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Abstract— A feedback control to generate jumping motions
for compliantly actuated multilegged robots is proposed. he
method allows to specify the direction of the jumping motion
This is achieved by a constraint that defines a one-dimensiah
submanifold and a bang-bang control which generates a limit
cycle on this submanifold. The approach is based on classica

impedance control with the difference that the stiffness orthe spring eq‘ég’,\r}l“m
submanifold and the force to preserve a predefined nominal bang-banJ} position
body configuration result from the intrinsic mechanical springs control .~ constraint

in the joints. Furthermore, we propose two controller imple-
mentations: the first implementation does not require to de¢ct
the contact state, while the second implementation requise
contact state detection, but accounts in addition for Coulmb
friction constraints. The controller is validated in simulation
with a compliantly actuated quadruped.
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Fig. 1. General idea of the control strategy
I. INTRODUCTION

Compliant actuators in robotic arms have been shown
to robustly handle mechanical impacts and to improve thable to generate the complex multi degree-of-freedom (DoF)
performance and energy efficiency [1], [2], [3], [4], [5], motion. While in [13] the CPGs are applied as open loop
[6], [7]. Especially in the case of cyclic motion tasks, thecontrol, the approach of [14] considers already a feedback
capability to buffer and release elastic energy may reduee tof the plant in the motion pattern generation.
size and weight of required actuators and save a substantialn our recent papers [15], [16] we proposed a control
amount of energy. These properties are even of majoapproach which directly excites the intrinsic mechanical
increased importance for multilegged robots, which need toscillation modes of the plant. Using a switching control
wirelessly walk, jump, or run over rough and uneven terrairtriggered by the torque/deflection of the springs in thetin
The step from rigid towards elastic actuation introducesf the robot, the frequency of the oscillation adapts to the
natural oscillation dynamics into the plant which can benechanical frequency of the system. In contrast to [13]},[14
exploited on the one side, but it turns the control into @ [15], [16] the oscillatory plant dynamics itself are used
challenging task on the other side. as oscillation unit. The resulting motion corresponds t® th

The idea of legged robots with mechanical springs imitially excited oscillation mode which is determined ihet
the joints has been initiated by passive dynamic walkemmechanical structure of the system. Therefore, the resulti
[8] and evolved to compliantly actuated walking, hoppingmotion is potentially energy efficient.
and running robots [9], [10], [11]. Thereby, the common |n this paper we present a control method which makes
design and control goal is to exploit the natural dynamicgse of the beneficial properties of the switching controt, bu
of the plant such that the resulting system approaches thgditionally allows to predefine the shape of the oscillatio
performance, efficiency, and versatility of the biologicamode by control. This is achieved by specifying a one-
archetypes. This paper focuses on the control of compjiantiimensional submanifold of the Cartesian space. One of the
actuated legged robotic systems. Our work is inspired byain contributions is that the controller is designed sinett t
experimental observations of biologists [12] who hypoib@s the elastic behavior of the springs in the joints is changed
that high-dimensional, nonlinear system dynamics anchor@nly to a minimum extent by control, i.e. only to approach
in a complex animal collapse to simple template dynamiagie desired submanifold. As exemplified in the simulation
like the spring loaded inverted pendulum (SLIP). Thesgart of the paper, the user can control the direction of the
assumptions are further supported by biological evidenggmping motion. This is the main difference of the current
and robotic implementations of central pattern generatiomethod compared to our previous work [15], [16], where the
(CPG) [13] and adaptive frequency oscillators (AFO) [14]oscillation mode is completely determined by the structure
These approaches are based on the assumption that a cerjfahe plant.
unit, e. g. composed of multiple, phase coupled oscillaisrs  The paper is structured as follows: In the next section we

_ _ _ _ present the general idea of the method. Then, in Sect. Il we

The authors are with the Institute of Robotics and Mechax:erermar) briefly introduce the considered model which is then used
Aerospace Center (DLR), D-82234 Oberpfaffenhofen, Geym@&wontact:
doni ni c. | akat os@il r. de in Sect. IV as a basis for the controller design. In Sect. V
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The control strategy introduced here aims at generat- "

ing predefined jumping motions by exploiting the intrinsic

mechanical properties of the plant. The class of systems

considered in this work are floating base systems with a

number of compliantly actuated limbs, where the tip motion

of the limbs is subject to contact constraints such that the
floating base system can be statically balahcad sketched

in Fig. 1, each joint of the limbs is equipped with a motor

which acts on the succeeding link via a spring.
The basic idea is controlling the amplitude and directiogeneric dynamic systems satisfying

of the net force acting on the center of mass (COM) via Mla R R

the position of the motors in the joints such that a desired (9, Bo)¥ + p(q, v, Ry)

Fig. 2. Kinematic structure of the legged floating base syste

jumping motion results. As depicted in Fig. 1, our controlle 0 -
is based on a Cartesian impedance at the COM that reflects = 0 |+ > Ji(q)" Fi, (1)
the mechanical impedance of the springs in the joints agclos T —d(q) k

as possible. More precisely, the impedance acts between t)gere M(q,R,) € RE+Mx(6+n) represents the inertia
actual COM position which reflects the configuration of th%atrix,p(q,v, R,) € RS*" represents the vector of Coriolis,
limbs and the equilibl’ium COM pOSition which reflects thecentrifugaj and gra\/ity forCeS, anj(q) is a damp|ng force
configuration of the motors. If the actual and the equilibriu satisfyingd(g)”¢ > 0, V¢ # 0. The most right term in (1)
COM position are not equal, the impedance produces g-counts for contact wrenché, € R° acting at the contact
Cartesian force at the COM. Thereby, the direction of thgoint 1; of the feet. Thereby, the transposed of the Jacobian
force depends on the direction of the corresponding ComrfﬂatricesJk(q) map the contact wrenches to the generalized

error. In order to control the direction of the Cartesiarc@®r forces of the bodies. A similar model has been considered
the motion of the Cartesian control error can be constraingd [1g].

to a predefined, one-dimensional submanifold. Therefore, |5 contrast to [18], we consider compliantly actuated
this submanifold determines the direction of the Cartesiagystems for which the joint torques € R" are derived
force acting at the COM. As in [17], we push the systemyom the elastic potential/ (6, q), i. e.
to a one-dimensional submanifold (defined by the control T
law), where we generate a limit cycle. However, here the = (M) = (0 —q). 2)
oscillation is not generated based on energy considestion dq
but using the bang-bang control introduced in [15], [16], wé&The joint torques defined by (2) correspond to physical
are able to adapt to the mechanical oscillation frequency gprings acting between the motor positighg R™ and the
the system. joint positionsq. Therefore,U (6, q) is positive definite in
the sense thal/ (0, q) > 0, V(0 — q) # 0.
Remark 1:Using classical approximations [19], the motor
Il. M OoDEL positions are subject to dynamid3d + + = r, where
B represents the motor inertia, and the motor toreye
Consider the legged floating base system with a kinemati€ the control input. However, using a PD controlte, =
structure as shown in Fig. 2. The position and orientation of K0 — Kp (6 — 64) for the desired motor positiofy
the base link framg 3} with respect to a world coordinate with high, positive definite gain matricek p, Kp € R"*"
system{W} is described byr, € R* and R, € SO(3), such thate(BO + Kpb + 71) = 63 — 0 ~ 0, since
respectively, and the configuration of the legs is given I&y the .= 1/||Kp| — 0 (singular perturbation assumption [20]),
joint coordinatesy € @ C R™ with 3 < n € N. The gener- we can approximately considéras control input.
alized velocity of the complete system= (w” vT ¢7)7 is The output of the controller derived in the next section will
composed of the angular velocity € R* and translational be joint torquesr, while the control input of the considered
velocity v € R? of the floating base, and the joint velocity plant are motor positioné. Sincel/ (0, q) is positive defi-
g € R" for all actuated joints. In the following, we considernite, the functions) (8 —q) are strictly monotone. Therefore,
the inverse functiongy(7)~! exist. Using the mapping
INote that at least three contact points are required (whiehnat all 0=00+A0M0=u(T) ' +q, 3)

aligned) to statically balance a spatial free floating bagsesn against . . .
gravity. we can considet- and @ as equivalent control inputs.



IV. CONTROL APPROACH

The goal is to control the Cartesian force acting on
the center of mass (COM) of the complete floating base
system via the joints. In more detail, we want to generate
a periodic motion of the COM position along a predefined,
one-dimensional submanifold &2, such that the subman-
ifold determines the "direction” of the COM motion and
the resulting force. An additional goal is to change the
dynamics of the plant to a minimal extent by control. This
will be achieved by Cartesian impedance control [21], [22],
[23], which is combined with the constraint submanifold
control [17] and our recently proposed bang-bang control
[15]. Compared to [21], [22], [23], and [17], where therig. 3. The constraint(z) = 0 has highest priority. Together with,
impedance was generated partly or completely by contrdhe coordinatese(q) are completely defined i’. The overall seQ is the
we will implement the Cartesian impedance by exploiting@mbination of” and its null spaceVx.
the intrinsic, elastic behavior of the joints.

A. Change of coordinates the Jacobian matriceéﬁq/(’)w) (S R™*3 and ((9:18/(9,2) S
R3*2, respectively. These Jacobian matrices correspond to
he Jacobian matrices of the inverse mappings of (4) and
(5).

In order to derive the Jacobian matrices required in (6),
we can augment the Jacobian matrices of the mappings (4)
and (5) such that they are invertible. Note that thereby we

void to define nullspace coordinates [24]. In case of (4) and
5) the procedure is as follows:

Consider the position of the COMzc € R3 with respect
to a coordinate system attached to the floating base. T
position rzc = rpc(q) depends on the joint coordinates
g. In addition torsc(q), consider a virtual COM position
rpc(0) which depends on the motor positigh In the
absence of external load, the virtual positiog-(0) reflects
the equilibrium position of the spring defined by (2). Base
on this consideration, we define coordinates

z(q) = rpc(q) — rec(6), (4) ( ddf ) = J%%gq, whereJ2"9= ( jf((qq))) e R

wherexz € X c R3 and 8, = const. correspond to a (7)
desired equilibrium configuration of the springs (2). These [ dz au au J.(x

coordinates can be used to implement a Cartesian impedancgdnz) = J; "z, where ;= (an((a:))) S
between the measured COM positier-(q) and desired (8)
COM positionrzc(0o). Then, as in [17], we can consider
a mappingz : X C R? — Z c R? with a full rank Jacobian
matrix J . (x) such that

The inversion of the augmented Jacobian matrices defined
in (7) and (8) can be simplified with the following lemma
which is proved in [25, chapt. A.5].

z(x) =0 (5) Lemma 1:The augmented Jacobian matrix
defines a one-dimensional submaniflg of R*. Once the Jaug _ ( J ) 9)
constraint (5) is satisfied, a Cartesian impedance produces Jn

a force whose direction can be predefined by the constraigta square matrix. If7,, is chosen as
submanifold. All relevant sets and manifolds used in this

—1
approach are illustrated in Fig. 3. J, = (ZG)ZT) ZO, (10)
B. Transformation of the joint impedance where the nullspace basé satisfiesJZ” = 0 and © is
The constraint force resulting from the intrinsic jointffsti @ positive definite matrix (metric), the inverse of (9) can be
ness (2) can be derived from the elastic poterifiedy, q) =  written in the form

U(80,q(x(z))) as follows:

.o (8U<eo,q<w<z>>> @a_w)T
T’ 0q T’ Ox 0z T’ Note thatZ and ® are not unique. Possible choices are
_ (o= 9q oU (6o, q) (6) discussed in the appendix.
N 0z ox dq ’ Then, applying Lemma 1 to (7) and (8) yields
The last factor on the most right hand side of (6) equals the 9dg , . 4 T -1 1
joint torques defined by (2) fo® = 6,. From (6) it can ox (9) =0, J2(a)" (J2(9)0; Ja(e)") —, (12)
be seen that the joint torques are transformed successively 9 o1 T o1 7\ —1 13
to Cartesian and constraint forces with the transposed of 9z () = @ J-(2)" (J:(2)0; J-(2)7) ~. (13)

(J9 ™! = (@‘UT (J@‘lJT)_l ZT) .y



From (7) and (8) it can be seen that the joint impedance (Zhis has the advantage that no motor motion is required

generates also forces in the nullspaces/pfand.J ., given as long asz(x) = 0 and A7, (7,.) = 0. Note that
by the controller (20) requires no knowledge of the contact
T states. While from a robustness point of view this might be
To, = —Z2(q) (w) (14) desirable, it is not possible on the other hand to guarantee
oq any conditions on the contact forces. This motivates us to
and consider the control law in IV-C.2.

T T 2) Resolving the nullspace df, by optimal contact force
Tn. = —Z.(x) (@(q)) (8[](00"1)) , (15) distribution: In case slipping has to be avoided, the contact
’ oz dq forces must be considered directly in the controller. Tw thi

respectively. How these variables can be controlled will b&Nd, an alternative approach to implement the joint torgue

suggested in the next section. for the Cartesian controller (16) is to distribute the conta
forces via an optimization problem.
C. Feedback control Therefore, consider a stacked vector of contact forces
In the following, we introduce the control law for the f1
Cartesian forcef,, and then present two different approaches . 3n
. e : fo=| 1 | er¥™, (21)
to implement the joint torque-. The Cartesian controller '
comprises I e

wheren; € N is the number of contact points. Additionally,
consider the mapping

7= Jo(q, Ro)" fe (22)

fo=d:(@) 78+ J0 (2)T7) (16)
The first term in (16)
d_ 2 _

Te=—D:2 - K.z (17) where the transposed of the Jacobian ma#fiXqg, Ry) €
with symmetric and positive definite gain matric&, € R**" maps the contact forceg, to the joint torquesr.
R2*2 and K, € R?*? forces the motion ofc to approach Then, we minimize the cost function
Fhe constrained submanifold defined by (5). The second ter%(fc) — | ITfe— JTF |2 + anl| JLfo— JZITnI 2,
in (16)

(23)

d

Tn, = Tn. + ATn (Tn.) (18)  where the first term aims at implementing the Cartesian
is composed of a generalized foree. (15) reflecting control (16) and the second term aims at preserving the equi-

the joint impedance on the constrained submanifold and“gt)r,Ium configurationé, W'.th.al > az > 0. Considering
switching function unilateral and Coulomb friction constraints for the comtac

forces f,,, such that
_ [ sign(m)lFa| i |ml] > e,
ATy, (Tn.) = { 0 otherwise , (19) fr € Fr = {fk € R3| f]i + f,?y < pufe, fe. > 0} ,

wheree,, and,, are threshold and switching constants, (24)

respectively. wherey is the non-negative Coulomb friction coefficient, the
In our recent papers [15] and [16] we have proposedptimization problem

a control similar to (19). The controller proposed in [16]

excites an intrinsic mechanical oscillation mode of thenpla min E(f)
Compared to [16], in this work we predefine the oscillation S.t. (25)
mode by control (cf. (5) and (17)). Additionally, note that fr€Fi, Vek=1,...,nc¢

the control (19) switches the generalized forge. Thereby, .
we circumvent to introduce a nullspace coordinate, which i an be_ solveito compute Fh(_a contact fo_rcg“%. Note that if
in general not possible [24]. the unilateral / Coulomb friction constraints are remouéd,

1) Resolving the nullspace df, by preserving the initial control law (20) is obtained. In _contragt to the apprpach of
configuration: In order to implement the joint torque for Sect. IV-C.1, the contact force distribution approach feeu

the Cartesian controller (16), the behavior in the nullspafc to detect the contact states.

J.(q) has to be specified. This can be done by projecting V. SIMULATION
the intrinsic joint impedance into the nullspace &f(q)
such that a nullspace force,,, is generated which aims
at preserving the equilibrium configuratiély. Considering
the nullspace force given by (14) and the Cartesian costroll
(16)—(19), the joint torque- can be implemented as

T = Jw(Q)sz + J’flq:(q)TTnm .

The proposed jumping controller has been tested in simu-
lation for the compliantly actuated quadruped robot degpict
in Fig. 4, using the articulated body algorithm [26] and
a point contact version of the model [27] implemented in

20 2The constraintf, € Fi, Vk = 1,...,nc can be expressed in linear
( ) form through a polyhedral approximation of the friction eon
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Fig. 4. Simulated quadruped: the trunk is modelled as a cukath
mass5kg center of mass in the middle of the bottom side and inertia : 1
diag(0.0052, 0.0177, 0.0208) kgm?. Each leg and each leg segment (thigh COM vel. in z (m/s) 1 0 COM pos. in x (m)

and shank) is identical with ma$sl kg center of mass at half the segment ’8’\
length and inertia (about the center of mass, perpenditaldéne cylinder T 100p
axis) 0.00004 kgm?. o
=y — ¢
e
© 0 R w
Matlab/Simulink®. The considered quadruped has four legs § —10

and a total number of 12 hinge joints (two perpendicular-rota 0 0.5 1 15 2 2.5

tion axis in each hip and one in each knee), he= 12. The COM pos in x (m)

i AH H p._ Fig. 5. Relation between the vertical velocityon_ and positionrcom,
joints Qf ea(?h leg are aCt.uated via Ime,ar spring= K:;(6; along the horizontal positiomcom, Of the total COM (upper plot) and
q?) with _st|ffness matricesk; = diag(8,4,4) Nm/rad.  gjope of the line constraint (lower plot) for a simulated sydrom vertical
Linear, viscous damping produces torquds = D,q,; to forward jumping and back to vertical jumping.

with D; = diag(0.16,0.04,0.04) Nms/rad in the joints.

Furthermore, ground contact points are considered at the

tips of each leg. Thereby, a Coulomb friction constant oB. Simulation results

=0.75 has b d. o . .
p = 0.75 has been assume It has been evaluated whether the direction of the jumping

_ _ motion can be controlled using the implementation of the
A. Controller implementation joint torque given in Sect. IV-C.1. Therefore, the direntio

As can be seen in Fig. 4 all joint axes of the conOf the constraint line has been varied in order to control

sidered quadruped are parallel. Therefore, the total COf'\;I1e spatia_ll dires:tion of the jumping motion._ Fig. 5 depich
motion has been controlled in 3-dimensional space, i & three-dimensional phase plot of the floating base motion

2 = (25, 2y, 2,)". To implement directed jumping motions, ahnd thle (_jlre<t:)t|0n of th(; line C(_)nsl,trallnt. _The pdhase_plot stlww
linear constraints of the form, — c1zy + coz, — 0, 25 — the relation between the vertical velocity and positiomglo

¢say + cat, = 0 have been considered. The correspondinr%:e horizontal position of the total center of mass. The
t

submanifold represents a straight line passing through t é'nk motion 9f th.e quadruped starts with a limit cycle.m
origin, whereg — atan2(c1, c») is the angle between the x- e vertical direction, then evolves to a forward hopping

axis and the line ang — atan2(cs, c4) is the angle between motion and finally approaches the initially vertical limjtate
the y-axis and the line ’ motion. Furthermore, Fig. 6 depicts the total center of mass

For the nullspaces off, and J. we have chosen the position for 3-dimensional jumping motion. The quadruped

. . . . i . starts with a vertical jumping motion and then evolves to
dynamically consistent solution given in the appendix. Thé : .

. . . a forward and sideward movement. This demonstrates the
proportional gain of the constraint controller (17) was s#o

K. — diag(2,2) 10°N/m and the derivative gain was cho- capability of the proposed method to control the directién o

senD., = diag(1,1) 10*Ns/m. The parameters of the bang_thi:judr:_plng"mo::lgn (iee halso tr:ﬁ at_ta_cr:ed Vlf.eo)' i
bang control (19) were,, = 500N and 7, = 3500N. monarly, g. 7 Shows e Joint posiions, moftor

Additionally, the output of the switching function (19) haspositions.(control ir_1put)., anc_i joint torques of one of the
been filtered using the linear, second order filter front leg in the vertical jumping phase. It can be observed

that the joint motion is almost periodic. Furthermore, ihca
1 be seen that the motion of the motors is dominated by the
= m filtered output of the switching control (19). This is as the
submanifold is vertical and the constraint is triviallyisééd
where s is the Laplace variable and the time constant haand validates one of our basic design goals changing the
been chosefl, = 0.01 sec. intrinsic mechanical behavior of the plant to a minimal exte

H(s)



It can be concluded that the only control actions (motor
motions) are to fulfill the specified constraints and to dasta
the limit cycle.

otsk - . In the ideal case (where the motor is an ideal position

- source), it can be expected that if the specified submanifold
E o equals the mechanical intrinsic oscillation mode of thenpla
g 0144 the energy required to sustain the limit cycle equals the
g energy dissipated in the joints and contacts. A comprehensi
s 0.12 ’ ‘ ‘ efficiency analysis will be part of our future work.
8 0.1 APPENDIX
i et . N Remark 2 (Determination a): The singular value de-
0 o RN 4 composition is a numerically efficient way to compute the
05> T null space base matri€ by decomposing/ € R°*P with
) 2 o < p such thatJ = USVT, whereU e R°*° and
. COM pos. iny (m) 0 COM pos. in x (m) V € RPXP are unitary matrices, and < R°*? is a
g’ rectangular diagonal matrix containing the singular value
Pttt B e Herein V. = (V;,V5) while V; € RPX° spans the
g’ ol : n - subspace off, and V, € RP*(—2) defines the null space
= — of J so thatZ = V1.
g _10 , , , — Remark 3 (Choice 0o®): In general, the metri®@ can
° 0 1 2 3 4 be chosen arbitrarily, but several specific choices have ben
COM pos in x (m) eficial properties. Two of them are briefly explained in the
Fig. 6. Motion of the total COM (upper plot) and slope of theeliconstraint  following. If
_(Iowe_r plot) for a simulated sweep from vertical to forwambao sideward O—1I (A1)
jumping. )

then (10) simplifies toJ,, = Z. Numerical computations
can be saved that way by avoiding the inversionz# Z”
by control. since ZIZ™T = I. Such a metric leads to a so-called static

(Sect. IV-C.2) has been evaluated for a vertical jumping

motion. Therefore, the lower Coulomb friction constant of ©=M(q), (A2)

1 = 0.5 has been assumed. To reach the limit of the friction , . . . .
. L which corresponds to the dynamically consistent formafati
constraint (friction cone) also the parameters of the ban

bang control have been increased, kg, = 2000N and SFrom the operational space approach [29] as shown in [30],

7n. = 5500 N. Fig. 8 compares the normal versus tangential

contact force and the vertical versus horizontal moveménto < 4 T 0
the tip of one leg. It can be seen that without the contact = = ; ; ;
force distribution, the contact force reaches the limitl@t  § 0.5——[\/\-——/\/\ 8 71j/\;—\/\
friction cone and a horizontal movement of the tip of the leg & : : : £
idi is i i i S o 8 2t : :
occurs (slldlng contact). This is avoided with the congoll 14 16 18 2 1o s
implementation of Sect. IV-C.2. time (sec) time (sec)
=) =)
g1 £ o5
VI. CONCLUSION & W &
B R S Il I A AN
A method to control jumping motion for compliantly & S
. . . =] : . . o
actuated, multilegged robots is proposed. The methodeppli £ - g —1.5
to statically balanced legged robots, where all the joints L4 16 18 14 16 18
y . 99 ! | o time (sec) - time (sec)
are actuated. In particular, the controller allows to sfyeci € £
. ; - . . - . Z 5 Z 5
the desired jumping direction by defining a submanifold. < : : : <
Thereby, the following properties can be summarized: 5 0 _\/\,_\/\,. g o _/\/_/\,,
o
« The stiffness on the submanifold is an intrinsic mechan- = ; ‘ §
s 8 S

ical property of the plant; L4 16 18 la 16 18
o The force preserving the initial configuration is an time (sec) time (sec)

intrinsic mechanical property of the plant;
« Due to the switching control the oscillation frequencyrig. 7. Joint states corresponding to approximately twallation periods
adapts to the intrinsic frequency of the task; of the vertical jumping motion shown in Fig. 5
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Fig. 8. Comparison of the two controller implementationsthaut contact
force distribution cf. Sect. IV-C.1 (upper row), with coatdorce distribution
cf. Sect. IV-C.2 (lower row). The left column shows the tamigg vs. normal
contact force for one leg and the limit of the friction conagb-dotted line).
The right column shows the motion of the tip of one leg in theplane.

for example. The inertia matri®Z(q) € R™*" accounts for
the complete inertiaVf(q) € R(E+m)x(6+7) (including the

[20]

[11]

[12]

(23]

[14]

[15]

[16]

floating base). As a consequence of this choice, the inerfi&]
matrix is of block-diagonal shape in the decoupled space
In other words, (A2) ensures that null space actions do ngfg

lead to accelerations on the higher priority levels.
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