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Abstract

Lagrangian methods were used in the past for dispersion modelling, air quality studies and climate-chemistry
simulations, because they have a good representation of tracer transport. Here we show that air density
inconsistencies between the Lagrangian representation and the model’s core grid can lead to substantial
discrepancies. They affect any process calculation related to tracers on the model’s grid, both box and column
processes, such as chemistry, photolysis, radiation, and sedimentation. These discrepancies can be resolved
by using consistently Lagrangian methods for the core and (implicitly) for the tracer transport. Here we
regard two Lagrangian methods, which divide the atmosphere by mass and present a transformation for these
methods to derive a partitioning of the atmosphere in disjunct volumes and masses, which is a necessary

pre-requisite to calculate any box or column process.
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1 Introduction

Transport processes are a key aspect in atmospheric
modelling. Dispersion modelling, emitter-receptor rela-
tions, as well as climate-chemistry modelling rely on ac-
curate transport modelling. WERNLI and DAVIEs (1997)
used the Lagrangian particle model LAGRANTO, which
is driven by data from a numerical weather prediction
model to analyse extra-topical cyclones. A large num-
ber of particles were evenly distributed in a given Eu-
lerian grid and each trajectory gets a number of prop-
erties. Another example, among many others, is given
by StoHL etal. (2005), describing the Lagrangian trans-
port model FLEXPART in a similar manner. One op-
tion of FLEXPART is to distribute the particles, which
all have equal mass, globally or in a given region, ac-
cording to the atmospheric density. A different approach
is applied in the ClaMS-3D model (MCKENNA etal.,
2002a,b; KonopPkA etal., 2004). Particles are advected
and subsequently mixed. The mixing is irreversible and
includes dissolving and new creation of particles, which
is driven by the wind shear and the resulting potential
deformation of air parcels. Two systems of vertical lay-
ers are alternating to prevent clustering around the layer
center. The particles contain properties like mixing ra-
tios of chemical species, temperature and pressure. The
air density is derived from the temperature and pressure
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and the volume is derived from the (alternating) layer
thickness and an area associated to the particle by trian-
gulation of all particles. Thus the actual mass of a chemi-
cal species associated to the particle can be derived from
its density and volume. KoNoPKA et al. (2004) show that
this scheme is mass conserving on a global scale.

Common to these applications is that the simu-
lated properties do not feed back to the dynamics,
so-called passive transport studies. For example simu-
lated ozone and water vapour distributions do not feed
back to the radiation scheme and influence the atmo-
spheric flow. STENKE etal. (2008) applied the climate
model ECHAMA4.L39(DLR) with the Lagrangian trans-
port scheme ATTILA for simulating atmospheric wa-
ter vapour and cloud water, which includes a large feed
back to the atmospheric dynamics. They showed that the
improved vertical and horizontal water vapour gradients,
compared to the standard semi-Lagrangian advection
scheme, lead to large changes in the lower stratosphere
water vapour concentrations and avoid thereby the large
cold bias in that region, common to many climate mod-
els. Particles in ATTILA all have the same mass, and
transport water vapour mixing ratios. The mixing ratios
are mapped to the standard grid of the climate model,
where the parameterisations, like cloud formation, rain
out, radiation, etc. are computed. Changes in the concen-
trations are then mapped back to the particles. A simi-
lar approach was performed for a chemistry application
(STENKE et al., 2009), showing that the simulation of the
ozonopause and the location of the ozone hole is bet-
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ter simulated than using the semi-Lagrangian advection
scheme.

All of these simulations have a deficit, which is an
inconsistent simulation of the air density distribution be-
tween the Lagrangian space and the corresponding Eule-
rian grid. Fig. 1 sketches this inconsistency: Assume that
we have a Lagrangian representation of the concentra-
tion of species (cy in [molecules cm3]), the air density
pr. (in [kgm™3]) and therefore also the volume mixing
ratios vmry, (in [mol mol~']). As soon as local inconsis-
tencies between the Lagrangian and the Eulerian repre-
sentation of the air density field occur, there is no way to
obtain a consistency between the Lagrangian and the Eu-
lerian representation of the concentrations, volume mix-
ing ratios and grid box masses. And hence, as soon as
processes are solved in the grid space, e.g. column pro-
cesses, such as radiation, photolysis, sedimentation and
rain (including below-cloud evaporation), inevitable er-
TOrs Occur.

The discrepancy between Eulerian and Lagrangian
tracer and mass distributions are shown exemplarily for
Radon (**’Rn) in Fig. 2. The simulation is performed
with the chemistry-climate model EMAC (JOCKEL et al.,
2010). For any arbitrary time step the simulated Radon
volume mixing ratios agree between the Eulerian and
Lagrangian approach in terms of general structure and
absolute values. However, discrepancies can be clearly
seen on small scale structures, which mainly arise from
deviations in the mass representation (Fig. 2, bottom).

This dilemma can be resolved, by introducing either
Lagrangian and hybrid cores for solving the equations
of motion, which ensures a consistent representation
of air density. Two of these methods, the Finite Mass
Method (FMM, GAUGER et al., 2000) and the Hamilto-
nian Particle-Mesh Method (HPM, FrRANK etal., 2002)
are briefly introduced in the following section. However,
these methods have been used to simulate (atmospheric)
flows, but not yet additional processes, such as atmo-
spheric chemistry. We present transformations (Sec. 3)
for either method, which are required to calculate chem-
ical and physical processes on the particles and further
show that masses are conserved and densities are consis-
tently described between the different grid representa-
tions. Although the transformation is valid for arbitrary
processes, we present them exemplarily for chemistry
applications.

2 Particle methods

In this Section, we summarise two methods to solve the
equations of motion, which are based on Lagrangian
methods. We follow the nomenclature normally used
for these methods. We use the wording mass packets in
Sec. 2.1 to suggest that these are fully three dimensional
objects, whereas in Sec. 2.2 particles refer to points in
the atmosphere.
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2.1 Finite mass method

The finite mass method was introduced in GAUGER et al.
(2000); KLINGLER et al. (2005) and it is based on con-
cepts developed by YSERENTANT (1997, 1999a,b). Here,
we give a short overview (KLINGLER etal., 2005, see).
This gridless Lagrangian method is based on a discreti-
sation of mass, not of space. Mass is subdivided into N
small mass packets. Their movement is driven by inter-
nal and external forces, and the laws of thermodynam-
ics. Normally, the mass packets overlap. The approxima-
tions, which the finite mass method delivers, are smooth
functions and not discrete measures.

Each mass packet i has a mass m; and an internal
mass distribution, which is described by a shape func-
tion y with a normalisation condition and the body co-
ordinate y:

[vear=1. [yoway=0. e

KLINGLER etal. (2005) used a 3" order B-spline as a
base function for each space dimension and a tensor
product of these base function for y. The mass packets

can move and deform linearly. The points y of the mass
packet i move along trajectories:

t — qi(t)+H(t)y, detHt)>0, (2.2)
where ¢;(1) is the position of the mass packet center and
H;(t) the deformation matrix. The volume of the mass
packet is V;(t) = det H;(t). The prognostic equations for
g; and H; are derived, based on a classical mechanics
approach, by Lagrange functions (£) that is the differ-
ence of kinetic and internal energy (L = E —V) (see e.g.

KLINGLER etal., 2005):

dJL dL
d 0L JL

The air density at a location x is the sum of the air
density of the overlapping mass packets at that point:

N
p(x,1) =Y my;(x,1), with (2.5)
i=1
(O x— g
viler) = v (Hi() " (x—ai0)) 2.6)

det H,'(l)

2.2 Hamiltonian particle-mesh method

Contrary to the FMM the HPM method utilises a large
number of particles. Each carries a mass m; (computed
at the initial time-step, only), but no volume (Tab. 1).
The particle mass distribution is used to derive a pres-
sure gradient, which is used in the equations of mo-
tion. The HPM method utilises a longitude-latitude grid
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Figure 1: Sketch of relations between Lagrangian representation of air density (py ), concentrations (cz), volume mixing ratios (vmry) and
masses my, (left) and the Eulerian grid (right). Processes can be solved in the Lagragian representation or the Eulerian representation. For
the Eulerian representation a consistent transformation has to be used to avoid mass inconsistencies (orange), i.e. a pre-requisite is that the
densities are equal in the two representations (pz, = pg). The back transformation of results from the Eulerian process calculations has two
options, either changes in the concentration are mapped back to the particles or the new concentrations are mapped back.

Table 1: Comparison of the main characteristics of the FMM and HPM method in a typical simulation of the global atmosphere.

Characteristics FMM

HPM

Number of particles N =100,000
Masses
Volume

Prognostic variable

Defined by a deformation matrix
Center of particle and deformation
matrix

Quadrature points for each particle
Reshaping with non-overlapping
volumes

Auxiliary grid
Transformation

N =1,000,000

Each particle may have different, but constant masses, e.g. atmospheric mass divided by N

No volume

Center of particle and pressure gradient from
particle mass distribution

Regular grid

Inversion of the smoothing function to attribute
parts of the grid volume to particle volume

with equal grid spacing. The mass distribution on the

grid within a model layer is calculated by using a ten-

sor product cubic B-spline y™(A,¢) of an arbitrary

point x = (A, ¢) and the pre-defined auxiliary grid points
(Z) B (Z)n

(A 9n):
b (t2t). @

Y (X) = Yo <
where V,; is a cubic B-spline. Note that y""(x) differs
from zero only for grid points in the neighbourhood of
the particle position x.

A — Ay
AL

3 Transformations for chemistry
applications

The calculation of chemical processes requires the con-
centrations of species (molecules per volume) in a well
defined volume. The FMM divides the atmospheric
mass in overlapping mass packets and hence the air den-
sity and the concentration of a species at a certain point
of the atmosphere is defined by a sum of the contribu-
tions of all overlapping mass packets. Generally, an in-
dividual packet and its mass do not describe the actual

Downloaded from www.schweizerbart.de
Unauthorized distribution of this copyrighted material is strictly forbidden!

air density or concentration at a given point. Therefore a
reshaping of the mass packets is necessary for the cal-
culation of chemical processes. This reshaping has to
guarantee that mass packets are disjunct and describe
the atmospheric mass, volume and concentrations at the
given point. Note that we consider a process or operator
splitting, i.e. first the equation of motion are solved in a
Lagrangian framework and secondly other (e.g. chemi-
cal) processes are considered. Sec. 3.1 introduces the re-
shaping of the mass packets, by defining central masses
and volumes for each mass packet, which are subsets of
the mass packet (see Fig. 1), so that volumes of these
reshaped packets are disjunct (see also Tab. 1).

In contrast, the HPM includes a large number of
particles, which represent mass points without volume.
Smoothing functions (eq. (2.7)) are used to derive air
densities on a grid. In Sec. 3.2 these functions are
utilised to derive consistent concentrations.

These two approaches, the FMM and HPM method,
describe the calculation of processes, such as chemistry,
on the particles. However, for some processes, mainly
column processes, such as photolysis, radiation, or sed-
imentation, it is favourable to introduce a regular grid,



444

MODELLEVEL

PO I)

o R T

MODELLEVEL

PO I)

o R T

MODELLEVEL

40°S

LATITUDE

Figure 2: Simulated Radon 222Rn volume mixing rations [mol/mol]
at 40° E for December 1% using the Lagrangian transport scheme
ATTILA (top) and an Eulerian scheme (mid) in an EMAC simulation
(see details in the text). Bottom: Ratio of the air mass distribution in
the Lagrangian space mapped on the Eulerian EMAC grid and the
mass distribution of the EMAC core. Results are given for model
levels, where level 90 is the lowermost level and level 60 roughly
80 hPa.

transfer the information from the Lagrangian space onto
this grid and map the calculated change from the grid to
the Lagrangian particles in a consistent manner (see also
Fig. 1). This is described for FMM and HPM method in
Sec. 3.3.
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3.1 Chemistry in FMM

The mass mixing ratio ¢(x) (in [kg/kg]) of any species ¢
is defined by

N
c(x) =p(x)_1§{c,-m,-l[/,-(x), 3.1

where ¢; is the mass mixing ratio of the regarded species
for the mass packet i. (Note that most quantities are time
dependent, which is omitted in this section for simplicity
reasons.)

We define a degree of overlap (x), i.e. the number
of mass packets, which contribute information to the
point x (see also Fig. 3):

K(x) = [p(x)] with
p(x) = {ilyi(x) > 0},

being the set of mass packet indices contributing to x
and | - | the number of elements. We now reshape each
volume V; and mass m; into non-overlapping central
volumes V; and central masses ; for each mass packet i,
which contain the non-overlapping volume and only
parts of the over-lapping volumes:

3.2)
3.3)

R 1
Vi=vi— [ (1-——)dx 3.4
. ( x<x>) G
1
= ——dx with
Vi K(x)

V; = {x|yi(x) > 0}.

f},- are arbitrary disjunct sets such that )A},- C V; and
ff?i dx = V;. Equation (3.4) implicitly defines the central
volumes. For example a region which is overlapped by
K (x) volumes is split into k(x) equally sized parts. The
shapes of these parts are not important to our method.
Similarly, we define the masses ﬁz{ of the non-
overlapping volumes for two overlapping mass packets
i and j. The part of the mass of mass packet j, which
contributes to the mass of the central volume V; of mass
packet i is 7!
o, " d j#i
—1 .
mi— Jy, —Kg()x) miyi(x)dx j=i

B mw@x
= [, R

The central mass 7, i.e. the mass which corresponds to
the volume V/; is then

! = (3.5)

=Y i (3.6)
J
It can easily be shown (by using eq. (3.4)) that
Y=Y m;, 37
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Figure 3: Illustration of the reshaping of mass packets for the
Finite Mass Method. ¢ is the position of the center of the mass
packets, x is the number of overlapping volumes, and V the center
volumes. The first part shows exemplarily three mass packets which
are overlapping. The second part illustrates how the overlapping
index x is defined. The third part illustrates the re-shaping of the
mass packets to center volumes, which are not overlapping anymore.
Note that their shape is arbitrary. (Details see text).
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i.e. the mass is disjunctly partitioned to volumes V;. The
fraction of an individual mass packet j to the central
mass of the mass packet i is

N
== with (3.8)
m;
Yai=1 (3.9)
J
and the air density of the central volume is
N
pi v (3.10)

For any chemical species with the mass fraction in
the part of the mass packet j, which contributes to the
center volume V; follows the mass definition (eq. (3.5)):

Ejzi/ miy;)
ol k(x)

and hence the mean concentration ¢; in the central vol-
ume V; is:

(3.11)

1 o
b= 2
m; ;

(3.12)

This mass packet reshaping is globally mass conserving

(C is the atmospheric mass of the regarded species):

S e =YY &lin] (3.13)
i

i

Chemical processes are now solved for the central
volumes and with the mass mixing ratios ¢;. With the

resulting changes A¢; the respective changes AE{ for the

: J .

overlappmg masses m; are:

- Ae!

~J [

ACi = —
m;

(3.14)

and the changes Ac; for the original mass packets are:
N
Ac; = ZAéi, (3.15)
i=1

This back transformation from the center volumes to
the original mass packets is again mass conserving,



446

which can be easily shown in analogy to eq. (3.13).
Note, this back transformation assumes that the individ-
ual overlapping mass packets are contributing to chem-
ical changes with the same ratio as they contribute to
the mass. Alternatively, this back transformation can
be achieved by calculating this contribution according
to the chemical composition via the tagging method
(GREWE etal., 2010; GREWE, 2013). This will provide
an alternative and probably more consistent definition

of E{ in eq. (3.11), but it does not affect the calculation
in eq. (3.13) and hence the mass conservation.

3.2 Chemistry in HPM

The HPM method provides a mapping of the mass dis-
tribution from N particles on a grid with gridpoints
(see also Sec. 2.2):

p:(Ck?qla"'aQNamla"'amN) (316)
'—>p(Ckaqla"'7qN7m17"'amN) (317)
=2 m¥ (v, (3.18)
=:p*, (3.19)

where W is a basis function satisfying the property of
partitioning of unity to guarantee mass conservation and
Vi the grid volume of &, i.e.

> W(&) =1, and
k
Zkak = Zm,-.
k i

We now need to map the densities pi, which are
defined on the grid, onto the positions of the particles
in a mass conserving manner. This can be achieved by
using the already calculated B-splines for partitioning
of the grid volume (see below eq. (3.23)). Each particle
contributes to the air density of a number of grid points
(eq. (3.19)). At the grid point §; this relative contribution
g is

(3.20)

(3.21)

m'V* (&)
>imWi(G)

We now associate a volume V; to particle i by using this
relative contribution:

= (3.22)

Vi = Viz. (3.23)
k

Thereby the masses and volumes are consistently
defined for both the grid and the particles, with

Y=Y Y m (3.24)
i ik Pk
= p 'Y m¥ (&) (3.25)
k i
(3.26)

=Y Vi
k

Downloaded from www.schweizerbart.de
Unauthorized distribution of this copyrighted material is strictly forbidden!

V. Grewe etal.: Mass conserving transformations for Lagrangian methods

Meteorol. Z., 23, 2014

Table 2: Mixing ratios of an arbitrary species at timestep o and after
a quadratic loss term is calculated (71). P1 and P2 indicate particle 1
and 2.

Time Loss simulated on particles Loss simulated on grid
step P1 P2 Mean Grid Mean P1 P2
to 0.10 09 0.5 0.5 0.1 0.9
1 0.09 0.09 0.09 0.25 0.175  0.675

The air density of the particle is simply p; = m;/V;,
For a given mass of a species ¢" on the particle g;, the
mass mixing ratio and the concentration of this species
are simply obtained using the mass and air density of the
particle.

3.3 Chemistry on a grid

Section 3.1 and 3.2 described how Lagrangian particles
have to be treated in the FMM and HPM method for a
calculation of chemical processes on the particle. How-
ever, there are processes, which require column informa-
tion, such as sedimentation, radiation, and photolysis. In
that case, particle information has to be transferred to
a regular grid, the regarded process simulated on that
grid and the calculated changes re-transferred to the La-
grangian particles.

The FMM is basically grid free, for numerical inte-
grations, a secondary grid is used, which moves with the
particles. Hence, we suggest to introduce a grid in a way,
as it is done for the HPM method (see above) and refer
to the nomenclature in Sec. 3.2. The concentration on
the grid (c({)) can be calculated in analogy to the air
density calculation (pg, eq. (3.19)). We obtain changes
of the concentration on the grid caused by the regarded
process: Ac((y). For linear processes, all particles which
contribute to the concentration are contributing in the
same manner to the concentration change on the parti-
cles (Ac;), which follows the idea of the volume V; cal-
culation in eq. (3.23):

Aci =Y Ac(&)z. (3.27)
k

However, for non-linear processes, this approach is
not valid. Tab. 2 gives a simple example for two particles
with mixing ratios of 0.1 and 0.9. We take a quadratic
(i.e. non-linear) loss process into account, which leads
to loss rates of 0.01 and 0.81 respectively. After the
calculation of the loss process both particles have a
concentration of 0.09. The grid mean (assuming both
particles have the same mass and are fully located in the
grid volume) is 0.5 and the loss rate 0.25, which leads
to a concentration of 0.25 after the process. Linearly, re-
distributing this loss leads to concentrations of 0.175 and
0.675, respectively. Obviously this grid processing leads
to large errors and non-linear processes should be treated
on the particles as far as possible.
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4 Summary and conclusions

A good representation of transport processes in atmo-
sphere-chemistry models is essential for a reliable
estimate of emittor-receptor relations, air quality, or
climate-chemistry simulations. Lagrangian methods are
well suited to resolve tracer transport. The resulting air
density distribution, i.e. the air density distribution based
on the particle distribution, often differs from the air
density distribution of the model’s core, which causes
inconsistencies and errors whenever tracers have to be
transferred from the Lagrangian space to the grid of the
model core. This issue can be resolved by using La-
grangian methods, such as the Finite Mass Method or
the Hamiltonian Particle Mesh method, in the model’s
core. These methods haven’t been used for atmospheric
chemistry applications yet and they are not right away
suited to calculate box or column processes in the La-
grangian space. Here, we present transformations, which
allow a consistent and disjunct partitioning of the atmo-
sphere in volumes and masses, which can be used to cal-
culate either box and column processes.

For the Finite Mass Method, which divides the atmo-
sphere into overlapping mass packets, we reshape these
packets into new non-overlapping packets, which inherit
properties from other overlapping packets. These new
packets represent an auxiliary grid which is only used
for the process calculation, like chemistry, but does not
affect the Finite Mass Method itself. The inversion of
the reshaping is used to map the changes from any box
process onto the original overlapping mass packets.

The Hamiltonian Particle Mesh method employs par-
ticles, which have a mass but no volume, and uses
smoothing function to derive pressure gradients from
the particle distribution for a regular auxiliary grid. This
smoothing can be seen as an extension of the particles
from a point to a volume with the use of the auxiliary
grid and we invert these functions to derive air density
and volume for the particles.

These two transformations divide the atmosphere
into disjunct boxes on the particles so that additional
process simulations, which need well-defined masses
and volumes, such as chemistry can be performed. Col-
umn processes, however, are more difficult to calculate
in the Lagrangian space and it may be necessary to cal-
culate processes not on the particles but on the auxil-
iary grid and map the calculated changes back to the
particles. We showed that this can be done consistently
for linear processes, such as transport or sedimentation.
However for non-linear processes, we showed that any
mapping and smoothing from the particles to the auxil-
iary grid may impose large errors compared to the calcu-
lation on the trajectories. Hence we suggest to calculate
all non-linear processes on the particles and only use an
auxiliary grid in cases, where a direct calculation is not
possible, such as sedimentation, radiation, or photolysis.
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