Development and Characterisation of Solid Oxide Electrolyser Cells (SOEC)

Günter Schiller¹, Michael Hörlein¹, Frank Tietz²

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Technical Thermodynamics

²Forschungszentrum Jülich
Institute for Energy and Climate Research
Materials Synthesis and Processing (IEK-1)
Outline

• Introduction

• Cell Manufacturing

• Electrochemical Characterisation

• Experimental Results

• Conclusion and Outlook
Fluctuating Regenerative Current Production

Vertikale Netzlast und Windenergie-Einspeisung in das E.ON Übertragungsnetz

Datum

Angabe übersteigt Nachfrage bei Weitem

Angabe kann Nachfrage nicht decken

Vertikale Netzlast

Geschätzte Windleistung 2020

Tatsächliche Windleistung 2007

Ludwig-Bölkow-Systemtechnik GmbH, 2008
Hydrogen as Storage Option

Source: LBST
Manufacturing Steps of SOFC Anode-Supported Cells

1. Substrate: Warm pressing with Coat Mix® powder or tape casting at 1200°C.
2. Anode: Screen printing at 1200°C.
3. Electrolyte: Cofiring of anode and electrolyte at 1400°C.
4. Cathode: Screen printing at 1100°C.
5. Current collector: PVD-CGO.
6. Solid oxide fuel cell: Laser-cutting to dimensions up to 200 x 200 mm².
Manufacturing Scheme of SOFC Anode-Supported Cells

- **Substrate manufacturing**
 - Coat-Mix + warm pressing / Tape casting

- **Debinder + Pre-sinterung**

- **Anode + electrolyte**
 - vacuum slip casting / screen printing

- **Co-firing**
 - 1400°C

- **Firing**
 - 1000-1200°C

- **Cathode**
 - screen printing / wet powder spraying

- Pressed size: 33 x 33 cm²
- Cast width: 50 cm²
Solid Oxide Electrolyser Cells: Planar Design

Materials
Anode: (La, Sr)(Fe, Co)O$_3$
Diffusion barrier: CGO – 1-5 µm
Electrolyte: 8YSZ – 5-10 µm
Cathode: Ni/YSZ
Cathode Substrate: Ni/YSZ
Evaporator for Steam Generation

Challenge:
Pulse-free steam generation
I-V Curves at 750 °C as a Function of Steam Content
(Flow rates: 2 l/min H₂/H₂O, 3 l/min air)
I-V Curves at 800 °C as a Function of Steam Content
(Flow rates: 2 l/min H₂/H₂O, 3 l/min air)
Impedance Spectra at 800 °C and 40% Steam Content as a Function of Current Density
Impedance Data at 40% Steam Content in Dependence of Current Density

Area Specific Resistance / mOhm*cm²

Current density / A*cm⁻²
Impedance Data at 60% Steam Content in Dependence of Current Density
Impedance Data at 80% Steam Content in Dependence of Current Density

Area Specific Resistance / mOhm*cm² vs. Current density / A*cm²²
Conclusion and Outlook

- SOFC standard cells from Forschungszentrum Jülich have been characterised in electrolysis mode at 750 and 800 °C in dependence of different steam contents.

- The cells show good performance; long-term tests and degradation studies have not yet been performed.

- Future activities will focus on improvement of performance by variation of stoichiometry of air electrode and on material variation of fuel electrode.

- Long-term measurements of > 1000 h at high current density (> 1 A/cm²) and high humidification (> 60% AH) will be performed to identify degradation mechanisms and to develop mitigation strategies in order to obtain highly efficient and durable SOEC cells.
Acknowledgment

I’d like to thank my PhD student Michael Hörlein for his scientific work and strong effort and Frank Tietz and his co-workers from Forschungszentrum Jülich for manufacturing and providing cathode-supported cells for electrolysis operation.

Financial support from Helmholtz Association in the frame of the Helmholtz Energy Alliance „Stationary electrochemical solid state storage and conversion“ is gratefully acknowledged.