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Abstract— A feedback control to generate jumping motions
for compliantly actuated multilegged robots is proposed. The
method allows to specify the direction of the jumping motion.
This is achieved by a constraint that defines a one-dimensional
submanifold and a bang-bang control which generates a limit
cycle on this submanifold. The approach is based on classical
impedance control with the difference that the stiffness onthe
submanifold and the force to preserve a predefined nominal
body configuration result from the intrinsic mechanical springs
in the joints. Furthermore, we propose two controller imple-
mentations: the first implementation does not require to detect
the contact state, while the second implementation requires
contact state detection, but accounts in addition for Coulomb
friction constraints. The controller is validated in simulation
with a compliantly actuated quadruped.

I. I NTRODUCTION

Compliant actuators in robotic arms have been shown
to robustly handle mechanical impacts and to improve the
performance and energy efficiency [1], [2], [3], [4], [5],
[6], [7]. Especially in the case of cyclic motion tasks, the
capability to buffer and release elastic energy may reduce the
size and weight of required actuators and save a substantial
amount of energy. These properties are even of major-
increased importance for multilegged robots, which need to
wirelessly walk, jump, or run over rough and uneven terrain.
The step from rigid towards elastic actuation introduces
natural oscillation dynamics into the plant which can be
exploited on the one side, but it turns the control into a
challenging task on the other side.

The idea of legged robots with mechanical springs in
the joints has been initiated by passive dynamic walkers
[8] and evolved to compliantly actuated walking, hopping,
and running robots [9], [10], [11]. Thereby, the common
design and control goal is to exploit the natural dynamics
of the plant such that the resulting system approaches the
performance, efficiency, and versatility of the biological
archetypes. This paper focuses on the control of compliantly
actuated legged robotic systems. Our work is inspired by
experimental observations of biologists [12] who hypothesize
that high-dimensional, nonlinear system dynamics anchored
in a complex animal collapse to simple template dynamics
like the spring loaded inverted pendulum (SLIP). These
assumptions are further supported by biological evidence
and robotic implementations of central pattern generation
(CPG) [13] and adaptive frequency oscillators (AFO) [14].
These approaches are based on the assumption that a central
unit, e. g. composed of multiple, phase coupled oscillators, is
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Fig. 1. General idea of the control strategy

able to generate the complex multi degree-of-freedom (DoF)
motion. While in [13] the CPGs are applied as open loop
control, the approach of [14] considers already a feedback
of the plant in the motion pattern generation.

In our recent papers [15], [16] we proposed a control
approach which directly excites the intrinsic mechanical
oscillation modes of the plant. Using a switching control
triggered by the torque/deflection of the springs in the joints
of the robot, the frequency of the oscillation adapts to the
mechanical frequency of the system. In contrast to [13], [14],
in [15], [16] the oscillatory plant dynamics itself are used
as oscillation unit. The resulting motion corresponds to the
initially excited oscillation mode which is determined by the
mechanical structure of the system. Therefore, the resulting
motion is potentially energy efficient.

In this paper we present a control method which makes
use of the beneficial properties of the switching control, but
additionally allows to predefine the shape of the oscillation
mode by control. This is achieved by specifying a one-
dimensional submanifold of the Cartesian space. One of the
main contributions is that the controller is designed such that
the elastic behavior of the springs in the joints is changed
only to a minimum extent by control, i. e. only to approach
the desired submanifold. As exemplified in the simulation
part of the paper, the user can control the direction of the
jumping motion. This is the main difference of the current
method compared to our previous work [15], [16], where the
oscillation mode is completely determined by the structure
of the plant.

The paper is structured as follows: In the next section we
present the general idea of the method. Then, in Sect. III we
briefly introduce the considered model which is then used
in Sect. IV as a basis for the controller design. In Sect. V



the method is validated by simulation and finally Sect. VI
concludes the work.

II. T HE IDEA

The control strategy introduced here aims at generat-
ing predefined jumping motions by exploiting the intrinsic
mechanical properties of the plant. The class of systems
considered in this work are floating base systems with a
number of compliantly actuated limbs, where the tip motion
of the limbs is subject to contact constraints such that the
floating base system can be statically balanced1. As sketched
in Fig. 1, each joint of the limbs is equipped with a motor
which acts on the succeeding link via a spring.

The basic idea is controlling the amplitude and direction
of the net force acting on the center of mass (COM) via
the position of the motors in the joints such that a desired
jumping motion results. As depicted in Fig. 1, our controller
is based on a Cartesian impedance at the COM that reflects
the mechanical impedance of the springs in the joints as close
as possible. More precisely, the impedance acts between the
actual COM position which reflects the configuration of the
limbs and the equilibrium COM position which reflects the
configuration of the motors. If the actual and the equilibrium
COM position are not equal, the impedance produces a
Cartesian force at the COM. Thereby, the direction of the
force depends on the direction of the corresponding control
error. In order to control the direction of the Cartesian force,
the motion of the Cartesian control error can be constrained
to a predefined, one-dimensional submanifold. Therefore,
this submanifold determines the direction of the Cartesian
force acting at the COM. As in [17], we push the system
to a one-dimensional submanifold (defined by the control
law), where we generate a limit cycle. However, here the
oscillation is not generated based on energy considerations,
but using the bang-bang control introduced in [15], [16], we
are able to adapt to the mechanical oscillation frequency of
the system.

III. M ODEL

Consider the legged floating base system with a kinematic
structure as shown in Fig. 2. The position and orientation of
the base link frame{B} with respect to a world coordinate
system{W} is described byrb ∈ R

3 andRb ∈ SO(3),
respectively, and the configuration of the legs is given by the
joint coordinatesq ∈ Q ⊂ R

n with 3 < n ∈ N. The gener-
alized velocity of the complete systemv = (ωT νT q̇T )T is
composed of the angular velocityω ∈ R

3 and translational
velocity ν ∈ R

3 of the floating base, and the joint velocity
q̇ ∈ R

n for all actuated joints. In the following, we consider

1Note that at least three contact points are required (which are not all
aligned) to statically balance a spatial free floating base system against
gravity.
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Fig. 2. Kinematic structure of the legged floating base system

generic dynamic systems satisfying

M(q,Rb)v̇ + p(q,v,Rb)

=





0

0

τ − d(q̇)



+
∑

k

Jk(q)
TF k , (1)

where M(q,Rb) ∈ R
(6+n)×(6+n) represents the inertia

matrix,p(q,v,Rb) ∈ R
6+n represents the vector of Coriolis,

centrifugal and gravity forces, andd(q̇) is a damping force
satisfyingd(q̇)T q̇ > 0, ∀q̇ 6= 0. The most right term in (1)
accounts for contact wrenchesF k ∈ R

6 acting at the contact
point k of the feet. Thereby, the transposed of the Jacobian
matricesJk(q) map the contact wrenches to the generalized
forces of the bodies. A similar model has been considered
in [18].

In contrast to [18], we consider compliantly actuated
systems for which the joint torquesτ ∈ R

n are derived
from the elastic potentialU(θ, q), i. e.

τ = −

(

∂U(θ, q)

∂q

)T

=: ψ(θ − q) . (2)

The joint torques defined by (2) correspond to physical
springs acting between the motor positionsθ ∈ R

n and the
joint positionsq. Therefore,U(θ, q) is positive definite in
the sense thatU(θ, q) > 0, ∀(θ − q) 6= 0.

Remark 1:Using classical approximations [19], the motor
positions are subject to dynamicsBθ̈ + τ = τm, where
B represents the motor inertia, and the motor torqueτm

is the control input. However, using a PD controllerτm =
−KDθ̇ − KP (θ − θd) for the desired motor positionθd

with high, positive definite gain matricesKD,KP ∈ R
n×n

such thatǫ(Bθ̈ + KDθ̇ + τ1) = θd − θ ≈ 0, since
ǫ := 1/‖KP‖ → 0 (singular perturbation assumption [20]),
we can approximately considerθ as control input.

The output of the controller derived in the next section will
be joint torquesτ , while the control input of the considered
plant are motor positionsθ. SinceU(θ, q) is positive defi-
nite, the functionsψ(θ−q) are strictly monotone. Therefore,
the inverse functionsψ(τ )−1 exist. Using the mapping

θ = θ0 +∆θ = ψ(τ )−1 + q , (3)

we can considerτ andθ as equivalent control inputs.



IV. CONTROL APPROACH

The goal is to control the Cartesian force acting on
the center of mass (COM) of the complete floating base
system via the joints. In more detail, we want to generate
a periodic motion of the COM position along a predefined,
one-dimensional submanifold ofR3, such that the subman-
ifold determines the ”direction” of the COM motion and
the resulting force. An additional goal is to change the
dynamics of the plant to a minimal extent by control. This
will be achieved by Cartesian impedance control [21], [22],
[23], which is combined with the constraint submanifold
control [17] and our recently proposed bang-bang control
[15]. Compared to [21], [22], [23], and [17], where the
impedance was generated partly or completely by control,
we will implement the Cartesian impedance by exploiting
the intrinsic, elastic behavior of the joints.

A. Change of coordinates

Consider the position of the COMrBC ∈ R
3 with respect

to a coordinate system attached to the floating base. The
position rBC = rBC(q) depends on the joint coordinates
q. In addition torBC(q), consider a virtual COM position
rBC(θ) which depends on the motor positionθ. In the
absence of external load, the virtual positionrBC(θ) reflects
the equilibrium position of the spring defined by (2). Based
on this consideration, we define coordinates

x(q) = rBC(q)− rBC(θ0) , (4)

where x ∈ X ⊂ R
3 and θ0 = const. correspond to a

desired equilibrium configuration of the springs (2). These
coordinates can be used to implement a Cartesian impedance
between the measured COM positionrBC(q) and desired
COM positionrBC(θ0). Then, as in [17], we can consider
a mappingz : X ⊂ R

3 → Z ⊂ R
2 with a full rank Jacobian

matrix Jz(x) such that

z(x) = 0 (5)

defines a one-dimensional submanifoldNZ of R3. Once the
constraint (5) is satisfied, a Cartesian impedance produces
a force whose direction can be predefined by the constraint
submanifold. All relevant sets and manifolds used in this
approach are illustrated in Fig. 3.

B. Transformation of the joint impedance

The constraint force resulting from the intrinsic joint stiff-
ness (2) can be derived from the elastic potentialU(θ0, q) =
U(θ0, q(x(z))) as follows:

τ z = −

(

∂U(θ0, q(x(z)))

∂q

∂q

∂x

∂x

∂z

)T

= −

(

∂x

∂z

)T (

∂q

∂x

)T (

∂U(θ0, q)

∂q

)T

. (6)

The last factor on the most right hand side of (6) equals the
joint torques defined by (2) forθ = θ0. From (6) it can
be seen that the joint torques are transformed successively
to Cartesian and constraint forces with the transposed of

NX

X = Z ×NZ

Z

NZ

Q = X ×NX

Fig. 3. The constraintz(x) = 0 has highest priority. Together withNZ ,
the coordinatesx(q) are completely defined inX . The overall setQ is the
combination ofX and its null spaceNX .

the Jacobian matrices(∂q/∂x) ∈ R
n×3 and (∂x/∂z) ∈

R
3×2, respectively. These Jacobian matrices correspond to

the Jacobian matrices of the inverse mappings of (4) and
(5).

In order to derive the Jacobian matrices required in (6),
we can augment the Jacobian matrices of the mappings (4)
and (5) such that they are invertible. Note that thereby we
avoid to define nullspace coordinates [24]. In case of (4) and
(5) the procedure is as follows:
(

dx
dnx

)

= Jaug
x dq , whereJaug

x =

(

Jx(q)
Jnx

(q)

)

∈ R
n×n ,

(7)
(

dz
dnz

)

= Jaug
z dx , whereJaug

z =

(

Jz(x)
Jnz

(x)

)

∈ R
3×3 .

(8)

The inversion of the augmented Jacobian matrices defined
in (7) and (8) can be simplified with the following lemma
which is proved in [25, chapt. A.5].

Lemma 1:The augmented Jacobian matrix

Jaug=

(

J

Jn

)

(9)

is a square matrix. IfJn is chosen as

Jn =
(

ZΘZT
)−1

ZΘ , (10)

where the nullspace baseZ satisfiesJZT = 0 and Θ is
a positive definite matrix (metric), the inverse of (9) can be
written in the form

(Jaug)
−1

=

(

Θ
−1JT

(

JΘ−1JT
)−1

ZT

)

. (11)

Note thatZ andΘ are not unique. Possible choices are
discussed in the appendix.

Then, applying Lemma 1 to (7) and (8) yields

∂q

∂x
(q) = Θ

−1
x Jx(q)

T
(

Jx(q)Θ
−1
x Jx(q)

T
)−1

, (12)

∂x

∂z
(x) = Θ

−1
z Jz(x)

T
(

Jz(x)Θ
−1
z Jz(x)

T
)−1

. (13)



From (7) and (8) it can be seen that the joint impedance (2)
generates also forces in the nullspaces ofJx andJz , given
by

τnx
= −Zx(q)

(

∂U(θ0, q)

∂q

)T

(14)

and

τnz
= −Zz(x)

(

∂q

∂x
(q)

)T (

∂U(θ0, q)

∂q

)T

, (15)

respectively. How these variables can be controlled will be
suggested in the next section.

C. Feedback control

In the following, we introduce the control law for the
Cartesian forcefx and then present two different approaches
to implement the joint torqueτ . The Cartesian controller
comprises

fx = Jz(x)
Tτ d

z + Jnz
(x)T τd

nz
. (16)

The first term in (16)

τ d
z = −Dz ż −Kzz (17)

with symmetric and positive definite gain matricesDz ∈
R

2×2 andKz ∈ R
2×2 forces the motion ofx to approach

the constrained submanifold defined by (5). The second term
in (16)

τd
nz

= τnz
+∆τnz

(τnz
) , (18)

is composed of a generalized forceτnz
(15) reflecting

the joint impedance on the constrained submanifold and a
switching function

∆τnz
(τnz

) =

{

sign(τnz
)|τ̂nz

| if |τnz
| > ǫτnz

0 otherwise
, (19)

whereǫτnz
and τ̂nz

are threshold and switching constants,
respectively.

In our recent papers [15] and [16] we have proposed
a control similar to (19). The controller proposed in [16]
excites an intrinsic mechanical oscillation mode of the plant.
Compared to [16], in this work we predefine the oscillation
mode by control (cf. (5) and (17)). Additionally, note that
the control (19) switches the generalized forceτnz

. Thereby,
we circumvent to introduce a nullspace coordinate, which is
in general not possible [24].

1) Resolving the nullspace ofJx by preserving the initial
configuration: In order to implement the joint torqueτ for
the Cartesian controller (16), the behavior in the nullspace of
Jx(q) has to be specified. This can be done by projecting
the intrinsic joint impedance into the nullspace ofJx(q)
such that a nullspace forceτnx

is generated which aims
at preserving the equilibrium configurationθ0. Considering
the nullspace force given by (14) and the Cartesian controller
(16)–(19), the joint torqueτ can be implemented as

τ = Jx(q)
Tfx + Jnx

(q)Tτnx
. (20)

This has the advantage that no motor motion is required
as long asz(x) = 0 and ∆τnz

(τnz
) = 0. Note that

the controller (20) requires no knowledge of the contact
states. While from a robustness point of view this might be
desirable, it is not possible on the other hand to guarantee
any conditions on the contact forces. This motivates us to
consider the control law in IV-C.2.

2) Resolving the nullspace ofJx by optimal contact force
distribution: In case slipping has to be avoided, the contact
forces must be considered directly in the controller. To this
end, an alternative approach to implement the joint torqueτ

for the Cartesian controller (16) is to distribute the contact
forces via an optimization problem.

Therefore, consider a stacked vector of contact forces

f c =







f1
...
fnc






∈ R

3nc, (21)

wherenc ∈ N is the number of contact points. Additionally,
consider the mapping

τ = Jc(q,Rb)
Tf c (22)

where the transposed of the Jacobian matrixJc(q,Rb) ∈
R

3nc×n maps the contact forcesf c to the joint torquesτ .
Then, we minimize the cost function

E(f c) = α1‖J
T
c f c − J

T
x fx‖

2 + α2‖J
T
c f c − J

T
nx
τnx

‖2 ,
(23)

where the first term aims at implementing the Cartesian
control (16) and the second term aims at preserving the equi-
librium configurationθ0, with α1 ≫ α2 > 0. Considering
unilateral and Coulomb friction constraints for the contact
forcesfk, such that

fk ∈ Fk :=
{

fk ∈ R
3|
√

f2
kx

+ f2
ky

≤ µfkz
, fkz

≥ 0
}

,

(24)

whereµ is the non-negative Coulomb friction coefficient, the
optimization problem

minE(f c)

s.t.

fk ∈ Fk, ∀k = 1, . . . , nc

(25)

can be solved2 to compute the contact forcesfc. Note that if
the unilateral / Coulomb friction constraints are removed,the
control law (20) is obtained. In contrast to the approach of
Sect. IV-C.1, the contact force distribution approach requires
to detect the contact states.

V. SIMULATION

The proposed jumping controller has been tested in simu-
lation for the compliantly actuated quadruped robot depicted
in Fig. 4, using the articulated body algorithm [26] and
a point contact version of the model [27] implemented in

2The constraintfk ∈ Fk, ∀k = 1, . . . , nc can be expressed in linear
form through a polyhedral approximation of the friction cone.
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Fig. 4. Simulated quadruped: the trunk is modelled as a cuboid with
mass5 kg center of mass in the middle of the bottom side and inertia
diag(0.0052, 0.0177, 0.0208) kgm2. Each leg and each leg segment (thigh
and shank) is identical with mass0.1 kg center of mass at half the segment
length and inertia (about the center of mass, perpendicularto the cylinder
axis) 0.00004 kgm2.

Matlab/SimulinkR©. The considered quadruped has four legs
and a total number of 12 hinge joints (two perpendicular rota-
tion axis in each hip and one in each knee), i. e.n = 12. The
joints of each leg are actuated via linear springτ i =Ki(θi−
qi) with stiffness matricesKi = diag(8, 4, 4)Nm/rad.
Linear, viscous damping produces torquesdi = Diq̇i
with Di = diag(0.16, 0.04, 0.04)Nms/rad in the joints.
Furthermore, ground contact points are considered at the
tips of each leg. Thereby, a Coulomb friction constant of
µ = 0.75 has been assumed.

A. Controller implementation

As can be seen in Fig. 4 all joint axes of the con-
sidered quadruped are parallel. Therefore, the total COM
motion has been controlled in 3-dimensional space, i. e.
x = (xx, xy, xz)

T . To implement directed jumping motions,
linear constraints of the formz1 = c1xx + c2xz = 0, z2 =
c3xy + c4xz = 0 have been considered. The corresponding
submanifold represents a straight line passing through the
origin, whereφ = atan2(c1, c2) is the angle between the x-
axis and the line andψ = atan2(c3, c4) is the angle between
the y-axis and the line.

For the nullspaces ofJx and Jz we have chosen the
dynamically consistent solution given in the appendix. The
proportional gain of the constraint controller (17) was chosen
Kz = diag(2, 2) 105N/m and the derivative gain was cho-
senDz = diag(1, 1) 104Ns/m. The parameters of the bang-
bang control (19) wereǫτnz

= 500N and τ̂nz
= 3500N.

Additionally, the output of the switching function (19) has
been filtered using the linear, second order filter

H(s) =
1

T 2
v s

2 + 2Tvs+ 1

where s is the Laplace variable and the time constant has
been chosenTv = 0.01 sec.
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Fig. 5. Relation between the vertical velocityṙCOMz
and positionrCOMz

along the horizontal positionrCOMx
of the total COM (upper plot) and

slope of the line constraint (lower plot) for a simulated sweep from vertical
to forward jumping and back to vertical jumping.

B. Simulation results

It has been evaluated whether the direction of the jumping
motion can be controlled using the implementation of the
joint torque given in Sect. IV-C.1. Therefore, the direction
of the constraint line has been varied in order to control
the spatial direction of the jumping motion. Fig. 5 depicts
a three-dimensional phase plot of the floating base motion
and the direction of the line constraint. The phase plot shows
the relation between the vertical velocity and position along
the horizontal position of the total center of mass. The
trunk motion of the quadruped starts with a limit cycle in
the vertical direction, then evolves to a forward hopping
motion and finally approaches the initially vertical limit cycle
motion. Furthermore, Fig. 6 depicts the total center of mass
position for 3-dimensional jumping motion. The quadruped
starts with a vertical jumping motion and then evolves to
a forward and sideward movement. This demonstrates the
capability of the proposed method to control the direction of
the jumping motion (see also the attached video).

Additionally, Fig. 7 shows the joint positions, motor
positions (control input), and joint torques of one of the
front leg in the vertical jumping phase. It can be observed
that the joint motion is almost periodic. Furthermore, it can
be seen that the motion of the motors is dominated by the
filtered output of the switching control (19). This is as the
submanifold is vertical and the constraint is trivially satisfied
and validates one of our basic design goals changing the
intrinsic mechanical behavior of the plant to a minimal extent
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Fig. 6. Motion of the total COM (upper plot) and slope of the line constraint
(lower plot) for a simulated sweep from vertical to forward and to sideward
jumping.

by control.
Finally, the influence of the contact force distribution

(Sect. IV-C.2) has been evaluated for a vertical jumping
motion. Therefore, the lower Coulomb friction constant of
µ = 0.5 has been assumed. To reach the limit of the friction
constraint (friction cone) also the parameters of the bang-
bang control have been increased, i.e.ǫτnz

= 2000N and
τ̂nz

= 5500N. Fig. 8 compares the normal versus tangential
contact force and the vertical versus horizontal movement of
the tip of one leg. It can be seen that without the contact
force distribution, the contact force reaches the limit of the
friction cone and a horizontal movement of the tip of the leg
occurs (sliding contact). This is avoided with the controller
implementation of Sect. IV-C.2.

VI. CONCLUSION

A method to control jumping motion for compliantly
actuated, multilegged robots is proposed. The method applies
to statically balanced legged robots, where all the joints
are actuated. In particular, the controller allows to specify
the desired jumping direction by defining a submanifold.
Thereby, the following properties can be summarized:

• The stiffness on the submanifold is an intrinsic mechan-
ical property of the plant;

• The force preserving the initial configuration is an
intrinsic mechanical property of the plant;

• Due to the switching control the oscillation frequency
adapts to the intrinsic frequency of the task;

It can be concluded that the only control actions (motor
motions) are to fulfill the specified constraints and to sustain
the limit cycle.

In the ideal case (where the motor is an ideal position
source), it can be expected that if the specified submanifold
equals the mechanical intrinsic oscillation mode of the plant,
the energy required to sustain the limit cycle equals the
energy dissipated in the joints and contacts. A comprehensive
efficiency analysis will be part of our future work.

APPENDIX

Remark 2 (Determination ofZ): The singular value de-
composition is a numerically efficient way to compute the
null space base matrixZ by decomposingJ ∈ R

o×p with
o < p such thatJ = USV T , whereU ∈ R

o×o and
V ∈ R

p×p are unitary matrices, andS ∈ R
o×p is a

rectangular diagonal matrix containing the singular values.
Herein V =

(

V 1 ,V 2

)

while V 1 ∈ R
p×o spans the

subspace ofJ , andV 2 ∈ R
p×(p−o) defines the null space

of J so thatZ = V T
2 .

Remark 3 (Choice ofΘ): In general, the metricΘ can
be chosen arbitrarily, but several specific choices have ben-
eficial properties. Two of them are briefly explained in the
following. If

Θ = I , (A1)

then (10) simplifies toJn = Z. Numerical computations
can be saved that way by avoiding the inversion ofZΘZT

sinceZIZT = I. Such a metric leads to a so-called static
null space projection [28]. Another particular solution is

Θ = M̄(q) , (A2)

which corresponds to the dynamically consistent formulation
from the operational space approach [29] as shown in [30],
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Fig. 7. Joint states corresponding to approximately two oscillation periods
of the vertical jumping motion shown in Fig. 5
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Fig. 8. Comparison of the two controller implementations: without contact
force distribution cf. Sect. IV-C.1 (upper row), with contact force distribution
cf. Sect. IV-C.2 (lower row). The left column shows the tangential vs. normal
contact force for one leg and the limit of the friction cone (dash-dotted line).
The right column shows the motion of the tip of one leg in the xz-plane.

for example. The inertia matrix̄M(q) ∈ R
n×n accounts for

the complete inertiaM(q) ∈ R
(6+n)×(6+n) (including the

floating base). As a consequence of this choice, the inertia
matrix is of block-diagonal shape in the decoupled space3.
In other words, (A2) ensures that null space actions do not
lead to accelerations on the higher priority levels.

REFERENCES

[1] M. Grebenstein and P. v. d. Smagt, “Antagonism for a highly anthro-
pomorphic hand-arm system,”Advanced Robotics, vol. 22, no. 1, pp.
39–55, 2008.

[2] S. Wolf and G. Hirzinger, “A new variable stiffness design: Matching
requirements of the next robot generation,” inIEEE Int. Conf. on
Robotics and Automation, 2008.
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