Sulfur -Graphene Oxide Nanocomposite Electrodes
for Next -Generation Lithium/Sulfur Batteries
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@ Excellent rate capability by novel electrolytes

Introduction Results & Discussion

9 Why Lithium -Sulfur batteries?

e Graphene oxide (GO) as a sulfur immobilizer

0 High theoretical specific energy Synthesis of Graphene Oxide: modified Hummer’s method

: Advanced Li/S batteries could provide
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Chemical Approach
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C 1s and O 1S XPS spectra showed the presence of sp? carbon (C=C),
The Lithium/Sulfur battery could provide up to 4 times hydroxyl (C-OH), epoxide (C-O-C), carbonyl (> C=0) and carboxyl (HO-C=0).
the specific energy of current lithium-ion batteries.

9 Conformal, thin coating of sulfur onto GO

9 Critical challenges of sulfur cathodes
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00 “Physical Absorption Approach”

L. Ji et al, Journal of The American Chemical Society, 2011, 133, 18522-18525

e Chemical bonding between Sulfur and GO

P. Bruce et al, Nature Materials, 2012, 11, 19-29

e Factors limiting the performance of Li/S cells

Summary

(1) Loss of Sulfur: Formation/dissolution
of lithium polysulfide Charge 4 .
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(2) Polysulfide shuttle between negative
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(3) Mechanical degradation by volume
change (~76%) of the sulfur electrode
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Polysulfides reduction on the Anode surface
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(4) Insulating nature of S and discharged
product, Li,S

Anode Lithium plating-stripping
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