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Abstract

If three SAR images are available, it is possible to form three interferograms. In some cases the phases of the three

averaged interferograms will not agree among each other and indicate a sort of phase excess or deficit (which we

call "lack of triangularity"). In this paper we illustrate theoretically which models can explain such phenomenon and

show some real-data examples. The observation of lack of triangularity might be useful to derive informations on the

target and also as a warning that the scatterer presents a temporal covariance matrix which is not intrinsically real.

1 Introduction

This paper focuses on the concept of lack of triangularity

in SAR interferometry. To observe this effect it is nec-

essary to have three images able to interfere with each

other from which three interferograms can be gener-

ated. If the interferograms are averaged spatially and the

phases are combined in a circular way (φ12+φ23+φ31),

the result might be different from zero. The lack of com-

pensation could also simply point to the effects of statis-

tical noise, but we are interested in this paper in non-

trivial cases in which its systematic character reveals

some physical cause.

2 Theory and examples

Calling in the nth image in a coregistered stack, the in-

terferogram between image n and image k will be

Ink = |Ink| exp(jφnk) =< in i∗k > (1)

where the asterisks stands for the complex-conjugate and

the brakets denote some spatial averaging. It is possible

then to define the phase [1]

Φnkh = φnk + φkh + φhn (2)

Under many circumstances the three phases will com-

pensate each other out so that the result will be zero

(modulo 2π), up to some statistical noise. There are

however cases in which this compensation will not hap-

pen and this lack of triangularity points to some deeper

physical effect. These are the cases we are particularly

interested in: the covariance matrix of the data is intrinsi-

cally complex, it cannot be made real by a simple phase

calibration.

It has to be stressed that the operation of spatial averag-

ing is necessary to reveal possible deviations from zero

(non-triangularities); in fact, for single pixels, one can

trivially show that it is always Φnkh ≡ 0.

The concept of lack of triangularity presented here is

analogous to the concept of excess geometric phase and

three-point Bargmann invariant found in physics (e.g.

[2]).

2.1 Phase terms that respect triangularity

It is useful to mention physical effects on the phase that

will not break triangularity. In general, all delaying ef-

fects that can be attributed to each image are of this kind,

like tropospheric delays. For example, if the phase of an

small area is affected by a tropospheric delay of φn (one

phase per image), the interferometric phase between two

images will see the differential troposheric delay:

φnk = φn − φk (3)

and Φnkh = 0 since all terms φn, φk, φh will appear

twice in the sum (2) with opposite signs.

Similar reasoning can be conducted for phase effects

caused by target motion (ground deformation) and to-

pography in the presence of a normal baseline.

It is important to understand which effects do not break

triangularity, since their presence is irrelevant. For in-

stance, it is not necessary to worry about phase calibra-

tion (troposphere, topography, motion) if we are only in-

terested in Φnkh.

2.2 Effects that can break triangularity

More interesting for the purpose of this paper are effects

that can potentially break triangularity. The simplest ex-

ample is volume scattering with normal baseline varia-

tions.

2.2.1 Volume scattering

As a first illustrative example we cite the coherence re-

sulting from infinite volumes and an exponential attenu-

ation of the signal derived in [3]:

γnk =
1

1 + jknkd
(4)



where k = 2π/h is the vertical differential wavenu-

ber, d is the two-way penetration depth and h the height

of ambiguity. With three images a possible set of k’s

is k12 = k23 = −0.5k31 (two equal baselines), with

k12 + k23 + k31 = 0. It is then immediate to verify that

the complex quantity

γ12 γ23 γ31 =
1

1 + jk12d

1

1 + jk23d

1

1 + jk31d
(5)

does not have zero phase for any d > 0.

The coherences described by (4) are shown [3] to belong

to a circle of diameter 1 and center (1/2,0) in the com-

plex plane. If the phase was simply proportional to the

baseline, there would be no volume but a single scatter-

ing layer at a defined height. This is indeed a way to see

it: the phase Φnkh highlights a non-linearity in the phase

dependence on the wavenumber (k).

In general it is possible to demonstrate interesting rela-

tions between the scattering profile f(z) and the phase

behavior. The interferogram is the Fourier transform of

the profile and has the characteristics of an autocorrela-

tion

R(k) =

∫
f(z)ejkzdz (6)

because the profile is real and positive (spectrum). Sep-

arating now the phase and amplitude components of the

interferogram

R(k) = A(k)ejφ(k) (7)

one can derive the following relations

φ′(0) = E[z] = µz (8)

A′′(0) = −E[(z − µz)
2] (9)

φ′′′(0) = −E[(z − µz)
3] (10)

AIV (0) = E[(z − µz)
4] (11)

which tell us that the derivatives in zero are related to the

central moments of the profile (spectrum). In k = 0 even

derivatives of φ and odd derivatives of A are all equal to

zero, because of the Hermitian symmetry of R(k).

In particular, developing with Taylor approximation, for

the tomographic case we have:

Φ123 ≈ −0.5E[(z − µz)
3]k12 k23 k31 (12)

which shows how the phase excess is directly dependent

on the profile skewness E[(z−µz)
3] for small baselines.

A real data illustration of triangularity break due to vol-

ume decorrelation is given in Figure 1. Three acqui-

sitions of a TerraSAR-X crossing-orbit experiment are

combined and the resulting phase differs from zero by

several dozens of degrees. The two slaves are separated

from the master by 1 and 5 days. The azimuth varia-

tions are mainly caused by a variation of the baselines

within the scene, typical of the crossing orbit geome-

try. More details on the crossing-orbit experiment can

be found in [4].
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Figure 1: Lack of triangularity over Ronne’s ice shelf

(Antarctica) acquired by TerraSAR-X. The color scale is

in degrees.

2.2.2 Propagation in variable dielectric

Another reason that could give rise to systematically im-

perfect compensation is a variation of soil moisture ac-

cording to the model presented in [1]. There it is as-

sumed that the scattering comes from targets at different

depths, with propagation phases which depend both on

the moisture state and the depth. The resulting effect

could also be described as volumetric but the volume

consists in just a few centimeters of soil and the mois-

ture variation plays the role of normal baseline (chang-

ing the vertical wavenumber). There are indeed attempts

to conduct tomographic reconstructions in small depths

as in [5]. Although the mathematical expressions are dif-

ferent, the complex coherences modeled in [1] also be-

long almost perfectly to Dall’s circle for infinite volumes

mentioned above.

Figure 2: Lack of triangularity over agricultural fields

(ESAR, L-band). The color scale is in degrees.

For the case of soil moisture variation we show in

Figure 2 the phase Φnkh for three images acquired

over agricultural fields in three different days by DLR’s

ESAR sensor, operated in L-band. Figure 3 shows the

lack of triangularity in three L-band images acquired

over Mt. Etna. For the area toward the montain summit,



since there are no trees, the moisture variation hypothe-

sis seems the most likely to explain the phase excess.
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Figure 3: Lack of triangularity for Mt. Etna (Italy) ac-

quired by PALSAR. The color scale is in degrees.

All the physical explanations proposed so far require that

two (or more) different contributions are present in the

averaging window and that they change phase indepen-

dently from each other. For instance one could have in a

certain image y1 = a+ b and in a second y2 = a+ bejϕ,

if only the second contribution changes its phase. The

expected value of the interferogram is

E[y1y
∗

2 ] = E[|a|2] + E[|b|2]e−jϕ (13)

with the usual assumption of uncorrelation of the scatter-

ing mechanisms (E[ab∗] = 0). The resulting coherences

will describe curves (in this case circles) in the complex

plane as ϕ varies. This is a possible interpretation of

the coherences measured by the TropiSCAT experiment

(ESA, 2011-2012), which acquired almost continously

radar data over the tropical forest from a tower in French

Guiana. Many of the coherences computed during one

day describe curves in the complex plane, like the one

presented in Figure 4.

The physical variable driving the phase change could be

the dielectric constant of sapwood, which is known to

vary diurnally with water content and fluid chemistry [6]

and directly affects the propagation of electromagnetic

waves inside the trees.

The advantage of the TropiSCAT experiment is that it

provides a calibrated phase, therefore coupling effects

between coherence magnitude and phase are apparent.

For normal repeat-pass satellite data this is not the case

and the lack of triangularity reveals the same effects in a

subtler way.

2.2.3 Statistical variation

The final example of lack of triangularity, not particu-

larly interesting from the perspective of this paper, is the

natural statistical variation of sample covariance matri-

ces with respect to ideal covariances. This component is

enough to break the perfect triangularity of an ideal real-

valued coherency matrix. Indeed one can see the phase-

linking algorithm [7, 8] as a tool to restore triangularity

in the phases of an interferometric stack “corrupted” by

statistical (speckle) noise.

Figure 4: One example of the complex coherences

for the HH channel of the TropiSCAT experiment (day

2011-12-16, 400-600MHz)

However for such algorithms it is crucial to distinguish

natural statistical mismatches from geophysical signals,

since they are typically based on the hypothesis that the

temporal covariance matrix of the scatter is real, apart

from propagation terms. The phase mismatch associated

with statistical noise will be different for each averag-

ing window and therefore no systematic bias is expected.

This fact allows to distinguish interesting mismatches

from trivial ones: if the excess phase is spacially cor-

related it can not be a statistical effect. The magnitude

of the mismatch will also be an interesting indication,

since it will not be reduced by multilooking as regular

statistical noise.

3 Possible applications

The most interesting fact about the phase Φmkh is that

it is immune to phase calibration. It is therefore possi-

ble to detect volume scattering with phases even without

having to rely on a reference target or a PSI analysis to

perform a phase calibration.

When the presence of volume scattering can be excluded

(thanks to a priori information or because the normal

baselines are small enough), a phase mismatch in three

interferograms indicates that additional effects are at

work. It could be moisture variations in soils like in [1]

or in the trees as suggested in this paper.

The detection of any such effect is relevant e.g. if a phase

linking algorithm [7, 8] is applied to filter the phases in



a stack. This algorithm is applied early in stack process-

ing, when calibration is not available. The presence of a

Φmkh deviating from zero is at least a warning that the

hypothesis of intrinsically-real covariance is not valid

and results of phase linking might be seriously affected

(model mismatch). At the moment, we do not have a cor-

rection for the phase linking algorithm that accomodates

the lack of triangularity.

4 Conclusions

This paper has shown with theory and examples that in-

terferometric phase mismatches between three SAR im-

ages are not unusual and can be linked to scattering ef-

fects. Their value stays in that they can be detected prior

to phase calibration. More work is still needed to check

the validity of the physical explanations which have been

suggested, in particular to confirm the relation of inter-

ferometry with soil moisture and tree water status.
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