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Background

Aim: Calculate a set of outer eigenpairs (λi , vi ) of a large sparse
matrix:

Avi = λivi

Project: Equipping Sparse Solvers for Exascale (ESSEX) of the
DFG SPPEXA programme
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Jacobi-Davidson QR method

Background
I Introduced 1998 by Fokkema et. al.
I Motivated by inexact Newton / Rayleigh quotient iteration (RQI)

Sketch of the algorithm
1: while not converged do . Outer iteration
2: Project problem to small subspace
3: Solve small eigenvalue problem
4: Calculate approximation and residual
5: Approximately solve correction equation . Inner iteration
6: Orthogonalize result
7: Enlarge subspace
8: end while
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Outer iteration

Subspace iteration

I Galerkin projection onto small subspace W ⊂ Rn:

Av − λv ⊥ W, v ∈ W
⇔ (W TAW )s − λ̃s = 0, for orth. basis W

I Approximation λ̃ with ṽ = Ws

Deflation

I Project out already known eigenvector space Q:

Ā := (I − QQT )A(I − QQT )
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Jacobi-Davidson correction equation

Basic approach
I Based on current approximation Aṽ − λ̃ṽ = r

I Avoid (near) singularity of (A− λ̃I )−1 in RQI/Newton through a
projection with Q̃⊥ =

(
Q ṽ

)⊥
→ Solve approximately:

(I − Q̃Q̃T )(A− λ̃I )(I − Q̃Q̃T )wk+1 = −r

I Use some steps of iterative solver (GMRES, BiCGStab, . . . )
→ inner iteration

I Provides new direction wk+1 for the subspace iteration



7 / 23

Block-Jacobi-Davidson algorithm Performance analysis Implementation Results Conclusion

Jacobi-Davidson correction equation

Basic approach
I Based on current approximation Aṽ − λ̃ṽ = r
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Block JDQR method

Idea
I Calculate corrections for nb eigenvalues at once
→ hopefully improves performance

I Block correction equation with Q̃ =
(
Q ṽ1 . . . ṽnb

)
:

(I − Q̃Q̃T )(A− λ̃i I )(I − Q̃Q̃T )wk+i = −ri i = 1, . . . , nb

→ Approximately solve nb linear systems at once
I Provides nb new directions wk+i for the subspace iteration
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Required linear algebra operations

Sparse matrix-multiple-vector multiplication (spMMVM)

I distributed CRS format (stores non-zero entries row-wise)
I avoid loading A several times (memory bounded)

Block vector operations

I different types of operations: (V ,W ∈ Rn×nb)

local all-reduction
BLAS 1 V + W ‖vi‖
BLAS 3 VM V TW

I message aggregation for all-reductions
I better code balance for BLAS 3 operations (memory bounded)
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spMMVM single node

Setup
I Matrix dimensions: n ≈ 106 with nnzr ≈ 10 non-zeros per row
I CRS format
I 6-core Intel Westmere CPU

I Roofline performance model:

Pideal = min
(

Ppeak ,
bdata

Bcode

)
I Code balance:

BCRS,NT =
6
nb

+
8

nnzr
+
κ

2

[
bytes

flops

]
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spMMVM single node (2)
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Block vector operations

Jacobi-Davidson Operator
I spMMVM + 2× GEMM:

yi ← (I − QQT )(A− σi I )xi

with Q ∈ Rn×10, i = 1, . . . , nb

I For GEMM here: performance
model is accurate!

I 1.6 times faster for nb = 2
2.5 times faster for nb = 4
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spMMVM inter-node

Setup
I strong scaling

(n ≈ 107, nnzr ≈ 15)

I Distributed CRS
→ communication overhead

I Each node:
2× 6-core Intel Westmere
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Frameworks from the ESSEX project

phist (Pipelined Hybrid-parallel Linear Solver Toolkit)

I General C-interface to linear algebra libraries:
I Trilinos (C++, http://trilinos.sandia.gov)
I GHOST
I self-written (row-major storage, Fortran + C99, NT-stores)

I Iterative solvers
I Large test framework

GHOST (General Hybrid Optimized Sparse Toolkit)

I Developed at the RRZE in Erlangen (ESSEX project partner)
I Hybrid-parallel MPI+OpenMP+CUDA

http://trilinos.sandia.gov
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Block pipelined GMRES algorithm

Idea
I Solve nb linear systems Axi = bi at once

I Remove converged systems and add new ones (pipelining)
I Standard GMRES method (for each system)

ṽk+1 ← Avk

GMRES subspace 1:
GMRES subspace 2:.

.

.
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Numerical behavior
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Performance of the complete algorithm
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Conclusion

Block Jacobi-Davidson algorithm
I Working algorithm for outer eigenvalues

I All basic operations reach almost the modeled performance limit

I Numerical experiments:
I Overhead small for > 10 desired eigenvalues

I Performance analysis:
I Great impact of memory layout (row- instead of col.-major)
I Improves code balance (node-level)
I Message aggregation (inter-node)

⇒ Improved performance by factor 1.2–1.6
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