
IMMERSIVE VISUALIZATION OF THE QUALITY OF DIMENSIONALITY REDUCTION

Mohammadreza Babaeea∗, Mihai Datcub, Gerhard Rigolla

aInstitute for Human-Machine Communication, Technische Universität München
Munich Aerospace Faculty, Munich, Germany

{reza.babaee,rigoll}@tum.de
b Munich Aerospace Faculty, German Aerospace Center (DLR)

Oberpfaffenhofen, 82234 Wessling, Germany
mihai.datcu@dlr.de

Commission III/3

KEY WORDS: dimensionality reduction, immersive visualization, quality assessment, neighborhood graph

ABSTRACT:

Dimensionality reduction is the most widely used approach for extracting the most informative low-dimensional features from high-
dimensional ones. During the last two decades, different techniques (linear and nonlinear) have been proposed by researchers in various
fields. However, the main question is now how well a specific technique does this job. In this paper, we introduce a qualitative method to
assess the quality of dimensionality reduction. In contrast to numerical assessment, we focus here on visual assessment. We visualize
the Minimum Spanning Tree (MST) of neighborhood graphs of data before and after dimensionality reduction in an immersive 3D
virtual environment. We employe a mixture of linear and nonlinear dimension reduction techniques to apply to both synthetic and real
datasets. The visualization depicts the quality of each technique in term of preserving distances and neighborhoods. The results show
that a specific dimension reduction technique exhibits different performance in dealing with different datasets.

1 INTRODUCTION

The volume of Earth Observation (EO) data is increasing on the
order of hundreds of terabytes per day. Simultaneously, data
mining techniques exhibit significant performance, primarily by
representing data by high-dimensional features. For instance, in
large scale image retrieval, each image might be represented by a
feature vector of the size 105.
Although high-dimensional features improve the performance of
data mining algorithms, they make knowledge discovery more
complex. However, dimension reduction (DR) for visualization is
the most widely used approach for visualizing high-dimensional
features. Consequently, a huge variety of techniques have been
developed to embed the high-dimensional data points into a low-
dimensional space. Linear techniques perform the task by pro-
jecting data, and nonlinear methods focus on preserving the dis-
tances between points during dimension reduction. However, for
recent data mining techniques and computer vision applications,
distances between points play a key role. For instance, K-means,
as one of the most widely used clustering approach, finds the clus-
ter centers by minimizing the distances of data points to cluster
centers. In image classification, the distance of feature points to
the visual words is considered as similarity measure. Finally, in
object localization and scene recognition, distances of data points
to a reference point is used to assign them to a set of predefined
classes or categories.
Since distances between data points is a key property of datasets,
recent dimension reduction techniques try to preserve this prop-
erty during dimension reduction (Belkin and Niyogi, 2003, Chen
and Buja, 2009, Hinton and Roweis, 2002). Hence, to measure
the quality of these techniques, several quality measures have
been proposed that consider the ability of a technique to preserve
the neighborhood as quality criteria. However, these measures do
not exhibit qualitatively where the distances are preserved. They
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are generally useful to compare a technique with another.
In this paper, we propose to visualize the quality of a DR tech-
nique by presenting the Minimum Spanning Tree of a neighbor-
hood graph before and after dimension reduction. A Minimum
Spanning Tree can be imagined as a summary of a weighted
graph whose edges depict the distance between points. This tree
is computed from data points in two states, i.e. before and after
dimension reduction. For visualization, we utilize an immersive
3D virtual environment in which the user is allowed to navigate
inside the data and explore.
The remainder of this paper is organized as follows: The rele-
vant background about the dimensionality reduction followed by
quality assessment criteria are covered in Section 2. The details
of immersive visualization system is provided in Section 3. We
present the results of various experiments with synthetic and real
data in Section 4. Section 5 provides the conclusion.

2 RELATED WORK

2.1 Dimension Reduction

In dimensionality reduction, a dataset of N high dimensional
points, X = {x1, x2, . . . , xN} is transformed into a low di-
mensional dataset, Y = {y1, y2, . . . , yN}. Since the last two
decades numerous linear and nonlinear DR techniques have been
proposed in different research areas. While linear approaches as-
sume the data comes from a linear d-dimensional subspace of a
high dimensional feature space, nonlinear approaches consider
the data as a d-dimensional manifold embedded in a high dimen-
sional space. Perhaps, the most famous linear algorithm is Prin-
cipal Component Analysis (PCA) projecting data into d eigen-
vectors corresponding to d largest eigenvalues of the covariance
matrix of the data.
Nonlinear methods work based on the minimization of an objec-
tive function in which some constraints are involved. Among the
nonlinear methods, Locally Linear Embedding (LLE) (Roweis



and Saul, 2000) aims to preserve the topology of data during di-
mension reduction. It assumes that the data belongs to a low-
dimensional smooth and nonlinear manifold embedded in a high-
dimensional space. Then the data points are mapped to a lower
dimensional space in such a way as the computed linear combi-
nation of the data points and their neighbors is preserved.
Laplacian Eigenmaps (LE) (Belkin and Niyogi, 2003) is another
nonlinear technique in the domain of spectral decomposition meth-
ods. It accomplishes the task by building a neighborhood graph
from the given data whose nodes represent data points and edges
depict the proximity of neighboring points. This graph approxi-
mates the low dimensional manifold embedded in a high dimen-
sional space. The eigenfunctions of the Laplace Beltrami opera-
tor on the manifold serve as the embedding dimensions.
Stochastic Neighbor Embedding (SNE) (Hinton and Roweis, 2002)
is a probabilistic approach aiming to preserve the neighborhood
of data points by working on probability instead of distances be-
tween points. More precisely, the neighborhood relation of data
points in both high and low dimensional spaces is represented
by a probability matrix, in which the closer neighboring points
have larger probability values than the farther ones. The sum of
the Kullback-Leibler divergences over the probability matrices is
used as the cost function in the minimization procedure.

2.2 Quality Assessment

Various dimension reduction techniques exhibit different results
based on the input data and tuning parameter(s). Evidently, it is
vital to evaluate their quality in order to choose a proper one with
the right parameter(s) for data mining systems.
Since the majority of DR techniques focus on preserving the lo-
cal neighborhood distances between data points, state-of-the-art
approaches try to improve on the succession of DR techniques in
preserving the distances. These approaches can be categorized to
four categories. The first group evaluates the performance of DR
by the assessment of the value of the cost function after conver-
gence (Bernstein et al., 2000, Belkin and Niyogi, 2003). Clearly,
these approaches are useful to compare the results of a specific
technique with different set of parameter(s).
The second group focuses on the reconstruction error (Balasub-
ramanian and Schwartz, 2002). However, since the reverse trans-
formation does not exist for all techniques, it is hard to employ
these approaches for all DR techniques.
The third group judges DR techniques based on the accuracy
of classification applied on labeled data (Van der Maaten et al.,
2009). The main drawback of this group is the need for labeled
data which is not available in most cases.
Finally, the last group comprises approaches concentrating on
preserving the structure of data. The current criteria for the as-
sessment of the preservation of data structure are the local con-
tinuity meta-criterion (LCMC) (Chen and Buja, 2006, Chen and
Buja, 2009), the trustworthiness and continuity measures (T&C)
(Venna and Kaski, 2006), and the mean relative rank error (MRRE)
(Lee and Verleysen, 2007, Lee and Verleysen, 2009). All these
criteria analyze the neighborhoods before and after the dimen-
sion reduction. A recent work has put all these criteria to a single
framework to compare them (Lee and Verleysen, 2009). The ad-
vantage of this framework is its ability to propose new criteria for
the assessment of DR techniques.

3 IMMERSIVE VISUALIZATION

3.1 Minimum Spanning Tree

The Minimum Spanning Tree is a spanning tree of an edge-weighted
graph whose weight is minimum among the weight of other span-

ning trees (Sedgewick, 2002). Several algorithms such as kruskal
and Prim algorithms have been proposed to find the minimum
spanning tree. The Prime algorithm (the used algorithm in this
study) is a greedy algorithm that starts with an arbitrary node of
input graph. In a repetition, it chooses an edge with minimal
weight such that one of its node is not selected before and adds
that node to the list. The algorithm is finished when all nodes
are selected. The output is the minimal spanning tree which is a
subset of the edges of input graph including all vertexes of graph.
Since the edges have positive weight (coming from distances),
the minimum spanning tree is a minimum-cost subgraph. In prin-
ciple, if edges have distinct weights then there will be only one
minimum spanning tree.
In dimension reduction, if distances are completely preserved, the
minimum spanning trees of neighborhood graphs should not dif-
fer. Therefore, by visualizing the two minimum spanning trees
superimposed on each other, we can visually assess the quality of
DR.

3.2 CAVE Automatic Virtual Environment

We propose an immersive 3D virtual environment for visualiza-
tion of minimum spanning tree of data points. This environment,
the so-called Cave Automatic Virtual Environment (CAVE) is
based on Virtual Reality technology and comprises four room-
sized walls aligned to form a cube to display the low-dimensional
features. This configuration allows users to have a 180 degree
horizontal view. The virtual scene is projected onto the walls
using two projectors per wall in order to have stereoscopic sce-
narios. Additionally, a real-time tracking system including six
infrared cameras mounted on top of the walls computes the pose
(position and orientation) of marked objects (e.g., Wii controller
and shuttle glasses) inside the cube. See Figure. 1
For rendering and visualizing the data, the CAVE utilizes a three-
layer cluster of PCs. The first layer captures user motions and
navigation signals and send them to the middle layer. Motion
capturing is performed by optical tracking system and the nav-
igation signals are generated by a Wii controller. Middle layer
comprises a master PC which is responsible for generating the
virtual scene based on the incoming signals from the first layer.
Once the scene is ready, it sends rendering signals to the third
layer. Rendering and displaying the scene on the walls is car-
ried out by four PCs (one for each wall). The schematic of the
organization of the CAVE is depicted in Figure. 2.

Figure 1: Schematic of CAVE. Four walls play the role of dis-
play while projectors are installed behind them. Infra-red track-
ing cameras mounted on top of walls capture the motion of user.

4 EXPERIMENTAL RESULTS

Experiments with synthetic and real data are presented to assess
various results, including immersive visualization of Minimum
Spanning Tree of neighborhood graphs. Euclidean distances are
used for building neighborhood graphs from datasets before and



Figure 2: The physical diagram of immersive visualization. The
visualization system is compose of three layers with different re-
sponsibility. First layer comprises motion capture (tracking) sys-
tem and control capturing. A master PC in the middle layer for
the synchronization, and finally four systems for rendering for
each wall of the CAVE. All systems are connected together via
an ethernet network.

after dimension reduction. Prim algorithm is used to compute the
Minimum Spanning Tree of graphs.

4.1 Datasets

To assess the dimension reduction techniques, we used two syn-
thetic datasets and one real-world dataset.

4.1.1 Synthetic Data The synthetic data is comprised of two
datasets. The first one is a set of 2000 3D points randomly drawn
from a 2D S-curve embedded in 3D. The second one is a set of
2000 3D points randomly drawn from Swiss-roll (see Figure 3).

(a) S-curve (b) Swiss-role

Figure 3: Our synthetic data has been drawn randomly from 2D
S-curve and Swiss-role embedded in 3D.

4.1.2 Real Data We used the B.J. Frey face database as our
real dataset comprising 1965 pictures of the same face captured in
different poses and expressions. The size of each face is 28× 20
pixels. Therefore, each face is represented by a feature vector of
the size 560. Consequently, the input of the dimension reduction
process is a matrix whose dimensions are 1965 × 560. Figure 4
presents some samples from the face database.

Figure 4: Samples from the face database.

For both synthetic datasets, we used a mixture of linear and non-
linear DR techniques, namely PCA, LLE, LE, SNE, and Isomap.
The neighborhood parameter for nonlinear techniques was set to
12. First, we constructed the neighborhood graph of datasets with
respect to euclidean distances between points. We performed a
pre-processing in order to ensure that the distances differ. This
was done due to the fact that if the edge weights in a graph are
unique then the minimum spanning tree is also unique. The Prim
algorithm was used to compute the tree. Second, we applied di-
mension reduction to both synthetic and real datasets. For syn-
thetic datasets we reduced the dimension from 3 to 2 and for real
datasets from 560 to 3. For synthetic datasets, the position of
points before dimension reduction were used for 3D visualiza-
tion which is not important because we are interested in distances
between points. For real dataset, the 3D position of points for
visualization is actually the output of dimension reduction. The
computed trees for different datasets and different dimension re-
duction techniques are presented in Figures 5, 6, and 7. In these
figures the blue points are data points, the green lines depict the
edges of minimum spanning tree constructed from neighborhood
graphs of data points before dimension reduction, and the red
lines depict the edges of minimum spanning tree constructed after
applying dimension reduction. In these visualization, if the min-
imum spanning tree does not change we should not see and red
lines. Therefore, red lines show how much and where the mini-
mum spanning tree is changed during dimension reduction. For
example, in figure 5, we see readily that LE and Isomap exhibit
better performance than PCA, LLE, and SNE. Figure 6 shows that
PCA, Isomap, and LE exhibit better performance than LLE and
SNE. Additionally, LE has a weaker performance relative to PCA
and Isomap. These two figures shows us that the performance of
a specific dimension reduction may vary from dataset to dataset.
For instance, PCA exhibits a better performance in dealing with
Swiss-roll than S-curve datasets. The same process was carried
out on real dataset and the results are depicted in Figure 7.
As it might be understood, 2D figures can not truely show us
the performance of a specific dimension reduction technique. For
example, in Figure 7 it is hard to compare and evaluate the perfor-
mance of PCA, LE, and SNE in dealing with real dataset (the face
dataset). Therefore, we additionally visualized the results in an
immersive 3D virtual environment (CAVE). Some images of the
CAVE while the user is looking at the results are depicted in Fig-
ure 8. In immersive visualization, the use can easily go inside the
data and see where the distances are not preserved. Furthermore,
by zooming in and out, the user get a local or global overview of
the performance of the employed dimension reduction technique.

5 CONCLUSION

In this paper, we focused on two main points. First, we con-
sidered the Minimum Spanning Tree as a summary of neighbor-
hood graphs of data points. Second, we utilized immersive 3D



environment to visualize the Minimum Spanning Trees of data
points computed before and after dimension reduction. We found
that the performance of a specific technique can not be evalu-
ated alone without considering the dataset that applies to. For
instance, one technique can well preserve the distances for one
dataset but has poor performance in dealing with another dataset.
To have a better understanding of the performance of applied
technique, we visualized the Minimum Spanning Tree in an im-
mersive 3D virtual environment in order to navigate inside the
data and explore where and how the distances are preserved.

ACKNOWLEDGEMENTS

The authors would like to thank Munich Aerospace Faculty for
the support to accomplish this research.

REFERENCES

Balasubramanian, M. and Schwartz, E. L., 2002. The isomap
algorithm and topological stability. Science 295(5552), pp. 7–7.

Belkin, M. and Niyogi, P., 2003. Laplacian eigenmaps for dimen-
sionality reduction and data representation. Neural computation
15(6), pp. 1373–1396.

Bernstein, M., De Silva, V., Langford, J. C. and Tenenbaum, J. B.,
2000. Graph approximations to geodesics on embedded man-
ifolds. Technical report, Technical report, Department of Psy-
chology, Stanford University.

Chen, L. and Buja, A., 2006. Local multidimensional scaling
for nonlinear dimension reduction, graph layout and proximity
analysis. PhD thesis, Citeseer.

Chen, L. and Buja, A., 2009. Local multidimensional scaling
for nonlinear dimension reduction, graph drawing, and proxim-
ity analysis. Journal of the American Statistical Association
104(485), pp. 209–219.

Hinton, G. and Roweis, S., 2002. Stochastic neighbor embed-
ding. Advances in neural information processing systems 15,
pp. 833–840.

Lee, J. A. and Verleysen, M., 2007. Nonlinear dimensionality
reduction. Springer.

Lee, J. A. and Verleysen, M., 2009. Quality assessment of dimen-
sionality reduction: Rank-based criteria. Neurocomputing 72(7),
pp. 1431–1443.

Roweis, S. T. and Saul, L. K., 2000. Nonlinear dimensional-
ity reduction by locally linear embedding. Science 290(5500),
pp. 2323–2326.

Sedgewick, R., 2002. Algorithms in Java, Parts 1-4. Vol. 1,
Addison-Wesley Professional.

Van der Maaten, L., Postma, E. and Van den Herik, H., 2009.
Dimensionality reduction: A comparative review. Journal of Ma-
chine Learning Research 10, pp. 1–41.

Venna, J. and Kaski, S., 2006. Local multidimensional scaling.
Neural Networks 19(6), pp. 889–899.



(a) PCA (b) LLE (c) LE (d) SNE (e) Isomap

Figure 5: The MST of neighborhood graph of S-curve data points before and after dimension reduction. The green and red lines show
the edges of trees before and after dimension reduction, respectively.

(a) PCA (b) LLE (c) LE (d) SNE (e) Isomap

Figure 6: MST of neighborhood graph of Swiss-roll data points before and after dimension reduction. The green and red lines show
the edges of trees before and after dimension reduction, respectively.

(a) PCA (b) LE (c) SNE

Figure 7: The MST of neighborhood graph of the face data points before and after dimension reduction. The green and red lines show
the edges of trees before and after dimension reduction, respectively.

(a) PCA (b) LE (c) SNE

Figure 8: The immersive visualization of the MST of neighborhood graph of the face data points before and after dimension reduction.
The green and red lines show the edges of trees before and after dimension reduction, respectively.


