (2)

Bandwidth

0

5

10

15

20

1 2 4 8

ba
nd

w
id
th

[G
B
/s
]

block size nb

meas. bandwidth
row-major

row-major, NT stores
col.-major

Performance

0

1

2

3

4

5

6

7

8

1 2 4 8

pe
rf
or
m
an
ce

[G
Fl
op

s/
s]

block size nb

row-major
row-major, NT stores

col.-major

κ
=
2.4

κ
=
2.3

κ
=
2.8

κ
=
3.2

κ
=
2.4

κ
=
2.3

κ
=
2.5

κ
=
2.8

13 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block vector operations

Jacobi-Davidson Operator
I spMMVM + 2× GEMM:

yi ← (I − QQT)(A− σi I)xi

with Q ∈ Rn×10, i = 1, . . . , nb

I For GEMM here: performance
model is accurate!

I 1.6 times faster for nb = 2
2.5 times faster for nb = 4

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8

ru
nt
im

e
/
bl
oc
k
si
ze

n
b
[s
]

block size nb

spMMVM
GEMM 1
GEMM 2

13 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block vector operations

Jacobi-Davidson Operator
I spMMVM + 2× GEMM:

yi ← (I − QQT)(A− σi I)xi

with Q ∈ Rn×10, i = 1, . . . , nb

I For GEMM here: performance
model is accurate!

I 1.6 times faster for nb = 2
2.5 times faster for nb = 4

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8

ru
nt
im

e
/
bl
oc
k
si
ze

n
b
[s
]

block size nb

spMMVM
GEMM 1
GEMM 2

13 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block vector operations

Jacobi-Davidson Operator
I spMMVM + 2× GEMM:

yi ← (I − QQT)(A− σi I)xi

with Q ∈ Rn×10, i = 1, . . . , nb

I For GEMM here: performance
model is accurate!

I 1.6 times faster for nb = 2
2.5 times faster for nb = 4

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8
ru
nt
im

e
/
bl
oc
k
si
ze

n
b
[s
]

block size nb

spMMVM
GEMM 1
GEMM 2

13 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block vector operations

Jacobi-Davidson Operator
I spMMVM + 2× GEMM:

yi ← (I − QQT)(A− σi I)xi

with Q ∈ Rn×10, i = 1, . . . , nb

I For GEMM here: performance
model is accurate!

I 1.6 times faster for nb = 2
2.5 times faster for nb = 4

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8
ru
nt
im

e
/
bl
oc
k
si
ze

n
b
[s
]

block size nb

spMMVM
GEMM 1
GEMM 2

14 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM inter-node

Setup
I strong scaling

(n ≈ 107, nnzr ≈ 15)

I Distributed CRS
→ communication overhead

I Each node:
2× 6-core Intel Westmere

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64

re
la
tiv

e
pe
rf
or
m
an
ce

t 1
/t

b
lo
ck

nodes

nb = 1
nb = 2
nb = 4

14 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM inter-node

Setup
I strong scaling

(n ≈ 107, nnzr ≈ 15)
I Distributed CRS
→ communication overhead

I Each node:
2× 6-core Intel Westmere

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64

re
la
tiv

e
pe
rf
or
m
an
ce

t 1
/t

b
lo
ck

nodes

nb = 1
nb = 2
nb = 4

14 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM inter-node

Setup
I strong scaling

(n ≈ 107, nnzr ≈ 15)
I Distributed CRS
→ communication overhead

I Each node:
2× 6-core Intel Westmere

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64

re
la
tiv

e
pe
rf
or
m
an
ce

t 1
/t

b
lo
ck

nodes

nb = 1
nb = 2
nb = 4

14 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

spMMVM inter-node

Setup
I strong scaling

(n ≈ 107, nnzr ≈ 15)
I Distributed CRS
→ communication overhead

I Each node:
2× 6-core Intel Westmere

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64
re
la
tiv

e
pe
rf
or
m
an
ce

t 1
/t

b
lo
ck

nodes

nb = 1
nb = 2
nb = 4

15 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outline

Block-Jacobi-Davidson algorithm

Performance analysis

Implementation
Frameworks from the ESSEX project
Block pipelined GMRES algorithm

Results

Conclusion

16 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Frameworks from the ESSEX project

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)

I General C-interface to linear algebra libraries:
I Trilinos (C++, http://trilinos.sandia.gov)
I GHOST
I self-written (row-major storage, Fortran + C99, NT-stores)

I Iterative solvers
I Large test framework

GHOST (General Hybrid Optimized Sparse Toolkit)

I Developed at the RRZE in Erlangen (ESSEX project partner)
I Hybrid-parallel MPI+OpenMP+CUDA

http://trilinos.sandia.gov

16 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Frameworks from the ESSEX project

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)
I General C-interface to linear algebra libraries:

I Trilinos (C++, http://trilinos.sandia.gov)
I GHOST
I self-written (row-major storage, Fortran + C99, NT-stores)

I Iterative solvers
I Large test framework

GHOST (General Hybrid Optimized Sparse Toolkit)

I Developed at the RRZE in Erlangen (ESSEX project partner)
I Hybrid-parallel MPI+OpenMP+CUDA

http://trilinos.sandia.gov

16 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Frameworks from the ESSEX project

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)
I General C-interface to linear algebra libraries:

I Trilinos (C++, http://trilinos.sandia.gov)
I GHOST
I self-written (row-major storage, Fortran + C99, NT-stores)

I Iterative solvers

I Large test framework

GHOST (General Hybrid Optimized Sparse Toolkit)

I Developed at the RRZE in Erlangen (ESSEX project partner)
I Hybrid-parallel MPI+OpenMP+CUDA

http://trilinos.sandia.gov

16 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Frameworks from the ESSEX project

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)
I General C-interface to linear algebra libraries:

I Trilinos (C++, http://trilinos.sandia.gov)
I GHOST
I self-written (row-major storage, Fortran + C99, NT-stores)

I Iterative solvers
I Large test framework

GHOST (General Hybrid Optimized Sparse Toolkit)

I Developed at the RRZE in Erlangen (ESSEX project partner)
I Hybrid-parallel MPI+OpenMP+CUDA

http://trilinos.sandia.gov

16 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Frameworks from the ESSEX project

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)
I General C-interface to linear algebra libraries:

I Trilinos (C++, http://trilinos.sandia.gov)
I GHOST
I self-written (row-major storage, Fortran + C99, NT-stores)

I Iterative solvers
I Large test framework

GHOST (General Hybrid Optimized Sparse Toolkit)

I Developed at the RRZE in Erlangen (ESSEX project partner)
I Hybrid-parallel MPI+OpenMP+CUDA

http://trilinos.sandia.gov

17 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block pipelined GMRES algorithm

Idea
I Solve nb linear systems Axi = bi at once

I Remove converged systems and add new ones (pipelining)
I Standard GMRES method (for each system)

ṽk+1 ← Avk

GMRES subspace 1:
GMRES subspace 2:.

.

.

17 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block pipelined GMRES algorithm

Idea
I Solve nb linear systems Axi = bi at once
I Remove converged systems and add new ones (pipelining)

I Standard GMRES method (for each system)

ṽk+1 ← Avk

GMRES subspace 1:
GMRES subspace 2:.

.

.

17 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block pipelined GMRES algorithm

Idea
I Solve nb linear systems Axi = bi at once
I Remove converged systems and add new ones (pipelining)
I Standard GMRES method (for each system)

ṽk+1 ← Avk

GMRES subspace 1:
GMRES subspace 2:.

.

.

17 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Block pipelined GMRES algorithm

Idea
I Solve nb linear systems Axi = bi at once
I Remove converged systems and add new ones (pipelining)
I Standard GMRES method (for each system)

ṽk+1 ← Avk

GMRES subspace 1:
GMRES subspace 2:.

.

.

18 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outline

Block-Jacobi-Davidson algorithm

Performance analysis

Implementation

Results
Numerical behavior
Performance of the complete algorithm

Conclusion

19 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Numerical behavior

Block size 2

1

1.5

2

2.5

3

3.5

5 10 20 30 40 50

re
la
tiv

e
ov
er
he
ad

(#
sp
M
V
M
)

eigenvalues found

Andrews
cfd1

finan512
torsion1

ck656
cry10000
dw8192
rdb3200l

Block size 4

1

1.5

2

2.5

3

3.5

5 10 20 30 40 50

re
la
tiv

e
ov
er
he
ad

(#
sp
M
V
M
)

eigenvalues found

20 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Performance of the complete algorithm

10 eigenvalues

0

0.5

1

1.5

2

1 2 4 8 16 32 64

re
la
tiv

e
pe
rf
or
m
an
ce

t 1
/

t b
lo
ck

nodes

nb = 1
nb = 2
nb = 4

20 eigenvalues

0

0.5

1

1.5

2

1 2 4 8 16 32 64

re
la
tiv

e
pe
rf
or
m
an
ce

t 1
/t

b
lo
ck

nodes

nb = 1
nb = 2
nb = 4

21 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Outline

Block-Jacobi-Davidson algorithm

Performance analysis

Implementation

Results

Conclusion

22 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Conclusion

Block Jacobi-Davidson algorithm
I Working algorithm for outer eigenvalues

I All basic operations reach almost the modeled performance limit

I Numerical experiments:
I Overhead small for > 10 desired eigenvalues

I Performance analysis:
I Great impact of memory layout (row- instead of col.-major)
I Improves code balance (node-level)
I Message aggregation (inter-node)

⇒ Improved performance by factor 1.2–1.6

22 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Conclusion

Block Jacobi-Davidson algorithm
I Working algorithm for outer eigenvalues

I All basic operations reach almost the modeled performance limit
I Numerical experiments:

I Overhead small for > 10 desired eigenvalues

I Performance analysis:
I Great impact of memory layout (row- instead of col.-major)
I Improves code balance (node-level)
I Message aggregation (inter-node)

⇒ Improved performance by factor 1.2–1.6

22 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Conclusion

Block Jacobi-Davidson algorithm
I Working algorithm for outer eigenvalues

I All basic operations reach almost the modeled performance limit
I Numerical experiments:

I Overhead small for > 10 desired eigenvalues
I Performance analysis:

I Great impact of memory layout (row- instead of col.-major)
I Improves code balance (node-level)
I Message aggregation (inter-node)

⇒ Improved performance by factor 1.2–1.6

22 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Conclusion

Block Jacobi-Davidson algorithm
I Working algorithm for outer eigenvalues

I All basic operations reach almost the modeled performance limit
I Numerical experiments:

I Overhead small for > 10 desired eigenvalues
I Performance analysis:

I Great impact of memory layout (row- instead of col.-major)
I Improves code balance (node-level)
I Message aggregation (inter-node)

⇒ Improved performance by factor 1.2–1.6

23 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Conclusion (2)

Outlook
I Integrate row-major approach in ESSEX (GHOST library from

Erlangen) (partly done)

I Need more asynchronous algorithms for exascale
I Need fast orthogonalization kernel (TSQR)
I Parallel preconditioning of the linear problems (Jonas Thies work)
I Block Pipelined GMRES also interesting for other applications

(FEAST in ESSEX)

23 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Conclusion (2)

Outlook
I Integrate row-major approach in ESSEX (GHOST library from

Erlangen) (partly done)
I Need more asynchronous algorithms for exascale

I Need fast orthogonalization kernel (TSQR)
I Parallel preconditioning of the linear problems (Jonas Thies work)
I Block Pipelined GMRES also interesting for other applications

(FEAST in ESSEX)

23 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Conclusion (2)

Outlook
I Integrate row-major approach in ESSEX (GHOST library from

Erlangen) (partly done)
I Need more asynchronous algorithms for exascale
I Need fast orthogonalization kernel (TSQR)

I Parallel preconditioning of the linear problems (Jonas Thies work)
I Block Pipelined GMRES also interesting for other applications

(FEAST in ESSEX)

23 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Conclusion (2)

Outlook
I Integrate row-major approach in ESSEX (GHOST library from

Erlangen) (partly done)
I Need more asynchronous algorithms for exascale
I Need fast orthogonalization kernel (TSQR)
I Parallel preconditioning of the linear problems (Jonas Thies work)

I Block Pipelined GMRES also interesting for other applications
(FEAST in ESSEX)

23 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Conclusion (2)

Outlook
I Integrate row-major approach in ESSEX (GHOST library from

Erlangen) (partly done)
I Need more asynchronous algorithms for exascale
I Need fast orthogonalization kernel (TSQR)
I Parallel preconditioning of the linear problems (Jonas Thies work)
I Block Pipelined GMRES also interesting for other applications

(FEAST in ESSEX)

	Block-Jacobi-Davidson algorithm
	Jacobi-Davidson QR method
	Block JDQR method

	Performance analysis
	Required linear algebra operations
	spMMVM single node
	Block vector operations
	spMMVM inter-node

	Implementation
	Frameworks from the ESSEX project
	Block pipelined GMRES algorithm

	Results
	Numerical behavior
	Performance of the complete algorithm

	Conclusion

