APPROXIMATION OF ATTAINABLE LANDING AREA OF A MOON LANDER BY REACHABILITY ANALYSIS

DLR – German Aerospace Centre Institute of Space Systems Guidance, Navigation and Control Dept. Robert-Hooke-Str. 7 28359, Bremen, Germany

Yunus Emre Arslantas Yunus.Arslantas@dlr.de

Thimo Oehlschlägel Marco Sagliano Thimo.Oehlschlaegel@dlr.de Marco.Sagliano@dlr.de

Claus Braxmaier Stephan Theil Stephan.Theil@dlr.de Claus.Braxmaier@dlr.de

17th International Conference on Hybrid Systems: Computation and Control (HSCC 2014) 15th-17th April 2014, Berlin, Germany

Introduction

- > Developments in space technology have paved the way for more challenging missions which require **advanced** guidance and control algorithms for safely and autonomously landing on celestial bodies.
- > Instant determination of hazards, automatic guidance during landing maneuvers and likelihood maximization of a safe landing are of paramount importance.
- > Reachability analysis is used to obtain attainable landing areas for the final phase of interplanetary space missions given initial conditions, admissible control inputs and landing constraints.

Determination of Attainable Landing Area by Forward Reachability

Problem Statement

Equations of motion of the moon lander are taken from [1]. The vector of states and control inputs are defined as follows:

 $\mathbf{x}(t) = (\dot{d}, \dot{h}, \dot{c}, d, h, c, \beta, \chi, m)^{T}$

$$\mathbf{u}(t) = (T_u, T_s, T_q, \omega_\beta, \omega_\chi)^T$$

<i>d</i> : Downrange Rate	d: Downrange	β: Pitch		T_u, T_s, T_q : RCS Thrusters
<i>h</i> : Altitude Rate	h: Altitude	χ: Yaw	-	ω_{β} : Pitch Rate
<i>ċ</i> : Crossrange Rate	c: Crossrange	m: Mass		ω_{χ} : Yaw Rate

Initial condition and terminal conditions:

 $\mathbf{x}(0) = (\dot{d}_0, \dot{h}_0, \dot{c}_0, 0, h_0, 0, \beta_0, \chi_0, m_0)^T$ $\mathbf{x}(t_f) = (0,0,0, free, 0, free, -\frac{\pi}{2}, 0, free)^T$

Condition for successful landing:

 $\left| \Delta x(t_f) \right| \le \Delta x_{max}$ $\Delta x_{max} = (1 \, m/s \, 1 \, m/s \, , 1 \, m/s \, , free \, , 1m, free \, , 10^{\circ} \, , 180^{\circ} \, , free)^{T}$

Method

In this study, we apply an **optimal-controlbased algorithm** for approximating **nonconvex** reachable sets of **nonlinear** systems [2].

- \succ Discretize region of interest
- \succ Find optimal control law that steers the system from the initial condition to the target state

Discretization of State Space

 \succ Approximate the reachable set with an error of discretization step by solving following optimal control problem (OCP) for each grid points 1

$$\begin{aligned} & \text{Min } \frac{1}{2} \| x(t_f) - g_h \|_2^2 \\ & \text{s.t. } \dot{x}(t) = f(x(t), u(t)) \quad \text{a.e. in } [t_0, t_f] \\ & x(t_0) = x_0 \\ & u(t) \in U_0 \text{ a.e. in } [t_0, t_f] \end{aligned}$$

Reference Frame: Downrange-Crossrange-Altitude (DCA)

Results

> Attainable landing area and propellant&time cost map of associated region is computed using reachability analysis

the second s

Discretization of Optimal Control Problem

OCP is transcribed into NLP by SPARTAN (SHEFEX-3 Pseudospectral Algorithm for Reentry Trajectory ANalysis) [3].

- Non-uniform collocation points to avoid the Runge phenomenon
- Exponential convergence w.r.t. number of collocation points
- ➢ Lagrange polynomials for interpolation of states, control inputs
- \succ Jacobian of the associated NLP *J* is

Schematic diagram of Legendre points and Interpolation Error

Acknowledgements:

This research is supported by DLR (German Aerospace Center) and DAAD (German Academic Exchange Service) Research Fellowship Programme.

expressed as sum of 3 different contributors. Resulting sparse *J* is used by commercial off-theshelf SQP solver.

 n_s : Number of states

References:

 n_a : Number of constraints

N. Star

[1] T. Oehlschlägel, S. Theil, H. Krüger, M. Knauer, J. Tietjen, C. Büskens, Optimal Guidance and Control of Lunar Landers with Non-throttable Main Engine, Advances in Aerospace Guidance, Navigation and Control, pp. 451-463, 2011

[2] R.Baier, M. Gerdts, I. Xausa, Approximation of Reachable Sets Using Optimal Control Algorithms, Numerical Algebra; Control and Optimization, Vol. 3, 2013

[3] M. Sagliano, S. Theil, Hybrid Jacobian Computation for Fast Optimal Trajectories Generation, AIAA Guidance, Navigation and Control(GNC) Conference, Boston, August 19-22,2013