Melven Röhrig-Zöllner

Simulation and Software Technology German Aerospace Center (DLR)

April 25, 2014

Block-Jacobi-Davidson algorithm

Background

Aim: Calculate a set of outer eigenpairs (λ_i, v_i) of a large sparse matrix:

$$Av_i = \lambda_i v_i$$

Project: Equipping Sparse Solvers for Exascale (ESSEX) of the DFG SPPEXA programme

Outline

Block-Jacobi-Davidson algorithm

Performance analysis

Implementation

Results

Conclusion

Outline

Block-Jacobi-Davidson algorithm Jacobi-Davidson QR method Block JDQR method

Performance analysis

Implementation

Results

Conclusion

Conclusion

Jacobi-Davidson QR method

Background

- Introduced 1998 by Fokkema et. al.
- ► Motivated by inexact Newton / Rayleigh quotient iteration (RQI)

Jacobi-Davidson QR method

Background

•000

- Introduced 1998 by Fokkema et. al.
- ▶ Motivated by inexact Newton / Rayleigh quotient iteration (RQI)

Sketch of the algorithm

- 1: while not converged do Duter iteration
- Project problem to small subspace 2:
- Solve small eigenvalue problem 3:
- Calculate approximation and residual 4:
- 5: Approximately solve correction equation ▶ Inner iteration
- Orthogonalize result 6.
- Enlarge subspace
- 8: end while

Subspace iteration

Deflation

Subspace iteration

▶ Galerkin projection onto small subspace $W \subset \mathbb{R}^n$:

$$Av - \lambda v \perp \mathcal{W}, \qquad v \in \mathcal{W}$$
 $\Leftrightarrow \qquad (W^T AW)s - \tilde{\lambda}s = 0, \qquad ext{for orth. basis } W$

Deflation

Subspace iteration

▶ Galerkin projection onto small subspace $W \subset \mathbb{R}^n$:

$$Av - \lambda v \perp \mathcal{W}, \qquad v \in \mathcal{W}$$
 $\Leftrightarrow \qquad (W^T A W)s - \tilde{\lambda}s = 0, \qquad \text{for orth. basis } W$

• Approximation $\tilde{\lambda}$ with $\tilde{v} = Ws$

Deflation

Subspace iteration

▶ Galerkin projection onto small subspace $W \subset \mathbb{R}^n$:

$$Av - \lambda v \perp \mathcal{W}, \qquad v \in \mathcal{W}$$
 $\Leftrightarrow \qquad (W^T A W)s - \tilde{\lambda}s = 0, \qquad \text{for orth. basis } W$

• Approximation $\tilde{\lambda}$ with $\tilde{v} = Ws$

Deflation

Project out already known eigenvector space Q:

$$\bar{A} := (I - QQ^T)A(I - QQ^T)$$

Basic approach

▶ Based on current approximation $A\tilde{v} - \tilde{\lambda}\tilde{v} = r$

Basic approach

0000

- ▶ Based on current approximation $A\tilde{v} \tilde{\lambda}\tilde{v} = r$
- ▶ Avoid (near) singularity of $(A \tilde{\lambda}I)^{-1}$ in RQI/Newton through a projection with $ilde{Q}^{\perp} = \left(egin{array}{cc} Q & ilde{v} \end{array}
 ight)^{\perp}$

Basic approach

0000

- ▶ Based on current approximation $A\tilde{v} \tilde{\lambda}\tilde{v} = r$
- Avoid (near) singularity of $(A \tilde{\lambda}I)^{-1}$ in RQI/Newton through a projection with $\tilde{Q}^{\perp} = \begin{pmatrix} Q & \tilde{v} \end{pmatrix}^{\perp}$
- \rightarrow Solve approximately:

$$(I - \tilde{Q}\tilde{Q}^T)(A - \tilde{\lambda}I)(I - \tilde{Q}\tilde{Q}^T)w_{k+1} = -r$$

Basic approach

0000

- Based on current approximation $A\tilde{v} \tilde{\lambda}\tilde{v} = r$
- ▶ Avoid (near) singularity of $(A \tilde{\lambda}I)^{-1}$ in RQI/Newton through a projection with $ilde{Q}^{\perp} = \left(egin{array}{cc} Q & ilde{v} \end{array}
 ight)^{\perp}$
- → Solve approximately:

$$(I - \tilde{Q}\tilde{Q}^T)(A - \tilde{\lambda}I)(I - \tilde{Q}\tilde{Q}^T)w_{k+1} = -r$$

▶ Use some steps of iterative solver (GMRES, BiCGStab, ...) \rightarrow inner iteration

Basic approach

- lacktriangle Based on current approximation $A ilde{v} ilde{\lambda} ilde{v} = r$
- Avoid (near) singularity of $(A \tilde{\lambda}I)^{-1}$ in RQI/Newton through a projection with $\tilde{Q}^{\perp} = (Q \quad \tilde{v})^{\perp}$
- \rightarrow Solve approximately:

$$(I - \tilde{Q}\tilde{Q}^T)(A - \tilde{\lambda}I)(I - \tilde{Q}\tilde{Q}^T)w_{k+1} = -r$$

- ▶ Use some steps of iterative solver (GMRES, BiCGStab, ...) \rightarrow inner iteration
- \triangleright Provides new direction w_{k+1} for the subspace iteration

Idea

- \triangleright Calculate corrections for n_b eigenvalues at once
 - → hopefully improves performance

Idea

- Calculate corrections for n_b eigenvalues at once
 → hopefully improves performance
- ▶ Block correction equation with $\tilde{Q} = (Q \quad \tilde{v}_1 \quad \dots \quad \tilde{v}_{n_b})$:

$$(I - \tilde{Q}\tilde{Q}^T)(A - \tilde{\lambda}_i I)(I - \tilde{Q}\tilde{Q}^T)w_{k+i} = -r_i \quad i = 1, \dots, n_b$$

Idea

- Calculate corrections for n_b eigenvalues at once
 → hopefully improves performance
- ▶ Block correction equation with $\tilde{Q} = (Q \quad \tilde{v}_1 \quad \dots \quad \tilde{v}_{n_b})$:

$$(I - \tilde{Q}\tilde{Q}^T)(A - \tilde{\lambda}_i I)(I - \tilde{Q}\tilde{Q}^T)w_{k+i} = -r_i \quad i = 1, \dots, n_b$$

 \rightarrow Approximately solve n_b linear systems at once

Idea

- ► Calculate corrections for n_b eigenvalues at once → hopefully improves performance
- ▶ Block correction equation with $\tilde{Q} = (Q \quad \tilde{v}_1 \quad \dots \quad \tilde{v}_{n_b})$:

$$(I - \tilde{Q}\tilde{Q}^T)(A - \tilde{\lambda}_i I)(I - \tilde{Q}\tilde{Q}^T)w_{k+i} = -r_i \quad i = 1, \dots, n_b$$

- \rightarrow Approximately solve n_b linear systems at once
- \triangleright Provides n_b new directions w_{k+i} for the subspace iteration

Performance analysis

Required linear algebra operations spMMVM single node Block vector operations spMMVM inter-node

Required linear algebra operations

Sparse matrix-multiple-vector multiplication (spMMVM)

Block vector operations

Required linear algebra operations

Sparse matrix-multiple-vector multiplication (spMMVM)

- distributed CRS format (stores non-zero entries row-wise)
- avoid loading A several times (memory bounded)

Block vector operations

Block-Jacobi-Davidson algorithm

Sparse matrix-multiple-vector multiplication (spMMVM)

- distributed CRS format (stores non-zero entries row-wise)
- avoid loading A several times (memory bounded)

Block vector operations

▶ different types of operations: $(V, W \in \mathbb{R}^{n \times n_b})$

	local	all-reduction
BLAS 1	V+W	$\ v_i\ $
BLAS 3	VM	V^TW

Block-Jacobi-Davidson algorithm

Sparse matrix-multiple-vector multiplication (spMMVM)

- distributed CRS format (stores non-zero entries row-wise)
- avoid loading A several times (memory bounded)

Block vector operations

▶ different types of operations: $(V, W \in \mathbb{R}^{n \times n_b})$

	local	all-reduction
BLAS 1	V + W	$ v_i $
BLAS 3	VM	V^TW

- message aggregation for all-reductions
- better code balance for BLAS 3 operations (memory bounded)

spMMVM single node

Setup

- ▶ Matrix dimensions: $n \approx 10^6$ with $n_{nzr} \approx 10$ non-zeros per row
- CRS format
- ▶ 6-core Intel Westmere CPU

spMMVM single node

Setup

- ▶ Matrix dimensions: $n \approx 10^6$ with $n_{nzr} \approx 10$ non-zeros per row
- CRS format
- 6-core Intel Westmere CPU
- Roofline performance model:

$$P_{ideal} = \min\left(P_{peak}, \frac{b_{data}}{B_{code}}\right)$$

spMMVM single node

Setup

- ▶ Matrix dimensions: $n \approx 10^6$ with $n_{nzr} \approx 10$ non-zeros per row
- CRS format
- 6-core Intel Westmere CPU
- Roofline performance model:

$$P_{ideal} = \min\left(P_{peak}, \frac{b_{data}}{B_{code}}\right)$$

Code balance:

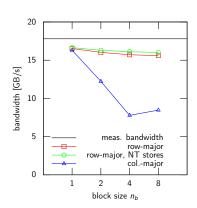
$$B_{CRS,NT} = \frac{6}{n_b} + \frac{8}{n_{nzr}} + \frac{\kappa}{2} \left[\frac{bytes}{flops} \right]$$

spMMVM single node (2)

Bandwidth Performance

spMMVM single node (2)

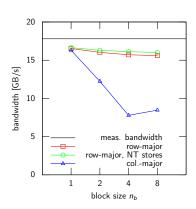
Bandwidth



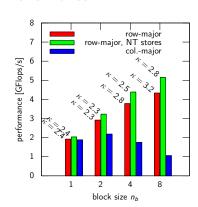
Performance

spMMVM single node (2)

Bandwidth



Performance



Jacobi-Davidson Operator

► spMMVM + 2× GEMM:

$$y_i \leftarrow (I - QQ^T)(A - \sigma_i I)x_i$$

with
$$Q \in \mathbb{R}^{n \times 10}$$
, $i = 1, \ldots, n_b$

Jacobi-Davidson Operator

▶ spMMVM + $2 \times$ GEMM:

$$y_i \leftarrow (I - QQ^T)(A - \sigma_i I)x_i$$

with
$$Q \in \mathbb{R}^{n \times 10}$$
, $i = 1, \ldots, n_b$

► For GEMM here: performance model is accurate!

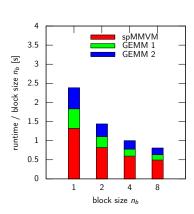
Jacobi-Davidson Operator

▶ spMMVM + 2× GEMM:

$$y_i \leftarrow (I - QQ^T)(A - \sigma_i I)x_i$$

with
$$Q \in \mathbb{R}^{n imes 10}$$
, $i = 1, \dots, n_b$

► For GEMM here: performance model is accurate!



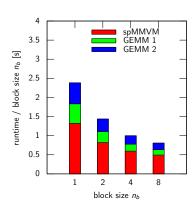
Jacobi-Davidson Operator

► spMMVM + 2× GEMM:

$$y_i \leftarrow (I - QQ^T)(A - \sigma_i I)x_i$$

with
$$Q \in \mathbb{R}^{n \times 10}$$
, $i = 1, \ldots, n_b$

- For GEMM here: performance model is accurate!
- ▶ 1.6 times faster for $n_b = 2$ 2.5 times faster for $n_b = 4$



spMMVM inter-node

Setup

• strong scaling $(n \approx 10^7, n_{nzr} \approx 15)$

spMMVM inter-node

Setup

- strong scaling $(n \approx 10^7, n_{nzr} \approx 15)$
- Distributed CRS
 - → communication overhead

spMMVM inter-node

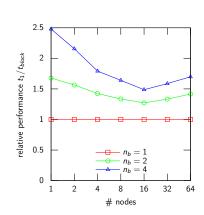
Setup

- strong scaling $(n \approx 10^7, n_{nzr} \approx 15)$
- Distributed CRS \rightarrow communication overhead
- Each node: 2× 6-core Intel Westmere

spMMVM inter-node

Setup

- strong scaling $(n \approx 10^7, n_{nzr} \approx 15)$
- ▶ Distributed CRS
 → communication overhead
- ► Each node: 2× 6-core Intel Westmere



Outline

Block-Jacobi-Davidson algorithm

Performance analysis

Implementation

Frameworks from the ESSEX project Block pipelined GMRES algorithm

Results

Conclusion

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)

- General C-interface to linear algebra libraries:
 - ► Trilinos (C++, http://trilinos.sandia.gov)
 - GHOST
 - self-written (row-major storage, Fortran + C99, NT-stores)

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)

- General C-interface to linear algebra libraries:
 - ► Trilinos (C++, http://trilinos.sandia.gov)
 - GHOST

Block-Jacobi-Davidson algorithm

- self-written (row-major storage, Fortran + C99, NT-stores)
- Iterative solvers

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)

- General C-interface to linear algebra libraries:
 - ► Trilinos (C++, http://trilinos.sandia.gov)
 - GHOST

Block-Jacobi-Davidson algorithm

- self-written (row-major storage, Fortran + C99, NT-stores)
- Iterative solvers
- Large test framework

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)

- General C-interface to linear algebra libraries:
 - ► Trilinos (C++, http://trilinos.sandia.gov)
 - GHOST
 - ▶ self-written (row-major storage, Fortran + C99, NT-stores)
- Iterative solvers
- Large test framework

- ▶ Developed at the RRZE in Erlangen (ESSEX project partner)
- ► Hybrid-parallel MPI+OpenMP+CUDA

Idea

▶ Solve n_b linear systems $Ax_i = b_i$ at once

Idea

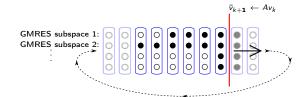
- ▶ Solve n_b linear systems $Ax_i = b_i$ at once
- Remove converged systems and add new ones (pipelining)

Idea

- ▶ Solve n_b linear systems $Ax_i = b_i$ at once
- Remove converged systems and add new ones (pipelining)
- Standard GMRES method (for each system)

Idea

- ▶ Solve n_b linear systems $Ax_i = b_i$ at once
- ► Remove converged systems and add new ones (pipelining)
- Standard GMRES method (for each system)



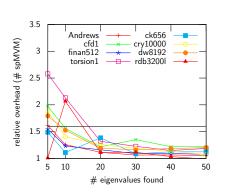
Outline

Results

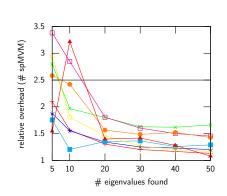
Numerical behavior Performance of the complete algorithm

Results

Block size 2

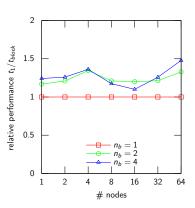


Block size 4

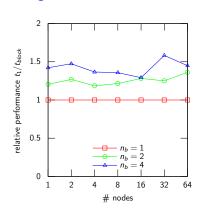


Performance of the complete algorithm

10 eigenvalues



20 eigenvalues



Outline

Block-Jacobi-Davidson algorithm

Performance analysis

Implementation

Result

Conclusion

Conclusion

- Working algorithm for outer eigenvalues
 - ▶ All basic operations reach almost the modeled performance limit

- Working algorithm for outer eigenvalues
 - ▶ All basic operations reach almost the modeled performance limit
- Numerical experiments:
 - Overhead small for > 10 desired eigenvalues

- Working algorithm for outer eigenvalues
 - ▶ All basic operations reach almost the modeled performance limit
- Numerical experiments:
 - Overhead small for > 10 desired eigenvalues
- Performance analysis:
 - Great impact of memory layout (row- instead of col.-major)
 - Improves code balance (node-level)
 - Message aggregation (inter-node)

- Working algorithm for outer eigenvalues
 - ▶ All basic operations reach almost the modeled performance limit
- Numerical experiments:
 - Overhead small for > 10 desired eigenvalues
- Performance analysis:
 - Great impact of memory layout (row- instead of col.-major)
 - Improves code balance (node-level)
 - Message aggregation (inter-node)
- \Rightarrow Improved performance by factor 1.2–1.6

Conclusion (2)

Outlook

► Integrate row-major approach in ESSEX (GHOST library from Erlangen) (partly done)

Conclusion (2)

- ▶ Integrate row-major approach in ESSEX (GHOST library from Erlangen) (partly done)
- ▶ Need more asynchronous algorithms for exascale

Block-Jacobi-Davidson algorithm

- ▶ Integrate row-major approach in ESSEX (GHOST library from Erlangen) (partly done)
- ▶ Need more asynchronous algorithms for exascale
- Need fast orthogonalization kernel (TSQR)

Block-Jacobi-Davidson algorithm

- ▶ Integrate row-major approach in ESSEX (GHOST library from Erlangen) (partly done)
- ▶ Need more asynchronous algorithms for exascale
- ▶ Need fast orthogonalization kernel (TSQR)
- ▶ Parallel preconditioning of the linear problems (Jonas Thies work)

Block-Jacobi-Davidson algorithm

- ▶ Integrate row-major approach in ESSEX (GHOST library from Erlangen) (partly done)
- ▶ Need more asynchronous algorithms for exascale
- Need fast orthogonalization kernel (TSQR)
- Parallel preconditioning of the linear problems (Jonas Thies work)
- ▶ Block Pipelined GMRES also interesting for other applications (FEAST in ESSEX)

