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Determination of Attainable
Landing Area by Forward 

Reachability

Equations of motion of the moon lander are taken from [1]. The 
vector of states and control inputs are defined as follows:

Initial condition and terminal conditions:

DCA Representation

Reference Frame: Downrange-Crossrange-Altitude (DCA)
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 Developments in space technology have paved the way for more challenging missions which require advanced
guidance and control algorithms for safely and autonomously landing on celestial bodies.

 Instant determination of hazards, automatic guidance during landing maneuvers and likelihood maximization of
a safe landing are of paramount importance.

 Reachability analysis is used to obtain attainable landing areas for the final phase of interplanetary space
missions given initial conditions, admissible control inputs and landing constraints.
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 Non-uniform 
collocation points to
avoid the Runge 
phenomenon
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Interpolation error comparison using LGR,f-LGR,LG discretization points
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Interpolation of a function with Lagrange Polynomials using Legendre-Gauss-Radau Polynomial roots
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		: Number of discretization points : Number of control Inputs

: Number of states : Number of constraints

Generic Mission Profile 
for Lunar Lander

 Exponential
convergence w.r.t. 
number of
collocation points

 Lagrange 
polynomials for
interpolation of
states,control inputs

 Jacobian of the
associated NLP is
expressed as sum of 3 
different contributors. 
Resulting sparse is used
by commercial off-the-
shelf SQP solver.

In this study, we apply an optimal-control-
based algorithm for approximating 
nonconvex reachable sets of nonlinear
systems [2]. 

 Discretize region of interest

 Find optimal control law that steers the 
system from the initial condition to the 
target state

	
	

s.t. a.e. in 

a.e. in 

OCP is transcribed into NLP by SPARTAN (SHEFEX-3 
Pseudospectral Algorithm for Reentry Trajectory ANalysis)  [3].
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Reachable Landing SiteforLunarLanderattf = 35 -Grid
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 Approximate the reachable set with an error of discretization step 
by solving following optimal control problem (OCP) for each grid 
points

Discretization of State Space

Reachable Set at tf=35 (s)
-Propellant Cost-

Reachable Landing Tunnel  tf <35 (s)
-Propellant Cost-

Reachable Set with free final time           
-Propellant Cost-

Reachable Set with free final time            
-Time Cost-

 Attainable landing area and propellant&time cost map of
associated region is computed using reachability analysis

Jacobian structure of associated NLP

Interpolation of a function with Lagrange 
polynomials using LGR roots

Schematic diagram of Legendre points and Interpolation Error

Condition for successful landing: 


