
Poster: Integration of a Haptic Rendering Algorithm Based on Voxelized
and Point-Sampled Structures into the Physics Engine Bullet

Mikel Sagardia∗

German Aerospace Center (DLR)
Theodoros Stouraitis†

German Aerospace Center (DLR)
João Lopes e Silva‡

German Aerospace Center (DLR)

ABSTRACT

We present the evaluation of a haptic rendering algorithm based
on the Voxmap-Pointshell algorithm which was integrated in the
physics engine Bullet. Our algorithm uses voxelized distance fields
and multi-resolution point-sampled representations and it is able
to compute collision forces between arbitrary complex bodies at
1 kHz. Current experiments show that the integrated algorithm out-
performs standard collision detection engines in Bullet in terms
of speed if high resolutions and accuracies are required, enabling
physically more realistic behaviors.

Index Terms: I.3.5 [Computing Methodologies]: Computational
Geometry and Object Modeling—Geometric algorithms, Object hi-
erarchies; I.3.7 [Computing Methodologies]: Three-Dimensional
Graphics and Realism—Animation, Virtual reality.

1 INTRODUCTION

Collision detection and force computation are essential for virtual
reality applications that require six-DoF haptic interaction, such as
interactive gaming, assembly simulations, or virtual prototyping.
However, many available solutions have to find a trade-off between
the high computational speed required by haptics (1 kHz) and the
obtained accuracy by using simplified geometries. This might result
in unrealistic simulations.

The Physics Library Bullet [2] provides several collision detec-
tion implementations able to handle simple geometries, and a pow-
erful rigid body dynamics framework. Yet, the performance of the
library decreases when realistic complex objects are in the virtual
scene. Therefore, the implementation of a fast collision detection
algorithm would be useful for enabling haptic interactions and sim-
ulating realistic multi-body environments.

An extensive state-of-the-art compilation of collision detection
and force computation methods is given in [5]. One well-known ap-
proach for collision detection is the Gilbert-Johnson-Keerthi (GJK)
Algorithm [3], which computes distances or penetrations between
convex shapes using their Minkowski sums. This method is im-
plemented in Bullet and tested in our experiments. Some other al-
gorithms build bounding volume hierarchies [4] or segment the
objects in convex patches [6]. A convex decomposition approach
is also implemented in Bullet and tested in our experiments.

Our collision detection approach is based on the Voxmap-
Pointshell (VPS) Algorithm [7], which enables six-DoF haptic ren-
dering between complex geometries. For each colliding object pair,
(i) voxelmaps or voxelized representations and (ii) pointshells or
point-sampled structures are used (see Figure 1). The penetration
of the points in the voxelized object can be computed for evaluating
the collision force.

The VPS Algorithm was improved in [1] to support deformable
objects. In that work, hierarchical data structures and distance fields

∗e-mail: mikel.sagardia@dlr.de
†e-mail: theodoros.stouraitis@dlr.de
‡e-mail: jpedro.e.silva@gmail.com

were used. Similarly, we developed a haptic rendering algorithm
for rigid bodies based on the VPS Algorithm which also uses hier-
archies and distance fields. However, our data structures are opti-
mized for fast and accurate collision and proximity queries rather
than for deformation simulations. Moreover, we additionally com-
pute the contact manifold information as required by Bullet, ex-
tending this physics engine with a collision detection method able
to perform at haptic rates with complex objects.

2 HAPTIC RENDERING ALGORITHM

Given a triangle mesh, layered voxelmap and plain point-soup rep-
resentations of objects are precomputed in the order of magnitude
of seconds using the methods presented in [8]. We additionally
extend these data structures during the offline precomputation: real
distance-field values are stored in the voxels close to the surface and
a point-sphere tree is built (down-top).Neighbor points are grouped
into clusters in our hierarchies, starting from the leaves of the tree,
which are all the points of the initial point-soup. The point in the
cluster which is closest to its center of mass is set to be the parent
point of the cluster; this point belongs to the upper level in the tree,
which is also clustered. All points and children points within a clus-
ter are enclosed with a minimally bounding sphere. This hierarchy
allows for fast collision area localization by means of the sphere tree
and using high point sampling resolutions in a time-critical manner.

0

00

0

00

0

0

1

-1 -1 -1

Pi

v (Pi) = 0

ni

Fi

ei

s
C

a b c

Figure 1: (a) Voxelized and point-sampled objects in collision;
Each voxel has its voxel layer value (v) related to its penetration
in the voxelmap, and each point (Pi) its inwards pointing normal
vector (ni). (b) Single point force (Fi) can be computed scaling
the normal vector with its penetration in the voxelmap in the clas-
sical VPS. The cross products of forces and points yield torques.
In our implementation, we instead provide the contact manifold
({Pi,ni,v(Pi)}) to Bullet. (c) Voxelized and point-sampled Stanford
Bunnies colliding.

The realtime collision detection algorithm computes the penetra-
tion of the colliding points in the voxelmap, as shown in Figure 1.
At the begining of each haptic cycle, the uppermost cluster with the
sphere that encloses all points is pushed to a FIFO-queue. Then, the
clusters of the queue are iteratively popped in breadth-first manner.
In case the popped cluster sphere is colliding, the parent point of the
cluster is checked for collision and the children clusters are pushed
to the queue. In the classical approach, the single collision force
that corresponds to each colliding point is the normal vector scaled
with the distance to the surface, as explained in Figure 1. How-



0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
1

10
3

10
5

C
o

m
p

. 
T

im
e

 (µ
s
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−6

10
−4

10
−2

10
0

Simulation steps

L
in

. 
V

e
lo

c
it
y
 (

m
/s

)

 

 
VPS (fine grid)

VPS (coarse grid)

GImpact

Convex Decomposition

Figure 2: Computation time (µs) and linear velocity (m/s) curves in logarithmic scale for the testing scenario in which a Stanford Bunny with
35606 vertices is dropped onto a plane. The pointshell of the bunny is composed of 799 (coarse) and 35596 (fine) points, and the voxelmap
with 306×305×282 voxels. The decomposed bunny consists of 8 convex hulls with 100 vertices each. Note that Bullet de-activates collision
detection under certain kinetic conditions causing sudden steps in the computation time curves. All the tests were carried out using a PC
running SUSE Linux Enterprise Edition 11 with an Intel Xeon CPU at 4x2.80 GHz.

ever, we provide Bullet with geometrical contact information (i.e.
the contact manifold {Pi,ni,v(Pi)}) and let this engine compute the
corresponding forces and motion subject to the constraints.

btCollisionShape btCollisionAlgorithm

Pointshell Voxelmap Mixed VOXPTSCollisionAlgorithm

a b

Figure 3: (a) Integration of the three new collision shapes into
the pool of collision shapes provided by Bullet: Pointshell,
Voxelmap, and Mixed, which contains the previous two. (b)
Integration of the VOXPTSCollisionAlgorithm by inherit-
ing from Bullet’s superclass btCollisionAlgorithm. Native
Bullet classes (with prefix bt-) are above the dashed line. All the
implementation was performed in C++.

3 INTEGRATION INTO THE BULLET PHYSICS ENGINE

As shown in Figure 3, the first step in the integration was to extend
the supported collision shapes to contain the data structures intro-
duced in the previous section. Since our algorithm requires two
different data structures for each colliding pair, we defined a mixed
structure containing both structures for each object. The structure
which is used is selected online.

The collision detection is divided in two phases in Bullet: (i) the
broadphase, in which pairs of objects are quickly rejected based on
the overlap between their axis aligned bounding boxes, (ii) and the
narrowphase, in which the appropriate collision detection algorithm
is called. Our algorithm is called during the narrow phase, check-
ing first the bounding sphere and successively refining the collision
regions.

Finally, we augmented the Bullet collision table by incorporating
our collision detection algorithm into the list of collision detection
algorithms. Note also that simple manifolds are used in our current
implementation rather than persistent manifolds.

4 EXPERIMENT RESULTS AND CONCLUSIONS

Figure 2 shows computation time (µs) and linear velocity (m/s) di-
agrams produced by our algorithm, the Bullet’s convex decompo-

sition, and the Bullet’s GImpact, which is used with arbitrary non-
convex triangle meshes. During the experiment a Stanford Bunny
(35606 vertices) was dropped onto a table (see attached video).

During full operation (steps 250 to 600), our algorithm is 137×
faster than GImpact and requires 0.71 ms for each check on aver-
age using the fine resolution (34892 points). The bunny is sim-
plified to a convex hull composed of only 42 vertices in the Bul-
let’s GJK implementation and to 8 convex hulls with 100 vertices
each in the convex decomposition approach. With these conditions,
GJK is 339× faster than our algorithm with a fine resolution (34892
points), but the convex decomposition is only 1.3× faster than our
algorithm with a coarse resolution (799 points).

Given these results, we can conclude that, while achieving a
higher accuracy, this first integration of our presented haptic ren-
dering algorithm presents similar computation times as the tested
ones with low resolutions, whereas it outperforms them when the
resolution is increased.

Future work will address, among other topics, modifying the
Bullet force constraint solver and extending the time-critical ap-
proach of our algorithm to work with the Bullet framework.

REFERENCES

[1] J. Barbič and D. James. Six-dof haptic rendering of contact between
geometrically complex reduced deformable models. Haptics, IEEE
Transactions on, 1(1):39 –52, jan.-june 2008.

[2] E. Coumans. Bullet physics library 2.82, http://
bulletphysics.org/. Accessed on December 2nd, 2013.

[3] E. G. Gilbert, D. W. Johnson, and S. S. Keehrthi. A fast procedure for
computing the distance between complex objects in three-dimensional
space. IEEE Journal of Robotics and Automation, 1988.

[4] S. Gottschalk, M. C. Lin, and D. Manocha. Obb-tree: A hierarchi-
cal structure for rapid interference detection. In Proceedings of ACM
SIGGRAPH ’96, 1996.

[5] M. Lin and M. Otaduy. Haptic Rendering: Foundations, Algorithms,
and Applications. A K Peters, Ltd., 2008.

[6] K. Mamou and F. Ghorbel. A simple and efficient approach for 3d mesh
approximate convex decomposition. In IEEE International Conference
on Image Processing (ICIP), pages 3501–3504, 2009.

[7] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy. Voxel-based 6-dof
haptic rendering improvements. Haptics-e: The Electronic Journal of
Haptics Research, 3, 2006.

[8] M. Sagardia, T. Hulin, C. Preusche, and G. Hirzinger. Improvements
of the voxmap-pointshell algorithm - fast generation of haptic data-
structures. In 53. IWK - TU Ilmenau, 2008.


