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Zusammenfassung 

Die Verbesserung der Crashsicherheit von Passagierflugzeugen ist ein Thema, das zunehmend 

an Bedeutung gewinnt. Stetig steigende Zahlen im weltweiten Flugverkehr erfordern eine 

verbesserte Crashsicherheit, um einen Anstieg von Unfallopfern in gleichem Maße zu 

verhindern.  Eine weitere wesentliche Herausforderung hinsichtlich der Crashsicherheit ist die 

gegenwärtige Entwicklung  im Transportflugzeugbau, die eine Ablösung von metallischen 

Werkstoffen durch faserverstärkte Kunststoffe zeigt. Duktiles, und damit Energie 

absorbierendes, Materialverhalten wird abgelöst von hoch-elastischem jedoch sprödem 

Werkstoffverhalten mit vergleichsweise geringer Energieabsorption. Alternative Crashkonzepte 

unter Anwendung von diskreten Crashabsorbern müssen daher beim Designprozess von 

neuartigen Flugzeugstrukturen aus faserverstärkten Kunstoffen beachtet werden. Dabei hat der 

Designprozess für den Crashlastfall Einfluss auf das gesamte Rumpfdesign eines 

Transportflugzeuges und sollte demnach bereits in einer frühen Phase des Entwurfsprozesses 

berücksichtigt werden. 

In diesem Zusammenhang entwickelt die vorliegende Arbeit in einem ersten Teil ein 

Vorentwurfstool für den Crashlastfall von Passagierflugzeug-Rumpfstrukturen unter Betrachtung 

einer Standard-Sektion. Auf Basis der expliziten Finite Elemente Methode wird ein 

Modellierungsansatz entwickelt, der eine effiziente Abschätzung des Strukturverhaltens 

ermöglicht. Der entwickelte Modellierungsansatz repräsentiert eine Kombination aus linear-

elastischem Materialverhalten und der Beschreibung von Strukturversagen durch Makro-

Modellierung. Die vorliegende Arbeit untersucht typische Versagensmechanismen einer 

Rumpfstruktur unter crashrelevanter Last und entwickelt daraus entsprechende Makro-Modelle. 

Insbesondere hinsichtlich der unter crashrelevanter Last dominierenden Spantstruktur wurden 

detaillierte Untersuchungen durchgeführt, um eine möglichst genaue Modellierung des realen 

Strukturverhaltens zu gewährleisten.  

In einem zweiten Teil entwickelt die vorliegende Arbeit einen Designprozess unter Anwendung 

des neuartigen Modellierungsansatzes. Ausgehend von einer Bewertung von natürlichen 

Crashkinematiken wird ein Crashdesign auf Basis einer statisch vorausgelegten  Rumpfstruktur 

entwickelt. Als Grundlage für die Entwicklung und Bewertung des Crashkonzeptes werden die 

Passagierlasten, die Strukturlasten sowie die Anforderungen an diskrete Crashabsorber definiert. 

Die Entwicklung des Designprozesses beinhaltet hierbei auch experimentelle Ansätze zur 
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Untersuchung von Crashabsorber-Konzepten. Quasi-statische sowie dynamische Komponenten-

tests unterschiedlicher Komplexität dienen dabei der Realisierung vorgegebener Absorber-

Charakteristiken oder der Generierung von Eingabedaten für die Makro-Modellierung im 

Designprozess. 



Abstract 

Crashworthiness of transport aircraft is a topic that has gained more importance over the last 

decades and that will become even more relevant in the future. The increase of the worldwide 

commercial air traffic demands improved crashworthiness to avoid an increase of fatal accidents 

in the same magnitude. In addition, a substantial challenge is the today´s trend in the aircraft 

industry to increasingly replace metallic materials by composite materials. Ductile, energy 

absorbing material behaviour is replaced by high-elastic but brittle material characteristics with 

comparably low energy absorption. Therefore, alternative crash concepts using discrete crash 

absorbers have to be considered in the design process of new aircraft structures made of 

composite materials. The crash design process will have an influence on the overall design of a 

transport aircraft fuselage structure, and hence should be considered in an early phase of the 

design process. 

In this context, the present thesis develops in a first part a preliminary crash design tool for 

transport aircraft fuselage structures considering a standard section. A modelling approach is 

developed on the basis of the explicit finite element method which enables an efficient 

assessment of the structural behaviour. The developed modelling approach represents a 

combination of linear-elastic material behaviour and the description of structural failure by 

macro modelling. The thesis investigates typical failure mechanisms of a fuselage structure 

caused by crash related loads und derives appropriate macro models. In particular with respect to 

the frame that highly affects the structural behaviour of the fuselage in case of crash, detailed 

investigations are performed which ensure an accurate modelling of the real structural behaviour.  

In a second part, the thesis develops a design process using the new modelling approach. After 

an assessment of natural crash kinematics, a crash design is developed on the basis of a statically 

pre-sized fuselage structure. Basis for the development and assessment of the crash concept are 

the passenger loads, the structural loads and the requirements for the discrete crash absorbers. 

The development of the design process also comprises experimental approaches for the 

investigation of crash absorber concepts. Quasi-static as well as dynamic component tests of 

different complexity provide a basis for the realisation of the required absorber characteristics or 

for the generation of input data for the macro models used in the design process. 



1. Introduction 

Occupant survivability and crashworthiness of transport aircraft is a topic that has gained more 

importance over the last decades and that will become even more relevant in the near future. In 

the last two decades the worldwide annual flight hours of commercial jet airplanes1 has increased 

from about 22 million hours to 45 million hours. In the same period the number of such 

commercial jet airplanes has worldwide increased from about 10,000 to 20,000 [1]. Regarding 

this increase of commercial air traffic it is a widely recognized aim to avoid an increase of fatal 

accidents in the same dimension.  

Occupant survivability is primarily a question of prevention of accidents. High effort is made to 

improve the safety standard of traffic operations that include in particular the air traffic 

management at and near the airport [131]. Besides the prevention of accidents the improvement 

of survivability in case of an accident is a continuous process in which the scientific world as 

well as the aircraft developers bring up high effort. Typically the focus with respect to 

survivability in case of aircraft accident is on fire and cabin safety. Non-flammable and non-

toxic materials as well as the improvement of the burn-through behaviour are topics which have 

led to significant improvement of survivability in the past. Regarding the cabin safety, 

regulations for the seat design as well as safety devices such as seat belt systems or improved 

lighting systems of the escape route contributed to an enhanced survivability.  

The role of the aircraft structure with respect to the occupant survivability was secondary in the 

past, especially regarding the certification rules. Nevertheless, accident statistics document the 

obvious influence of the aircraft structure on the survivability in an accident [2,3]. From 1983 to 

2000, the U.S. national transportation safety board analysed accidents involving part 121 U.S. air 

carrier operations2 [4]. 568 accidents were analysed in this study, 26 of these accidents were 

categorized as serious accident. In this context a serious accident is defined as one that involved 

fire, at least one serious injury or fatality, and either substantial aircraft damage or complete 

destruction. Seven of the 26 serious accidents were defined non-survivable due to the impact 

forces. In the remaining 19 serious but survivable accidents, 1523 (76.6 %) of the 1988 

occupants survived. With respect to the 465 fatalities, 306 (66 %) occupants died from impact, 

                                                 

1 Commercial jet airplanes heavier than 60,000 pounds maximum gross weight 
2 Air carrier operations performed under Title 14 Code of Federal Regulations Part 121 
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131 (28 %) died from fire and 28 (6 %) died from other causes. Figure 1-1 illustrates these 

values per year in the considered period 1983 – 2000. According to this study two-thirds of the 

fatalities resulted from impact. In contrast to this, only less than one-third of the fatalities 

resulted from fire.  

 

Figure 1-1: Number of survivors and fatalities for the serious but survivable accidents [4] 

The role of the aircraft structure in accidents was considered in more detail in [5]. 153 impact 

survivable accidents were analysed in this study in the period of 1959 – 1979. Of these 153 

accidents, 28 accidents experienced extensive damage and rupture of the fuselage lower surface 

– excluding fuselage break accidents. Eleven of these were fatal accidents with 27.7 % of the 

total onboard. On the one hand, these values emphasise that accidents with extensive damage of 

the fuselage structure can be survivable in general. On the other hand, the study identifies the 

potential to reduce the number of fatalities in such accidents by an improved crashworthiness of 

the fuselage structure. 

This general outcome of the accident statistics - the aircraft structure plays a major role in the 

occupant survivability - is tightened by a change in the aircraft design which has arisen in the 

near past. Metallic materials are increasingly replaced by composite materials. Figure 1-2a) gives 

an overview on this change for military aircraft. The replacement of metallic parts by composite 

structures in commercial transport aircraft is illustrated in Figure 1-2b). In the transport aircraft 

category several advantages of composite material are discussed which push the increasingly 

usage of such materials [7-9]. The reduction of structural weight is the most important argument 

for the introduction of new composite materials. Further advantages are an improved fatigue 

performance as well as a better corrosion resistance. In addition, fabrication costs may be 

reduced by the usage of composite structures instead of metallic structures. In particular the 

manufacturing process of the fuselage structure could be improved significantly using composite 

materials. 33 % of the total parts of a metallic aircraft structure are installed in the fuselage, only 



1. Introduction                                                                                                                                16 

12 % in the wing structure. The relative costs per pound of structure are accordingly. The 

metallic fuselage structure identifies relative cost3 of 1.25, the metallic wing structure only 0.815 

[8]. 

 

Figure 1-2: Progress in using composite material [6] 

                                                 

3 Relative cost for the overall airframe = 1.0 
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Besides these benefits of composite materials in the aircraft design there are also some 

drawbacks. One main drawback is the material failure behaviour. Composite materials, more 

precisely carbon-epoxy material, provides a negligible plasticity, the damage behaviour is very 

brittle. With respect to the failure characteristic, such materials provide significantly less energy 

absorption compared to typical metallic material. Figure 1-3 compares the stress strain 

relationship of carbon-epoxy material and aluminium which are typically used in an aircraft 

structure. 

The significantly lower capacity of CFRP materials to absorb energy by damage and plasticity 

strengthens the influence of the aircraft structure on the occupant survivability in an accident. 

Especially a fuselage structure of a transport aircraft made of CFRP material may provide critical 

crash behaviour. Higher impact forces are expected compared to a metallic structure which 

potentially exceeds the human tolerances. In addition, the structural integrity is endangered. 

Uncontrolled fuselage fractures are critical with respect to occupant evacuation as well as 

intrusion of fire and smoke or water in case of ditching.  

The failure behaviour of CFRP materials and its consequences for the crashworthiness of an 

aircraft is one main issue which leads to very high effort in the introduction of first full-

composite fuselage structures for transport aircraft. 

 

Figure 1-3: Stress strain relationship of graphite-epoxy material and aluminium [6] 

Therefore, the increasing usage of composite materials has also shown an impact on the 

certification process of commercial transport aircraft. General certification regulations are given 

e.g. in the U.S. federal aviation regulations. Part 25 of these regulations defines the airworthiness 

standards for transport category airplanes [10]. The emergency landing conditions in section 
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25.561 define several load cases for which the aircraft design has to demonstrate every 

reasonable chance for the occupant of escaping serious injury. The load cases in this section are 

given by load factors which are equivalent to minor crash landing cases. More severe crash 

landing cases are not considered in the FAR25. In particular, limitations of impact forces acting 

on the occupant in specific crash cases are not defined. This is important with respect to new 

fuselage designs made of composite materials. Due to the limited energy absorption capacity 

discussed above, much higher impact forces on the occupants are expected for composite 

compared to metallic fuselage structures. 

To cover all issues which arise in case of composite aircraft structures regarding certification, the 

U.S. federal aviation administration defines so called special conditions which are published 

specifically for each new aircraft model. Such special conditions may specify survivable 

crashworthiness characteristics that have to provide approximately the same level of safety as 

those of a similarly sized airplane fabricated from traditionally used metallic materials [11].  

Currently, the developers of transport aircraft are working intensively on this huge challenge to 

fulfil such special conditions. In these development procedures crashworthiness has a completely 

different significance as it is known from former developments of metallic aircraft. The design of 

the fuselage structure has to be adapted to improve the poor crashworthiness characteristics of 

typical composite fuselage structures. Special crash concepts have to be integrated enabling the 

absorption of kinetic energy by absorber devices. Structural components in the fuselage have to 

be stiffened to carry typical crash loads and to avoid uncontrolled failure. Finally, the complete 

design of a composite fuselage structure is driven by the challenge to achieve crashworthiness 

characteristics which are similar or better compared to metallic designs where crashworthiness 

plays a negligible role in the design of a fuselage structure.  

Looking back to the increasing traffic of commercial transport aircraft the global aim is to 

improve the occupant survivability similarly to the increasing amount of traffic. Hence, the final 

challenge is not only to achieve an equivalent level of safety for composite aircraft compared to 

nowadays aircraft but even to enhance it significantly. 

1.1. Objective and structure of the thesis 

The objective of this thesis is to contribute to the development of a crashworthy composite 

fuselage design of transport aircraft. A methodology is used which considers local crash devices 

that are installed in the critical areas of a fuselage structure. A new modelling approach on 

fuselage section level had to be developed, which is based on commercial explicit finite element 

method, and which is used to design the local crash devices. By modification of the devices’ 
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characteristics the crash kinematics of the fuselage structure can be optimised. A desired crash 

kinematics can be realised by the definition of trigger load and absorption level in the individual 

crash devices. The aim of such a numerical analysis on the fuselage section level is the 

minimisation of crash loads and the avoidance of uncontrolled crash kinematics. Furthermore, 

the fuselage structure, and more precisely the critical frame structure, can be adapted to the 

improved crash loads to avoid any significant uncontrolled failure outside of the crash devices. 

Finally, the required characteristics of the individual crash devices, which were found in the 

numerical approach on the fuselage section level, can be used as a basis for the development of 

local trigger and energy absorbing concepts. The essence of this methodology is the usage of a 

numerical modelling which is well suited for a preliminary design process. In addition, the 

development of technological concepts can be performed on the component level and does not 

need the accomplishment of large and expensive tests. Figure 1-4 illustrates such a crash concept 

which is based on this methodology, covering energy absorption in the sub-cargo area, the lower 

side shell and the passenger crossbeam support struts.   

The structure of the thesis provides two main aspects. The first aspect considers the methodology 

of the developed modelling approach and comprises chapters 2-5. The focus is on the numerical 

representation of typical frame failure mechanisms which is the most important one with respect 

to crash related loads on a fuselage structure.  

Chapter 2 gives a review on the work which has been done in the field of aircraft 

crashworthiness in the past. The state of the art is discussed in this chapter with respect to 

technological as well as numerical methods. Based on this state of the art open questions are 

identified which define the objective of this thesis.  

In chapter 3 the basic modelling approach of the developed Kinematics Model is presented. The 

macro modelling techniques as well as further modelling aspects are discussed. 

Chapter 4 deals with the numerical representation of frame failure which is the main failure 

mechanism of a fuselage section crash kinematics. Several aspects are analysed in detail which 

contribute to a sufficiently accurate frame failure representation. 

Chapter 5 describes the development of a user-subroutine for frame failure modelling. An 

advanced model of the frame failure macro representation was programmed in a user element 

which provides some improvements compared to the standard frame failure modelling discussed 

in chapter 4. 
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The second main aspect of the thesis considers the methodology of a crash design process that is 

based on the application of the Kinematics Model. Chapters 6-8 discuss the design process on 

the basis of an exemplary application.  

In chapter 6 different natural crash kinematics of a typical fuselage section are analysed and 

assessed using the Kinematics Model. The preferred natural crash kinematics represents the basis 

for the development of the crash design.  

In chapter 7 the selected crash kinematics, as an outcome of chapter 6, is applied on a statically 

pre-sized CFRP fuselage structure. A crash scenario was developed which includes the definition 

of local crash device characteristics as well as the sizing of a crashworthy frame structure. 

Finally, chapter 8 deals with the development of different experimental test setups which were 

used to investigate local crash device concepts. A detailed crushing test setup was developed for 

the investigation of potential crush absorbers in the sub-cargo area. In addition, the development 

of a generic frame bending test setup is discussed with the focus on the investigation of general 

characteristics such as the energy absorption capacity. 

Concluding remarks are given in chapter 9. 

 

Figure 1-4: Crash design concept using local crash devices 

  



2. Review on crashworthiness research – state of the art 

This chapter deals with a review on research activities on the crashworthiness of aircraft. 

Experimental as well as analytical work is considered.  

Paragraph 2.1 discusses the main topics which have been experimentally analysed in the past. A 

current state of the art of crashworthy aircraft design is outlined from these wide experimental 

database gained by the discussed research activities.  

The focus in paragraph 2.2 is on the simulation methodologies which have been developed and 

used to investigate and improve the crashworthiness of aircraft. Different simulation methods are 

discussed and a state of the art in crash simulation of aircraft structures is outlined. 

Finally, paragraph 2.3 identifies open questions regarding the development of crashworthy 

aircraft designs as well as simulation methodologies. Different topics are derived from these 

open questions which have to be investigated within this thesis.  

2.1. Review on crashworthiness research 

In the 1950s and 1960s the research activities on aircraft crashworthiness were affected by full-

scale crash tests. In the 1950s the NACA performed seven full-scale crash tests of different 

aircraft types such as low-wing or high-wing configurations as well as aircraft designs with and 

without pressurised cabin [12]. In the 1960s two crash tests of larger aircraft were conducted on 

behalf of the U.S. federal aviation agency [13-14]. A Douglas DC-7 as well as a Lockheed 1649 

were crash tested in a specific environment representing survivable or potentially survivable 

accidents of hard landing, wing low impact with the ground and impact into large trees in an off-

airport forced landing. In Figure 2-1 the crash test of the Lockheed 1649 is depicted.  

All these conducted crash tests were performed with the main velocity component in horizontal 

direction. The aircraft were mounted on a guide rail standing on their own landing gear. With its 

own propulsion the aircraft were accelerated and guided against several crash barriers, obstacles 

and impact hills, as exemplarily illustrated in Figure 2-1a). The aim of these full-scale crash tests 

performed in the 1950s and 1960s was mainly the generation of a crash load data base of 

survivable crash cases. None of the tested aircraft structures were of “jet size” and the design 

differed partly significantly from today´s aircraft designs.  



2. Review on crashworthiness research – state of the art                                                              22 

 

Figure 2-1: Full-scale crash test of the Lockheed 1649 [13] 

In the 1980s an FAA crash dynamics research development program was initiated which was 

jointly sponsored by the NASA in some phases. Five vertical drop tests of B707 fuselage 

sections were conducted by the NASA and the FAA [15-19]. The lengths of the fuselage section 

were chosen to be between approximately 3 m and 4 m (10-13 ft). Soft sections, centre sections, 

conical sections and asymmetric sections with cargo door were tested. In addition to dummy or 

dummy ballast loading in the cabin, some of the sections were loaded with cargo. Figure 2-2a) 

depicts one of these B707 fuselage section drop tests. A further drop test was performed with a 

wide-body DC-10 fuselage section [20]. In these six fuselage section drop tests the initial 

velocity was defined between 6.1 m/s and 10.4 m/s (20-34 ft/s). 

The research program culminated in the full-scale controlled impact demonstration (CID) test of 

a remotely piloted B720 airplane which was performed on December 1, 1984 [21-22]. Besides 

the generation of a good crash load data base a main interest of this test was the investigation on 

post-crash fire behaviour. Figure 2-2b) illustrates the B720 airplane shortly before impact on the 

wing opener barriers which were installed to enforce an extensive fuel spill with the danger of 

post-crash fire.  

 

Figure 2-2: Crash activities of the FAA and the NASA in the 1980s [23] 

In the scope of the FAA crash dynamics research development program three further vertical 

fuselage section drop tests were performed in the 1990s and beginning of the 2000s [24-26]. 

Besides a B707 fuselage section aft of the wing, two B737 fuselage sections forward of the wing 
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with a cargo door were drop tested. Both B737 sections were loaded with cargo, one section with 

luggage and the other section with an auxiliary fuel tank. Both sections were equipped with 

overhead stowage bins to investigate potential endanger of cabin safety by overhead masses that 

may fail. All three fuselage section drop tests were performed with an initial velocity of 9.1 m/s 

(30 ft/s). Figure 2-3 illustrates one of the B737 fuselage section drop tests. 

 

Figure 2-3: FAA drop test of a B737 fuselage section [24] 

In the 1990s the European Community funded programme “crashworthiness for commercial 

aircraft” contributed to the investigation of the crash behaviour of metallic fuselage structures of 

transport aircraft. Besides quasi-static and dynamic sub-component tests of an A320 rear 

fuselage structure, an A320 fuselage section was drop tested [27-30]. The sub-component tests 

served for detailed investigations on the failure behaviour of the sub-cargo area as well as 

different located frame structures. The test results of the sub-component tests were intensively 

used to improve numerical modelling techniques. Different simulation methodologies were 

applied to perform pre-test simulations of the A320 fuselage section drop test. In 1995 the 



2. Review on crashworthiness research – state of the art                                                              24 

research programme culminated in the drop test of a 6-frame section of an A320 rear fuselage. 

The drop test was performed with an initial velocity of 6.7 m/s (22 ft/s). In Figure 2-4, sub-

component tests as well as the fuselage section drop test are depicted.   

 

Figure 2-4: The European Community funded programme "crashworthiness for commercial aircraft" [28, 30] 

Further research on crashworthiness of metallic transport aircraft structures was performed by 

the National Aerospace Laboratory of Japan (NAL) in the 2000s. A forward fuselage section 

with cargo compartment as well as an aft fuselage soft section of a YS-11 transport aircraft was 

drop tested with an initial velocity of 7.6 m/s (25 ft/s, forward fuselage section) respectively 6.1 

m/s (20 ft/s, aft fuselage section) [31-32]. The NAL also performed about 40 drop tests of 

simplified structural aircraft fuselage models and analysed the influence of geometrical 

parameters on the crash behaviour, such as the position of the vertical support struts as well as 

the vertical location of the passenger crossbeam [132-133].  

In the scope of an evaluation of the adequacy of current certification standards for seat and 

restraint systems for smaller commuter airplanes, the FAA initiated the commuter airplane 

crashworthiness program in the 2000s. Four different commuter category airplanes were tested in 

full-scale vertical drop tests [33-38]. Besides information on the fuselage accelerations which 
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contributed to the certification standards, valuable information of the structural crash behaviour 

of full-scale aircraft structures could be gained. In contrast to the design of large transport 

aircraft, these commuter airplanes provide no cargo floor area and are partly designed in a high-

wing configuration. Nevertheless, information about local structural failure can be assigned also 

to the structural behaviour of large transport aircraft. Figure 2-5 depicts two of the tested 

commuter airplanes.  

 

Figure 2-5: The FAA commuter airplane crashworthiness programme [37, 38] 

All the work on crashworthiness of metallic aircraft structures, discussed above, contributes to 

the definition of a “metallic equivalent” as it is specified in the special conditions for the 

certification of new transport aircraft structures made of composite materials. 

Crashworthiness research on composite structures  

Crashworthiness research on composite aircraft structures is mainly driven by the challenge of 

controlled absorption of the kinetic crash energy. All known research in this field postulates local 

crash absorbers which have to be implemented in the structure to improve the crashworthiness of 

composite aircraft. The basis for such absorber concepts was developed in the research on 

helicopter structures. Several (metallic) sub-floor absorber concepts for a helicopter or a general 

aviation airplane structure were analysed by the NASA in the 1970s and 1980s [39]. Figure 2-6 

depicts the main outcomes of this work. The principles of the NASA airframe crashworthy 

design concepts were adapted later to composite structures to benefit from the composites´ high 

mass-specific energy absorption by crushing [40]. Although composite material, and in a 

narrower sense CFRP material, generally provides brittle failure behaviour with little energy 

absorption, a controllable progressive crushing process of such material can lead to a mass-

specific energy absorption which is significantly higher than that obtained for metallic materials. 

Figure 2-7 compares the mass-specific energies absorbed by different materials in different 
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crushing processes. Wide-ranging research has been conducted in this field with the focus on the 

material behaviour under crushing which has been analysed by different specimens and 

components like tubes, half-tubes, cruciforms or corrugated beams [41-45].  

 

Figure 2-6: NASA research on crashworthy airframe design concepts [39] 
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Figure 2-7: Crushing performance of generic structural elements [41] 

Unfortunately, this wide-ranging research has its focus limited on the crushing of generic 

composite specimens to investigate the material behaviour. As a crashworthy composite 

transport aircraft design can not be reduced to one single failure mode of generic specimens, 

further research has to be conducted regarding other failure modes, such as bending failure of the 

frame structure. Figure 2-6a) depicts this case. Whereas a typical crashworthy helicopter design 

is defined by a stiff structure allowing extensive crushing of the sub-floor area, the failure 

behaviour of a transport aircraft structure in a crash event is dominated by frame bending failure.  

In addition to the local failure modes, the overall crash behaviour of a composite aircraft 

structure has to be analysed. 

Both topics were considered in research work which was conducted by the NASA in the 1980s 

[46-51]. Several composite aircraft structural components were tested to investigate the overall 

crash behaviour as well as the frame failure behaviour.  

Composite fuselage frames with various cross-sectional shapes and a diameter of 1.8 m (6 ft) 

were drop tested. The drop tests were performed in a guiding system to constrain the single 

frames from out-of-plane rotation during the test. In addition, a skeleton and a skinned composite 

subfloor section was drop tested. All drop tests were performed with an initial velocity of 6.1 m/s 

(20 ft/s). Figure 2-8 shows examples of tested structural components. The main outcome of this 

study was a similar failure behaviour of these composite structures compared to the failure 

behaviour of metallic fuselage sections which was identified in the fuselage section drop tests 

discussed above. This failure behaviour was obtained for composite structures which have not 

been designed or optimized for energy absorption or crash loading considerations. The similar 
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failure behaviour is focused on the failure locations in a fuselage structure and not on the energy 

which is absorbed in the individual frame failure locations.  

 

Figure 2-8: NASA research on composite aircraft structural components [47] 

In the 1990s crashworthiness research for composite fuselage designs was conducted intensively 

in the European Community funded programme “CRASURV” (Crash Survivability). In the 

scope of this project a review on crashworthiness research of composite structures was 

performed. Well documented reference lists of this review are given in [52, 53]. The spectrum of 

the CRASURV project comprised the complete test pyramid from material coupon tests up to 

fuselage sub-floor drop tests, as illustrated in Figure 2-9. Composite absorber concepts such as 

corrugated beams or cruciform structures, depicted in Figure 2-9c), were tested [134-135]. The 

investigated absorber structures were integrated into composite fuselage designs of a commuter 

aircraft as well as a single-aisle transport aircraft. In a sub-floor drop test of the commuter 

structure the desired crash kinematics could not be obtained [54-56]. Uncontrolled failure of the 

absorber structures occurred with little energy absorption, Figure 2-9d). Regarding the composite 

single-aisle transport aircraft design a sub-cargo structure as well as a sub-floor structure was 

drop tested [57-59]. Neither the sub-cargo structure drop test nor the sub-floor structure drop test 

could demonstrate the functionality of the specified crash concept. In the sub-cargo structure 

drop test the absorbers, sine-wave beam structures, did not crush along its full length, Figure 2-

9e). An improved design was implemented in the sub-floor structure. Nevertheless, this drop test 

again denied a successful functionality of the defined crash concept as the fuselage design above 

the absorber structure was not able to carry the crash loads. The cargo-crossbeam failed and 

prohibited the crushing of the sine-wave beam structure, Figure 2-9f). All three drop tests were 

conducted with an initial velocity of about 7 m/s. Despite of the non-successful drop tests a main 

outcome of the CRASURV project was the conclusion that an implementation of energy 

absorption devices is mandatory for a composite aircraft structure [61]. 
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Figure 2-9: The European Community funded project "CRASURV" [56,57,59,136,137] 

The crash concept of the CRASURV composite transport aircraft structure specified a crush zone 

which is located exclusively in the sub-cargo area. Further potential of energy absorption above 

that area was not considered. As the kinetic energy has to be absorbed along a comparably small 

crash distance, high crash forces can occur which lead to a massive design of the above fuselage 

structure. In case of the CRASURV transport aircraft structure the cargo-crossbeam as well as 

the frame structure had to be sized significantly stiffer compared to typical aircraft designs [60].  

Further research on crashworthy composite fuselage design considered the cargo area as 

additional crash zone to increase the available crash height. This crash zone is mainly affected by 

frame bending failure. Research work was conducted in the 1990s to improve such bending 

failure characteristics of CFRP frame structures with respect to an increased energy absorption 

capacity [62-65]. Figure 2-10 depicts typical compression tests of curved frame components 

which were conducted in the scope of this work. In this study textile composite frame structures 

were investigated additionally, such as braided frames. Although an optimized design showed 

limited improvements of energy absorption in a bending failure process, significant increase in 

the post-failure energy absorption was not observed. 
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Figure 2-10: Research on improved energy absorption in CFRP frame structures [62] 

Currently, transport aircraft developers work on new programmes of wide-body aircraft with 

primary structures made of CFRP. Boeing is certifying its new B787 model which provides a 

CFRP fuselage structure. Airbus is developing its A350XWB model which is planned to be 

fabricated with a high ratio of CFRP material. To fulfil an equivalent level of crashworthiness 

compared to metallic designs, as specified in the special conditions of the B787, Boeing has 

defined a crash concept for the sub-cargo area [66]. Massive stanchions made of CFRP shall be 

crushed in a progressive mode. In contrast to the stiff structure which was designed in the 

CRASURV transport aircraft fuselage section, the B787 fuselage structure provides much less 

stiffness above the sub-cargo area, as Figure 2-11 depicts. In crash cases without cargo loading, 

the comparably filigree cargo-crossbeams and frames have to carry the full crash load. 

 

Figure 2-11: Boeing 787 crash concept (fuselage section 46) [66, 67] 
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2.2. Review on simulation methodologies 

In general, crash dynamics of detailed structural designs are too complex for manual analysis. 

However, computer based modelling methods offer a capability that can provide a simulation of 

all important dynamic interactions. Numerous computer simulation models have been developed 

for use in simulation evaluations. And none of the developed modelling procedures is totally free 

of testing requirements and analytical judgement. The reason is the extremely complex process 

for the structural deformation under crash loading, which involves transient dynamic behaviour, 

complicated framework and shell assemblies, large deflections and rotations as well as extensive 

plastic deformation, damage and failure [5].  

The multi-body approach, depicted in Figure 2-12, uses a very simple model to represent the 

considered structure, based on spring and beam elements as well as mass elements. In addition, 

plastic hinges can be defined to describe large rotational deformation. The equations of motion 

are solved numerically. Such models are very efficient due to their simplifications and are often 

used in the preliminary design phase of vehicles or trains to estimate the general crash 

characteristics [68-73].  

 

Figure 2-12: Multi-body system - generic model and vehicle model [70] 

Hybrid models are based on the multi-body approach and use experimental test data as well as 

detailed finite element simulations to generate input data for the spring elements and the plastic 

hinges. A widely used hybrid modelling program in the field of aircraft crashworthiness is DRI-

KRASH [145]. Several crash tests discussed in paragraph 2.1 were analysed with this code, 

examples are illustrated in Figure 2-13. The model efficiency can be used to simulate full-scale 

crash tests such as the controlled impact demonstration (CID). Test results of the fuselage section 

drop tests, which were conducted in advance of the CID test, could be used to calibrate the full-

scale model and to predict the CID test. In addition, the hybrid full-scale model was used to 

perform sensitivity studies [74].  
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In the European Community funded project “Crashworthiness for commercial aircraft” the 

hybrid code DRI-KRASH was used to predict the drop test of an A320 fuselage section. The 

experimental test data of structural components of an A320 fuselage were used as characteristic 

inputs for spring elements and plastic hinges. Finally, a good prediction of the fuselage section 

drop test could be achieved [75].  

In contrast to the usage of experimental test results, detailed finite element simulations can be 

performed to generate characteristic failure data of structural components which can be used as 

input for springs and plastic hinges in the hybrid model. An example of such an approach is 

given in [76] on the basis of a helicopter subfloor structure.  

Further examples on hybrid code applications are given in [77].  

 

Figure 2-13: Hybrid code models (DRI-KRASH) [74,75] 

The finite element method is a further analytical approach in which the structure is divided into 

appropriate structural units called elements. The deformation characteristics of each component 

are calculated from its material stress-strain curve. The structural mass is placed at nodes at each 

element boundary and is therefore distributed throughout the structure. The equations of motion 

of the elements are solved numerically. An overview on the finite element method and its 

integration schemes is given in Appendix A1.1.  

The finite element method is used for detailed analysis of structural design or its failure 

behaviour particularly due to dynamic loads. Explicit finite element method for analysis of 

crashworthiness of aircraft structures is used extensively. A wide range of literature documents 

the use of FEM for crash analysis of aircraft structures [78-86]. Some of the fuselage section 

drop tests discussed in paragraph 2.1 were simulated using the finite element method, Figure 2-

14b). Based on the experience gained with such simulations, the NASA prepared best practices 

for crash modelling and simulation [87]. The increased computational power allows the 
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simulation of larger models up to detailed full-scale models of aircraft crashes, as the NASA 

performed in the recent past of the full-scale drop test of an ATR42 aircraft [88], Figure 2-14a).  

Nevertheless, the current state of the art in the FE simulation of aircraft crashworthiness is the 

consideration of a fuselage section instead of a full-scale model. The explicit finite element 

method limits its range of considered problems to short-time events. Long duration events, such 

as a real aircraft crash scenario lasting several seconds, would lead to unacceptable error 

propagation due to the enormous number of calculation cycles. Hence, typical FE simulations 

consider purely the vertical direction which shortens the crash event to few hundred 

milliseconds. The neglect of the horizontal component has minor influence on the structural 

damage and crash kinematics of an aircraft fuselage. In typical crash scenarios the aircraft slides 

on the ground and induces friction forces which are significantly below the impact loads of the 

vertical direction. Furthermore, the longitudinal forces of the aircraft sliding are mainly carried 

by the fuselage skin and the stringers whereas the vertical impact loads are carried mainly by the 

frame structure. For that reason, the consideration of a fuselage section under purely vertical 

crash loads is a sufficient approach for the development of crash concepts that have the aim to 

reduce the impact loads on the occupants. This approach is conducted in current development 

processes of new composite fuselage aircraft such as the Boeing 787 or the Airbus A350XWB. 

Still, such simulation results are of generic manner and do not consider all potential loading 

conditions of a real crash situation. For example, the sliding of an aircraft against hills or on 

rough ground, which can lead to fuselage break events, is not considered. Again, such failure 

event has less influence on the vertical impact loads which are the major cause of death in 

aircraft accidents.  

The consideration of a fuselage section in numerical analyses implicates another drawback 

which has to be discussed. A fuselage structure comprises several sections which differ 

significantly in their structural behaviour. Fuselage sections which include landing gear bays or 

the centre wing box provide much stiffer behaviour compared to the typical fuselage sections. In 

addition, the installation of cargo doors can lead to asymmetric crash kinematics caused by 

different stiffness of the lower fuselage side shells. The concentration on a typical fuselage 

section for the analyses of crash concepts can be critical. Nevertheless, it provides a sufficient 

generic basis for the development of such fuselage concepts in a preliminary design phase and it 

provides a basis for comparison of safety levels. On the basis of such analyses on the fuselage 

section level an equivalent level of safety compared to metallic airframes can be demonstrated in 

a certification process. However, it is obvious that the developed crash concept on the basis of a 
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typical fuselage section has to be adapted to the other fuselage sections to fulfil a real equivalent 

level of crashworthiness.  

 

Figure 2-14: Finite element models [84,88] – in comparison to hybrid code models in Figure 2-13 

A further point that has to be discussed in the scope of finite element modelling is the definition 

of material behaviour. In contrast to hybrid modelling, the FEM approach provides detailed 

models for the representation of material behaviour. With respect to the simulation of composite 

structures this is a huge challenge. The complex damage and failure behaviour of composite 

structures can not be modelled by characteristic curve inputs as it is the case in hybrid models.  

High effort was raised in the European project “CRASURV” to develop improved formulations 

for composite materials [89-93]. The verification of such models was performed from the 

coupon level up to the fuselage section level. Figure 2-15 shows exemplary results of this 

research and compares the failure modes of composite cruciform and trapezoidal beam obtained 

by simulation and test. 
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Figure 2-15: Composite material model validation [94,138] 

The NASA performed simulations of composite aircraft structures as well. The simulation of a 

1/5-scaled model composite fuselage concept as well as of a full-scale composite helicopter is 

documented in [95-98]. 

Further work on simulation of composite materials in finite element methods is documented in 

[99-102]. In particular [100,101] represents the current state of the art in composite modelling 

using the finite element method. In this work crushing tests of CFRP specimens were simulated 

using a stacked shell approach. The failure behaviour, and more important the failure load level, 

of the simulation agrees well with the test results, as depicted in Figure 2-16. Nevertheless, the 

presented results represent post-test simulations. With respect to the predictive capability of 

composite material models further research is required. 
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Figure 2-16: State of the art composite modelling in finite element methods [101] 

2.3. Identification of open questions – definition of the thesis 

The review on crashworthiness research in paragraph 2.1 identified that a wide basis of 

knowledge was gained in the past by several research programmes. The complete range from 

material tests up to full-scale crash tests was considered. In addition, the critical crash behaviour 

of composite structures was investigated in several research projects. Nevertheless, sufficient 

crashworthiness for composite fuselage structures could not be demonstrated until now. The 

research work identified, that crash concepts which were developed for composite helicopter 

structures can not be adapted directly to transport aircraft structures. The static sizing of 

helicopter structures provides already a stiff fuselage design as heavy masses – turbine and 

transmission - are installed above the cabin. A similar crash concept adapted to transport aircraft 

would lead to significant structural mass penalty compared to the static sizing, as demonstrated 

by the crash improved composite transport aircraft fuselage design in the project CRASURV. 

Composite fuselage designs of new wide-body aircraft which are currently being certified, such 

as the Boeing 787, specify a crash concept which is mainly similar to helicopter crash concepts. 

An equivalent level of safety compared to metallic designs is questionable in this aircraft model 

as the fuselage structure above the crash zone provides less stiffness. The outcome of the current 

state of the art is the need to develop crashworthy composite fuselage designs which provide an 

equivalent or even better level of safety compared to today´s aircraft structures made of 

aluminium. Such crash designs have to specify additional crash devices which control a crash 

scenario and which absorb sufficient kinetic energy. The principle of these crashworthy designs 
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was already given in Figure 1-4. The crash devices have to be designed so that their activation 

corresponds to a controlled crash kinematics which should be a cascading scenario starting with 

failure and energy absorption in the lower fuselage area and progressing stepwise by the 

activation of other crash devices during the crash sequence. The design of trigger load and 

energy absorption level in the individual crash devices has to be performed on the fuselage 

section level considering the crash kinematics of the entire fuselage cross-section. In addition to 

the design of crash devices, the statically sized fuselage structure potentially has to be resized to 

sustain the crash loads.  

Such a design process can be conducted numerically by the methods discussed in paragraph 2.2. 

Hybrid codes, for example DRI-KRASH, are efficient to analyse such problems. Failure is 

described using macro elements such as springs and plastic hinges. With respect to the design of 

crash devices this modelling approach is advantageous as the required characteristic of the 

individual crash device can be defined directly by the macro input. The main disadvantage of 

this approach is its course level of discretisation. Detailed conclusions about the structural 

behaviour are hardly possible as several structural parts are not modelled in detail. As an 

example, a re-sizing of the frame structure to consider the crash loads can not be performed 

accurately enough with the hybrid approach, as the structural interaction of frame and skin is not 

represented, which plays a major role in the bending behaviour of a frame structure. In the 

hybrid model, beam elements represent frames, stringers and the skin. Hence, the discretisation 

cannot resolve detailed structural design requirements.  

In contrast to hybrid codes, the modelling approach of detailed finite element method offers the 

possibility of detailed structural analyses. The structure is modelled more accurately which 

allows the analysis of local effects and the re-sizing of structural parts due to the crash loads. 

However, the detailed modelling approach also implicates disadvantages. To represent the 

fuselage structure in sufficient detail a large amount of data is necessary to build up the model. 

As the crash aspect is typically analysed in the preliminary design phase of an aircraft 

development, these detailed data are partly not available. Assumptions can be used for the 

missing data, but finally these details may have an important influence in some crash events and 

have to be considered as critical. In addition, the detailed FEM approach uses material 

formulations for composites which are not fully predictive, especially with respect to failure and 

post-failure modelling. The results of such analyses will have a significant level of uncertainty.  

The development of crash designs for transport aircraft fuselage structures requires an analytical 

approach which combines some advantages of hybrid codes and detailed FEM. The possibility to 

describe the required behaviour of crash devices by macro elements should be combined with a 
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more detailed modelling approach. The discretisation should be as detailed as necessary to 

represent all important structural effects and as course as possible to avoid the need of data 

which is not available in a preliminary design phase. Uncertainties caused by damage and failure 

representation of composite material formulations should be avoided by the usage of mainly 

linear-elastic material models. The main failure events should be described exclusively by macro 

elements. The analytical approach should provide the opportunity to completely design a 

fuselage structure for crash. This includes the required characteristics of the crash devices to 

achieve an optimum crash kinematics, their positioning in the fuselage structure as well as the 

design of the remaining structure to sustain the crash loads.  

Definition of the thesis is the development of such an analytical approach. Besides the modelling 

approach itself a complete crash design methodology shall be developed and demonstrated. This 

includes the definition of a design process as well as the development of experimental test setups 

to investigate concepts for local crash devices. Such test setups can be used either to generate 

input data for the macro elements or to develop crash devices which fulfil the required 

characteristics of the crash design process.  

 

 



3. Aspects of the Kinematics Model approach 

This chapter deals with a crash design tool that was developed according to the requirements 

discussed in paragraph 2.3. Benefits of different established analyses techniques are combined to 

provide a preliminary design tool for the crash scenario development of a fuselage structure.  

The general modelling technique of this so-called “Kinematics Model” is discussed in this 

chapter 3. Further detailed investigations, which were performed in the scope of the model 

approach development, are considered in chapter 4 and 5.  

3.1. Basic approach of the Kinematics Model 

Chapter 2 already discussed the circumstance that in a well-defined crash scenario of a 

composite fuselage structure main failure should occur exclusively in the crash devices. Failure 

outside of the crash devices could lead to uncontrolled crash kinematics of the brittle structure 

with the potential loss of any crashworthiness. Hence, the circumjacent structure of the crash 

devices has to remain intact. This requirement leads to a modelling approach where all failure is 

described by macro elements which represent the crash devices. The remaining structure, that is 

not allowed to fail, is modelled linear-elastically. Crash scenarios can be developed, assessed and 

optimised by modification of the macro characteristics. These modifications include trigger 

loads, energy absorption capacities or in general the capability of energy absorption (brittle or 

absorbing failure characteristics).  

In general, the Kinematics Model is based on the commercial explicit finite element method. On 

the one hand, the model is discretised in such detail that all important structural effects are 

represented. Hence, the fuselage structure is represented using shell, beam and bar elements 

according to the common FEM approach. On the other hand, the discretisation is as coarse as 

possible to avoid the need of data which are not available in a preliminary design phase. Finally, 

the structure is modelled using mainly linear-elastic material characteristics. Uncertainties 

caused by damage and failure representation of CFRP material models are negligible in this 

approach.  

Based on the linear-elastically modelled structure an increased element size can be defined for 

the representation of the fuselage structure, compared to classical explicit FE modelling 

approaches considering non-linear material behaviour. In the linear-elastically modelled parts, 
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the deformations of the finite elements are comparatively small, at least in the range of structural 

design allowables. Mesh refinement for representation of large deformation is not essential even 

though the elements typically used in explicit FEM use low-order shape functions of a linear 

form.  

Additional model efficiency is obtained in a comparatively coarse model representation. 

Structural parts which do not contribute to important effects with respect to typical crash loads 

primarily have to represent their stiffness in an accurate way.  For this reason, stringers are 

modelled using beam elements. Details such as clips and cleats are not modelled.   

The Kinematics Model considers exclusively vertical crash loads on a fuselage section, similar to 

the current state of the art simulations of aircraft crashworthiness as discussed in paragraph 2.2. 

The crash concept, respectively the equivalent level of safety, is assessed on a 2-bay soft section. 

The generation of fuselage section geometries as well as the corresponding FE meshes was 

performed using the DLR in-house mesh generation tool ‘SECTMESH’ [103]. 

Figure 3-1 illustrates the modelling approach of the Kinematics Model. Potential crash devices 

respectively failure locations which are represented by macro architectures are highlighted in red 

colour.  

 

Figure 3-1: Modelling approach of the Kinematics Model 

The macro elements are the central components of the Kinematics Model. They represent the 

main crash behaviour of the structure. An accurate modelling to represent realistic failure is of 

primary importance. In the following paragraph 3.2 different failure modes of a typical fuselage 

structure are discussed and compared to their developed macro architectures.  
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3.2. Macro modelling of crash devices 

Chapter 2 highlighted the spectrum of experimental studies on crashworthiness of aircraft 

structures which were performed in the past. These valuable experimental results were analysed 

to identify typical failure mechanisms of fuselage structures under crash loads. The identified 

failure modes were graded in failure categories of primary and secondary importance. Failure 

modes of primary category represent main failure events which influence the crash kinematics 

significantly. These are failures of the main structural parts. In contrast to the main structural 

failures, the secondary category considers failure modes which have less influence on the crash 

kinematics. Moreover, this secondary category includes failure events which have to be avoided 

in a robust crash concept for a composite fuselage structure. Failures of overhead bin 

connections as well as of passenger crossbeams are events which are assessed critical for 

occupant survivability. Further failure events like disintegration of structural parts or other 

distributed extensive damages have to be avoided particularly for a composite fuselage design to 

achieve a controllable crash concept. Figure 3-2 gives an overview on typical failure events of a 

fuselage structure and highlights the failure modes of both categories.  

 

Figure 3-2: Typical failure events of a fuselage structure caused by crash loads 

The identification of typical failure mechanisms is mainly based on metallic structures as very 

little experimental results are available of fuselage section drop tests of composite structures. 
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Nevertheless, all research on composite fuselage structures done in the past indicate that typical 

failure mechanisms of CFRP fuselage structures caused by crash loads are similar to that of 

metallic fuselage structures, although their behaviour is significantly more brittle [46-51]. 

With respect to the failure modes graded in the primary category, macro architectures were 

developed to describe these failure mechanisms in the Kinematics Model. The macro 

architectures represent typical failure events which have to be controlled in a crash concept using 

appropriate crash devices.  

The following sub-paragraphs deal with the macro architectures of the individual failure modes. 

3.2.1. Selection of a macro element 

A macro architecture for failure representation is a formation of several finite elements which 

represents the failure kinematics of individual structural parts in an airframe. The definition and 

configuration of such architectures decides on the accuracy of the representation of structural 

failures. Besides an appropriate architecture the choice of the central macro element decides on 

the options to describe the structural failure behaviour under different loading conditions. In 

general, a macro element is used to describe individual behaviours between structural nodes. 

Figure 3-3 illustrates the general capabilities of macro elements. The range of available 

characteristics implicates the advantage of such elements. 

 

Figure 3-3: Conceptual illustration of the macro element behaviours [104] 

With respect to the different macro architectures discussed in the following sub-paragraphs, the 

representation of failure and absorbing characteristics requires the possibility to define extensive 

input data for the macro element. Besides the main loading behaviour of a crash device several 

options for the description of unloading and reloading behaviour are essential. The preferred 

description of the macro behaviours is a load-deflection curve. Other descriptions, e.g. by 

damage and failure, can not be used directly for comparison of numerical crash device 
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characteristics with experimental test results. Hence, a tabular input format of the macro element 

behaviour is desired.  

Several macro element types were assessed with respect to their functionalities and their 

applicability. Joint elements are typically preferred elements of finite element programmes 

which provide most options to define load-deflection behaviour for different loading conditions. 

An assessment of element types in the explicit FE code PAM-CRASH resulted in the selection of 

the ‘kjoint’ element. In the explicit FE code ABAQUS/Explicit the ‘connector’ element was 

selected which provides similar options. The 2-node ‘kjoint’ or ‘connector’ element is a macro 

type element which offers the independent description of all six degrees of freedom. It enables 

the definition of a main characteristic, as well as an unloading and reloading behaviour, by 

tabular curve input. The transition from loading to unloading respectively from reloading to 

loading is given by a slope which is a further input value. Figure 3-4 depicts this macro 

behaviour and gives exemplarily the keywords for the selected input options of the ‘connector’ 

element in ABAQUS/Explicit.   

 

Figure 3-4: Tabular input options for the selected macro element [104] 

3.2.2. Macro architecture for axial crushing 

Structural failures in an airframe which occur in a crushing process are represented in the 

Kinematics Model by axial macro architecture. This type represents the crash devices in the sub-

cargo area as well as in the vertical support struts. Although the energy absorbing concepts may 

be different in both applications, as illustrated in Figure 1-4, the axial failure kinematic is similar 

and can be described with the same macro architecture. The failure characteristic can be defined 

using a force-deflection curve, as shown in Figure 3-5. In this sample force-deflection graph 

brittle behaviour is defined for failure caused by tensile loads (positive deflection). With respect 

to failure caused by compression loads (negative deflection) the residual force plateau after 

triggering implicates energy absorption by crushing.  
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The connection of the macro element to the fuselage structure is realised by rigid bodies. 

Structural nodes of the linear-elastically modelled fuselage structure form a rigid body together 

with a non-structural reference-node which is allocated to the macro element.  

With respect to the crash kinematics it is important to represent all released degrees of freedom 

of the considered structural part. For example, some designs of vertical support struts define an 

articulated connection to the fuselage structure using a pin joint. Moment loads around this pin 

axis cannot be transmitted by the vertical strut. For that reason, the macro architecture is 

modelled so that the crash device can be connected to the fuselage structure either fixed or 

articulated. This modelling option requires the definition of two serial macro elements. The need 

of two serial macro elements is founded in the definition of its degrees of freedom. All 

translational degrees of freedom are described with respect to the first macro element node. The 

rotational degrees of freedom are defined regarding the second element node. As the macro 

element represents crash devices of finite length rotational motion may only be considered at one 

end of the element, at node 2. Hence, a second macro element defined serial to the first one but 

in opposite direction enables a rotation at a second location. This second macro element was 

defined at the position of node 1 with a zero length. The crash device characteristic is defined in 

the first macro element with its finite length whereas the second macro element has rigid 

behaviour and offers exclusively the option of free or fixed rotation. Figure 3-5 illustrates this 

macro architecture. 

 

Figure 3-5: Macro architecture for axial failure 
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3.2.3. Macro architecture for frame bending 

Frame bending representation is described by a rotational motion and represents the bending 

failure mechanism of the frame structure. These ‘kinematic hinges’ provide a complex failure 

behaviour which is caused amongst others by the interaction of the frame structure with the 

fuselage skin. In addition, it is the main failure event in a typical fuselage crash scenario as a 

large crash distance is affected by the frame bending mechanism, absorbing a significant amount 

of the total kinetic energy. 

The input format for the description of the frame failure characteristic is a moment-rotation 

curve, as illustrated in Figure 3-6. The sample graph shows brittle failure behaviour for a so-

called opening hinge rotation, which is characterised by tensile load in the inner frame flange 

(negative rotation). Different moment plateaus for a closing hinge rotation (positive rotation) 

represent the energy absorption capability of this frame failure characteristic.  

The macro architecture defines a cut in the linear-elastically modelled frame with rigid bodies 

enforcing the free ends of the frame. Both frame parts are connected with the macro element 

which describes the frame failure behaviour. This macro element is positioned in the skin plane. 

The nodes of the macro element are connected to the rigid bodies of both frame sections. The 

macro element, respectively the cut in the frame, has a finite length. All degrees of freedom are 

fixed except the frame bending rotational degree of freedom. This rotation is defined at the 

second node of the macro element. As the ‘kinematic hinge’ length is negligible small compared 

to the frame length, the rigid behaviour of the macro architecture in the fixed degrees of freedom 

has marginal influence on the overall stiffness. Figure 3-6 depicts this macro architecture. 

Several detailed investigations were performed to analyse the frame bending behaviour and to 

derive this present macro architecture which accurately represents frame bending behaviour. 

These investigations are discussed in chapters 4 and 5.  
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Figure 3-6: Macro architecture for rotational failure in the frame 

3.2.4. Macro architecture for cargo-crossbeam failure 

Another structural failure which was assigned to the primary category is failure of the cargo-

crossbeam. The bending failure mechanism of this crossbeam has a significant influence on the 

crash behaviour of a fuselage section and can even decide on the general crash kinematics. With 

respect to a crash concept for a composite fuselage this failure has to be controlled by a crash 

device.  

In contrast to the frame bending failure, the cargo-crossbeam bending failure is less complex as 

structural interaction with other parts is less significant. Nevertheless, the macro architecture is 

defined analogue to that of the frame bending failure. A cut separates the elastically modelled 

cargo-crossbeam in two parts. The nodes of each free end in the cut of the crossbeam form a 

rigid body together with a non-structural node which is allocated to the macro element. The 

macro element connects both rigid bodies and describes the failure behaviour of the crossbeam. 

The non-structural nodes of the macro elements are positioned in the centre of area of the cargo-

crossbeam section. One simplification in this approach is the assumption that the elastic centre of 

the crossbeam cross-section corresponds with the centre of area. Regarding a crossbeam 

structure made of composite with typically complex layup the elastic centre does not necessarily 

correspond to the centre of the cross-sectional area. Still, it is very close to the centre of area as a 

typical layup definition does not differ significantly from a symmetric composition.  

In Figure 3-7 the macro architecture of the cargo-crossbeam failure is given.  
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Figure 3-7: Macro architecture for rotational failure in the cargo-crossbeam 

3.2.5. Macro architecture for the passenger crossbeam connection 

The connection of the passenger crossbeam to the frame was generally identified as non-critical. 

In none of the experimental results discussed in chapter 2 this connection failed. Nevertheless, 

failure close to this connection occurred due to the loads introduced by the passenger crossbeam.  

An additional crash device in the connection of passenger crossbeam and frame could reduce 

these loads by a certain flexibility. This flexibility would enable an extensive ovalisation of the 

whole frame structure utilising the comparably high failure strain of composite material. Besides 

the smoothening effect of an ovalisation further energy could be absorbed in the passenger 

crossbeam connection by a simple tensile absorber.  

To analyse the effect of such an ovalisation concept, a macro architecture was defined for this 

structural connection. Instead of a tied connection, the macro element connects the passenger 

crossbeam with the frame structure. The load introduction in both elastically modelled parts is 

defined by rigid bodies which describe a similar region as given by typical rivet fields of such 

connections. The structural nodes inside of this region form the rigid bodies together with a non-

structural node which is allocated to the macro element.  

Whereas the macro architectures discussed above are defined with one active degree of freedom, 

there are two active degrees of freedom in this case. In addition to the translation in lateral 

direction a rotational motion around the longitudinal axis (flight direction) is defined to enable 

further ovalisation by unconstrained relative rotation between frame and passenger crossbeam. 
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Figure 3-8 depicts the macro architecture and illustrates exemplary characteristics of such a crash 

device. 

 

Figure 3-8: Macro architecture for the passenger crossbeam connection 

3.3. Definition of Kinematics Model output data 

Output definition has to be defined with respect to the specific modelling approach. Appropriate 

criteria have to be specified to assess crash scenarios which are analysed using the Kinematics 

Model.  

Typical output definitions are energies of the whole model as well as of specific parts or 

structural regions. Whole model energies like total, kinetic or internal energy give information 

about the overall behaviour of the simulation model. Output of numerical energies indicates the 

quality of the numerical model. Internal energy output of individual structural parts give 

information about the distribution of absorbed or elastically stored energy.  

Section forces and moments are additionally used to explicitly analyse the load acting in several 

structural parts. Cutting surfaces are defined along the whole frame structure as well as along the 

crossbeam structures. This section output can be used to analyse specific load ratios such as the 

bending-compression or the shear-compression ratio. These values can further be used for the 

definition of boundary conditions in the analyses of local components.  

Besides these general output definitions three main types of output data are defined in the 

Kinematics Model. This additional output is the basis for an assessment of crash scenarios and 

provides information about the macro element characteristics, about the structural loads of the 
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fuselage section and about the crash loads on the passengers. In the following sub-paragraphs 

these specific output definitions are discussed. 

3.3.1. Output definition of macro elements 

Output definition of the macro elements provides valuable information about the crash device 

characteristics which are necessary to achieve a desired crash scenario. Several values are of 

interest. The time of activation of the individual crash devices is an important output to 

understand the general kinematics of a crash scenario. Therefore load-time and deflection-time 

output is essential. In addition, the amount of energy which is absorbed in the crash devices is of 

interest. Furthermore, maximum deformations in the individual crash devices play an important 

role, especially with respect to the realisation of crash concepts. All this information can be used 

as requirements for a sub-sequent development of local crash concepts, as depicted in Figure 3-9. 

 

Figure 3-9: Output data of the macro elements - requirement for the development of local crash devices 

The macro elements provide output options for each of its six components. The active 

component(s) is of prime interest as it describes the load-deflection characteristic of the crash 

device. In addition, output of the passive components can be used to check the loads which are 
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caused by constraints to fix these components. That output helps to check the model approach 

against non-accuracy caused by high constraint loads in the passive degrees of freedom.   

3.3.2. Output definition of structural loads 

Research on aircraft crashworthiness in the past, as discussed in chapter 2, identified the frame 

structure as the most critical part of a fuselage section. In addition, the crossbeams are critically 

loaded in a crash event. Both structures, frames and crossbeams, have to carry the vertical crash 

load which is the main component of the total crash load.  

In contrast to this, the fuselage skin as well as the stringers are loaded uncritically. In case of a 

real crash event these structural parts carry the longitudinal crash loads which are significantly 

lower than the vertical ones as a typical full-scale crash scenario allows sliding of the aircraft on 

the ground which induces comparably low friction forces in longitudinal direction. 

Hence, the verification of structural loads concentrates on the frame as well as on the crossbeam 

structure. An appropriate criterion was defined for the assessment of frame and crossbeam loads. 

This criterion aligns to the model approach of a preliminary design tool with its requirement of a 

coarser discretisation.  

One requirement is the concentration on global loads with respect to a frame section. Detailed 

information on the ply level of a frame section laminate is not convenient with respect to the 

global frame sizing. Furthermore, a load based criteria such as section forces and moments does 

not consider the load carrying capacity of the frame profiles in the individual frame regions. 

Additional formulations would be necessary to define load limits of the individual frame designs. 

Such a formulation is complex as the influence of the skin has a major effect. The skin can be 

described as an additional flange with an unknown flange width. The determination of load 

limits for such an unknown structural combination is not efficient.  

For that reason the criterion of the Kinematics Model is based on global strains which are 

measured and assessed along the frame. Bar elements with negligible stiffness are modelled 

along the frame and crossbeam flanges to measure the strain distribution. These strain values can 

be checked against analytical or empirical strain limit criteria such as limits against crippling 

failure of compressive loaded frame flanges. Figure 3-10 shows an example of the Kinematics 

Model with highlighted bar elements for the strain assessment. Exemplary bar element output in 

Figure 3-10 clarifies the efficiency of such an approach to check the loads along a frame or 

crossbeam structure against limit strain criteria. The exceeding of the strain limit of a large 

number of strain bar elements can be checked with a single graph. 
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Figure 3-10: Bar elements for strain measurement 

3.3.3. Output definition of injury risks 

Loads on occupants are one of the main criteria for the assessment of a crash scenario. Different 

injury criteria can be used to analyse the occupant response in a crash event [105-107,139]: 

• The dynamic response index (DRI) is derived from a simple one-dimensional lumped-

mass spring damper system and was developed to estimate the probability of 

compression fractures in the lower spine due to acceleration in a pelvis-to-head direction.  

• The FAR Part 27.562 (c) (normal category rotorcraft) specifies that the spinal load should 

not exceed 6672 N (1500 lb.) [109] 

• A head impact tolerance specification is the Head Injury Criteria (HIC) which is based on 

the resultant accelerations measured at the centre of gravity of the head. 

• Injury Assessment Reference Values (IARVs) are defined for restrained Hybrid III 

dummy occupants. These assessment reference values specify injury guidelines for 

several parts of the body such as head, head/neck interface, chest and knee.  

• Finally, the whole-body acceleration tolerance curve was established by Eiband [108]. 

The Eiband acceleration tolerance levels were determined from sled tests on human 

volunteers, pigs, and chimpanzees that were conducted for a single input acceleration 

pulse.  

In the Kinematics Model the whole-body acceleration tolerance curve according to Eiband is 

used to assess the passenger loads. The selection of this criterion is based on the modelling of 

seat and passenger. A simplified seat-passenger model is used which represents the passenger 

with a single mass element. Macro elements between mass element and seat structure represent 
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the seat cushion stiffness and the harness system. The seat structure is modelled with shell and 

beam elements. The seat-passenger model was calibrated based on experimental test data [110]. 

These test data comprise load-deflection curves of seat cushion and harness system as well as 

data about the seat structure. Figure 3-11 illustrates the simplified seat-passenger model used in 

the Kinematics Model. 

 

Figure 3-11: Simplified seat-passenger model (triple seat) 

Occupant modelling with a single-mass element is an appropriate modelling technique for a 

preliminary design tool. Two of the above described injury criteria can be used in case of single-

mass representation of occupants, the dynamic response index (DRI) as well as the Eiband 

criterion. Whereas the DRI defines one index value, a complete acceleration curve over the pulse 

duration provides more detailed information about the occupant loads. The DRI represents a 

better quantitative criterion, the Eiband curves provide the better qualitative criterion.  

With respect to the assessment of crash scenarios the more qualitative Eiband criterion provides 

better information on the occupant loads. Hence, the Eiband whole-body tolerance curves of 

positive, vertical acceleration are used for the assessment of passenger loads in the Kinematics 

Model. This criterion is valid as the passengers typically experience one-dimensional loads in a 

drop test. In case of combined loading the Eiband criterion is not recommended as there are no 

tolerance curves for combined loading.  

In the Eiband diagram plots of the vertical acceleration versus the pulse duration for the 

passenger masses are given. This ‘acceleration - pulse duration’ graph is compared with two 

Eiband curves of vertical loading direction, the limit curves to moderate and severe injury. This 

type of diagram gives a good overview on the load levels of different passengers and indicates 

potential injury. Figure 3-12 shows the principle of the Eiband diagram. 
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Figure 3-12: Principle of the Eiband diagram 

3.4. Further modelling aspects 

Further aspects of the modelling approach are discussed in the following sub-paragraphs and 

conclude the discussion of general aspects of the Kinematics Model approach. 

3.4.1. Refinement of the sub-cargo area modelling 

The representation of failure exclusively by macro elements with a linear-elastically modelled 

structure identified limitations in a first verification loop. In the area below the cargo-crossbeam, 

significant kinematic constraints were identified. In this sub-cargo area, a complex combination 

of crushing and other failure mechanisms leads to extensive failure of the sub-cargo structure. 

This effect is even more evident in case of a crash concept that specifies crushing of this 

structure using a comparably stiff cargo-crossbeam (bendframe concept). Such complex 

structural failure mechanisms cannot be clearly divided in categories of failure locations as well 

as of remaining undamaged structures. Damage and failure can occur along the whole lower 

frame structure. In addition, the stringer structure can be destroyed by the crushing of lower 

frame, cargo-crossbeam and the framework struts. If failure in this area is exclusively 

represented by macro elements which allow one-dimensional or two-dimensional failure modes, 

kinematic constraints may occur that influence the crash kinematics of the whole fuselage 

section. Such constraints are shown exemplarily in Figure 3-13. Although kinematic hinges are 

positioned in the lower frame structure, high compression forces lead to frame buckling which 

induces the formation of elastic hinges. Unrealistically high normal forces as well as a large 

amount of elastic energy which is stored in these parts falsify the crash behaviour of such a 

model.  
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Figure 3-13: Kinematic constraints in the sub-cargo area with a kinematics modelling 

A solution for this issue was found in a mixture of kinematics modelling and detailed FEM 

where the main crash characteristic of the sub-cargo area is furthermore described by macro 

elements. This solution represents all structural parts which could lead to kinematic constraints 

in a detailed modelling with material damage and failure. These parts are the fuselage skin, the 

stringers and the frames of the sub-cargo area. The remaining structure is modelled by the 

kinematics modelling approach described above. These are the cargo-crossbeam, the cargo floor 

and the framework of the sub-cargo area. Macro elements are positioned in the cargo-crossbeam 

to represent bending failure. The framework is modelled by macro elements which describe the 

failure mode and potential energy absorption of these struts. Figure 3-14 depicts the refined sub-

cargo area, where structural details such as mouseholes in the frames are modelled, too. The 

stringers are modelled in detail using shell elements. The typical element size in this area is Le = 

10 mm which is about 50 % of the element size used in the Kinematics Model approach. The 

connection of the fuselage skin of sub-cargo area and upper fuselage part with its different mesh 

sizes is realised using a tied connection. In the frame a kinematic hinge is positioned at the 

transition of sub-cargo area and upper fuselage section. It is important to note that material 

damage and failure of the detailed modelled parts influence the crash kinematic of the fuselage 

section not in a significant way, except the avoidance of highly elastic loading which would lead 

to the kinematic constraints discussed above. The main crash behaviour of this area is still 

represented by macro elements. 
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Figure 3-14: Mixed modelling in the refined sub-cargo area 

3.4.2. Parameterisation of the Kinematics Model 

One requirement for the development of the Kinematics Model is a flexible and effective 

assessment of crash concepts regarding global crash aspects on the fuselage section level. The 

assessment of crash concepts considers different load cases besides a reference crash case, the 

so-called ‘standard crash case’1, to get information about the robustness of a crash concept. In 

addition, the development of a crash scenario implicates extensive adaptation of macro 

characteristics as well as of the fuselage structure. 

Therefore, the input definition of the Kinematics Model is parameterised which comprises the 

model geometry but also the model properties which are the macro characterisation of the crash 

devices, the definition of loading cases for robustness analyses as well as the definition of 

numerical parameters. 

With respect to the model geometry the mesh generation was embedded in the DLR in-house 

fuselage mesh generation tool SECTMESH, which is based on ANSYS APDL [103]. Additional 

subroutines were programmed to generate mesh modifications for the macro architectures of the 

Kinematics Model such as cuts in the frame and the crossbeam or generation of reference nodes 

for the macro elements. Another subroutine defines bar elements along the frames which are 

used for the measurement of strains, as discussed in paragraph 3.3. Further options were defined 

in additional subroutines such as renumbering of reference nodes for section output definition or 

the model refinement of the sub-cargo area.  

                                                 

1 Within this thesis, the ‘standard crash case’ specifies impact conditions of a vertical impact with vi = 6.7 m/s, fully 

loaded overhead bins, occupied seats, zero pitch and roll angle. Cargo loading is not considered in this case.  
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With respect to the model properties all essential input data for the FE solver were 

parameterised. Input data for macro element characterisation were defined using several 

parameters. By default, the tabular input of the primary loading curve offers 10 data points in 

each loading direction. The tabular input for the un-/reloading curve offers 7 data points. The 

parameterisation can additionally be used to define dependent parameters. Standard macro curve 

characteristics with main properties such as stiffness, trigger and absorption load can be 

specified. In an optimisation process these main properties can be used in the parameter variation 

whereas the tabular input parameters are calculated automatically. 

With respect to the assessment of crash scenarios under different loading conditions, several 

loading parameters were defined such as passenger and overhead bin masses, the initial velocity, 

definition of cargo loading or the definition of roll angles.  

In an exemplary analysis model of a single aisle 2-frame fuselage section with a total of 46 

macro definitions, a total number of 870 parameters is used for the description of the model 

properties, exclusively discretisation parameters which are defined in SECTMESH.  

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Detailed investigation of frame failure modelling 

The discussion of different macro models of crash devices in chapter 3.2 identified the frame 

bending as the most complex and most important failure mechanism of a fuselage structure 

under crash loads. Whereas other crash devices are located at specific structural connections or 

even represent complete structural parts, the macro architecture of the frame bending mechanism 

is highly integrated in the fuselage shell structure. Structural interactions which result from this 

high integration have to be represented accordingly by the macro architecture. In addition, the 

frame is the primary fuselage structure which is most affected in a crash event. Especially with 

regard to single-aisle aircraft a large amount of available crash height of the fuselage section is 

influenced by the frame. Approximately 70 % of a typical fuselage section crash height up to the 

vertical support struts is influenced by frame failure mechanisms. Only about 30 % of the crash 

height is influenced by the sub-cargo area.  

Further investigations were performed to understand the structural behaviour of the frame under 

crash loads in more detail and to derive a macro modelling from these results that is accurate 

enough and appropriately defined for the usage in a preliminary design tool.  

The present chapter deals with these investigations and will discuss several issues in the 

following paragraphs which affect the structural behaviour of the frame. Figure 4-1 gives an 

overview on the investigations and the corresponding paragraphs of this chapter. The outcomes 

of these investigations were integrated into the final kinematic hinge macro architecture which is 

discussed in paragraph 4.7. 

 

Figure 4-1: Overview on the investigations presented in chapter 4 
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4.1. Positioning of the ‘kinematic hinges’ 

Frame bending failure is a mechanism which is generally not limited to specific locations but can 

occur at positions along the whole frame. In contrast to this frame mechanism with firstly 

unclear distributed failure locations, all other macro elements discussed in chapter 3.2 represent 

individual crash devices with a clearly defined location. Axial crush absorbers represent crash 

devices in the sub-cargo framework or in the vertical support struts. The macro model for cargo-

crossbeam failure is typically located in a centre position where the highest moment load is 

expected. And finally the crash device of a passenger crossbeam connection is located at the 

connection points to the frame.  

The unclear distribution of potential frame failure locations affects the positioning of the 

kinematic hinges in the fuselage section model which represent such frame bending failure 

mechanisms. To resolve this uncertainty typical frame failure behaviour was analysed to 

conclude to potential frame failure locations in a fuselage section. A combined procedure was 

established for this investigation. Firstly, typical failure locations were identified by an empirical 

method that evaluates the frame failure behaviour of fuselage sections which were drop tested in 

the past. Secondly, an additional analytical method was used to conclude to potential frame 

failure locations of individual fuselage section designs by numerical simulation. In the scope of 

this thesis, the procedure considers a typical transport fuselage design of narrow-body aircraft 

size.  

In the empirical method, typical frame failure locations were identified by the evaluation of 

fuselage section drop tests which were performed in the last decades [15-19,24-26,30-31]. Figure 

4-2 shows exemplary results of some of the evaluated drop tests. Different loading conditions 

were considered in this empirical evaluation. Besides the fully loaded condition of seats and 

overhead bins, partly occupied conditions as well as several cargo loading conditions were tested 

in the considered drop tests. In addition, different initial velocities between v1 = 6.1 m/s (20 ft/s) 

and v2 = 9.1m/s (30 ft/s) were regarded. Finally, the evaluated drop tests provide fuselage 

structures of different designs. For instance, the shape of a B707 fuselage, Figure 4-2a)-d), 

provides less curved side shells compared to an A320 fuselage, Figure 4-2f). Furthermore, the 

B707 and B737 fuselages, Figure 4-2a)-e), are designed without vertical support struts whereas 

the A320 and the YS-11 fuselages provide such struts1. Variations of the general fuselage section 

size are given by the difference of B707, B737, A320 and YS-11 cross-sections, in the scope of 

                                                 

1 Further detailed investigations about the influence of the support strut position on the location of a plastic hinge 

formation are given in [115]. 
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narrow-body fuselage designs. Further variations in the fuselage design exist by additional cargo 

door or tapered rear fuselage section.  

In the scope of the regarded narrow-body fuselage size, this range of considered fuselage section 

designs under vertical crash loads provides a sufficient empirical basis for the definition of 

potential frame failure locations of typical fuselage structures, which are depicted in Figure 4-2i). 

According to this empirical basis, typical main frame failure occurs below the passenger 

crossbeam between an angle of α3 ≈ -50° and α3` ≈ +50°. In this area, the frame failure locations 

strongly depend on the crash scenario. Gathering all failure locations independent of the crash 

scenario the locations in this area are the following: At α3 ≈ ±50° typical frame failure occurs in a 

closing motion. This is close to but below the location of the vertical support strut, if such a strut 

is defined in the fuselage design. Without vertical support strut, frame failure typically occurs at 

a same position. Further failure location was observed below α3, near the connection of the 

cargo-crossbeam at an angle of about α2 ≈ ±25°. This failure is typically of opening motion. 

Finally, typical frame failure occurs in the lower centre potentially together with failure of the 

cargo-crossbeam at an angle of α1 ≈ 0°. This failure at the point of the first impact is of opening 

motion.  

In most of the considered tests, failure between α3 ≈ ±50° and α7 ≈ ±90° was not observed. In this 

area, frame failure may occur in case of higher energetic crashes or other specific load cases. In 

case of frame failure in this area, three potential failure locations have to be considered. The first 

one is located directly below the passenger crossbeam connection at α6 ≈ ±85°. The second 

location is at an angle of about α5 ≈ ±65°. The third location is very close to α3 but above a 

potential vertical support strut at α4 ≈ ±55°. Dependent on the fuselage design α4 can coincide 

with α3. The potential crash kinematics develops such that at α6 opening frame bending occurs 

and accordingly at α5 closing frame rotation. Hence α4 is of opening motion. An example of this 

frame failure formation is given in Figure 4-2e) at the right lower fuselage shell. In general, this 

local crash kinematics depends strongly on the fuselage design as well as the loading condition. 

Under specific conditions this local kinematics can develop with inverse frame bending rotations 

at α4 - α6.  

The drop test results of the A320 fuselage structure, Figure 4-2f), show additional frame failure 

which is located directly above the passenger crossbeam at an angle of about α8 ≈ ±95°. Such a 

frame failure mechanism is highly influenced by the passenger crossbeam. In case of the A320 

section drop test, the crossbeam failed and induced high moments in the frame location near the 

crossbeam connection. A further potential failure location of the frame is the region below the 

overhead bins at an angle of about α9 ≈ ±145°. In this area, the inertia loads of the stowage bins 
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induce high stresses in the frame. At the A320 frame structure, shown in Figure 4-2f), as well as 

at the B737 frame structure, given in Figure 4-2e), frame failure was identified in this area. 

Finally, another potential failure location is the upper central area of the fuselage structure at α10 

≈ 180°. Load oscillations caused by the overhead bin mass on both sides of the fuselage section 

as well as by the overall crash kinematics can superpose in this area and subsequently exceed the 

frame strength.  

 

Figure 4-2: Frame failure locations of typical fuselage section drop tests 

The considered fuselage section drop tests of this empirical evaluation represent fuselage 

structures exclusively of metallic material. Until now, there is no full-section structure made of 
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CFRP material which was drop tested. Nevertheless, and as mentioned in chapter 2, research 

work done on CFRP structures in the past, identified frame failure locations which are similar to 

metallic fuselage structures. In the following, the test results of the research work on composite 

frame structures are evaluated additionally in the scope of this empirical method. 

Valuable results with respect to potential failure locations of composite frames were obtained by 

several tests on frame components in the scope of a joint NASA-US-Army programme [46-51]. 

Generic CFRP frame structures with a diameter of D = 1.8 m (6 ft) were tested statically and 

dynamically. Single frame tests were performed with different configurations and loading 

conditions. The configuration of the centre restraint which simulated the passenger crossbeam 

varied significantly. Steel cables simulated exclusively tensile restraint, aluminium tubes 

effected also constraint in compression load direction. Another variant with massive steel bars 

provided additional restraint of rotations in the passenger crossbeam connection. In this case 

bending moments were carried by the crossbeam. Different impact velocities between v1 = 6.1 

m/s (20 ft/s) and v2 = 8.4 m/s (27.5 ft/s) as well as different added masses between m1 = 9.1 kg 

and m2 = 45.4 kg were defined in the tests. The masses were installed at the crossbeam. The 

location of splice plates which connected four 90°-frame components to a circumferential frame 

was positioned either at β1 = 0°/90° or at β2 = ±45°. The frame structures were constrained during 

the test in lateral direction to avoid out-of-plane bending. 

In Figure 4-3 some of these results are summarised. Figure 4-3a) depicts failure locations of a 

static single frame test which was performed with splice plates at β1 = 0°/90° and a massive steel 

bar as centre restraint. The first frame failure occurred in the lower centre at an angle of α1 = -18° 

and α1` = 7°. Typically, one failure location is expected in this lower centre area. The occurrence 

of two failure locations was potentially caused by the splice plate at β1 = 0° which influenced the 

failure mechanism in this area. Further frame failure occurred at α2 = -58° and α2` = +54°.  

The dynamic single frame tests with steel bar as centre restraint (two tests) were conducted with 

higher kinetic energy. The resulted failure locations are given in Figure 4-3b) & 4-3c). With the 

same initial velocity, both frame tests differ in the mass which was additionally installed at the 

steel bar. In the first test of frame #4, an added mass of m#4 = 45.4 kg (100 lbs) was installed. In 

the second test of frame #5, an added mass of m#5 = 42.2 kg (93 lbs) was mounted on the steel 

beam. In these tests, first frame failure occurred in the lower centre at α1` = +1° (frame #4) 

respectively at α1` = +6° (frame #5). Further failure developed at α2 = -59° and α2` = +68° (frame 

#4) respectively at α2 = -62° and α2` = +62° (frame #5). In frame #4 additional failure occurred at 

α2` = +38°. In both frames the splice plates were positioned at β2 = ±45°. Hence, all second frame 

failures are located above respectively directly below a splice plate. 
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In addition to the single frame tests, static and dynamic tests of sub-floor sections with similar 

frame size were performed. Skeleton sections (frames and stringers) and a skinned floor section 

(frames, stringers and skin) were tested in a two-bay configuration (3-frames). The splice plates 

were located in these tests at β1 = 0°. The skeleton tests showed mainly consistent frame failure 

locations in the static and dynamic test. Regarding the dynamic test, the resulted failure locations 

are depicted in Figure 4-3d). The first failure was located in the lower centre at an angle of α1` = 

+11.3°. The second failure occurred at α2 ≈ ±45°. Further failure was located at an angle of α3 = 

±78.3° for the dynamic test. In the static test this third failure location occurred one-sided. In 

general, the skeleton tests were influenced by out-of-plane bending and twisting, as boundary 

conditions were not defined to constrain these motions. This circumstance as well as the absence 

of the skin led to extensive failure of the skeleton with a third failure location. 

Compared to the skeleton tests the skinned section test results showed less distinct failure 

behaviour. After a non-destructive static test, the destructive dynamic test identified three frame 

failure locations at the skinned section, which are illustrated in Figure 4-3e). The first failure in 

the lower centre is located at α1` = +11.3°. Further failure developed at α2 = ±56.3°. The first 

frame in the front of the skinned section differed from these failure locations as the section first 

impacted in the front with a slight pitch angle.  

All frame failures of skeleton and skinned section started at notched stringer locations. The 

normalized circumferential strain values measured at the outer and inner frame flange showed 

similar strain distributions for skeleton and skinned section. The circumferential strain values of 

the dynamic test of the skinned section are given in Figure 4-3f). These strain distributions 

clearly show the locations of potential frame failure. In the lower centre at α1 = 0° strain 

maximum at the inner frame flange and strain minimum at the outer frame flange indicate 

potential frame failure in the opening direction. Between α2 = ±50° and ±55°, strain minimum at 

the inner frame flange and strain maximum at the outer frame flange identified potential frame 

failure in closing direction. 

Summarising these test results of the CFRP frame components, main failure regions can be 

identified as depicted in Figure 4-3g). In the lower centre, opening frame bending failure is 

located between α1 = ±12°. Above, closing hinge locations are located between α2 = ±45° and 

±60°. Frame components with splice plates located at β2 = ±45° showed closing hinge locations 

above the splice plates at slightly increased angles up to α2 = ±68°. The third failure location of 

the skeleton tests indicates potential frame failure behaviour in cases of higher energetic crashes 

similar to the aforementioned discussions on the metallic fuselage section level.  
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In general, the discussion of drop test results of CFRP frame and subfloor structures identified 

similar frame failure locations as observed in the evaluation of metallic fuselage section drop test 

results. However, the fuselage sections represent significantly more structural details compared 

to the considered generic CFRP structures wherefore further failure locations were identified in 

the evaluation of fuselage section drop test results.  

 

Figure 4-3: Frame failure locations identified in the CFRP frame component tests 

The empirical method of evaluating test results concluded to frame failure regions of typical 

fuselage structures. With respect to the positioning of kinematic hinges in a fuselage section 

model more accurate information is required to determine detailed hinge locations, especially 

with respect to individual fuselage designs. This requires a further analytical method to conclude 

to detailed locations and to position the kinematic hinges accordingly. In the analytical method 
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the circumferential strain along the frames is measured in the fuselage section model. In a first 

step, the Kinematics Model is calculated without any kinematic hinge in the linear-elastically 

modelled frames. Figure 4-4 illustrates results of such a model variant at t = 20 ms after the first 

impact. The graphs show the strain distribution of the inner and outer frame flange in the critical 

fuselage side shell. The strain distributions show an extremum at α3 = -41° and α3` = +42° which 

indicate potential closing hinge failure. In the further procedure of this analytical method, 

additional kinematic hinges can be positioned at locations where strain exceeding occurs 

respectively where the strain distribution of inner and outer frame flange indicates potential 

failure.  

 

Figure 4-4: Determination of potential frame failure locations by simulation 

Summarising the investigation on the positioning of the kinematic hinges, an evaluation of 

several fuselage section drop test results was conducted to conclude from experimental results of 

realistic structures to typical frame failure locations. A further evaluation of drop tests of generic 

CFRP frame components identified comparable failure behaviour of metallic and CFRP frame 

structures, with respect to the failure locations. Hence, the outcomes of the above discussed 

evaluation of section drop tests of metallic fuselage sections can be transferred to the 

consideration of CFRP fuselage structures.  

With respect to a detailed positioning of kinematic hinges in the Kinematics Model an analytical 

method was demonstrated. In this method, the strain distribution along the frame is measured to 

conclude to potential frame failure locations. This approach allows to determine failure locations 

of the specific fuselage design that is considered.  
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4.2. Pre-failure behaviour of a frame-stringer-skin structure 

The behaviour of a frame structure up to failure initiation shows significant influence in crash 

events of fuselage structures and has to be considered in crash analyses accordingly. Therefore, 

the pre-failure behaviour of a generic frame-stringer-skin structure was analysed with respect to 

two problem definitions. Firstly, the elastic behaviour of such a structural component was 

investigated to define a macro architecture that enables an appropriate elastic representation. 

Secondly, potential structural instabilities of a frame-stringer-skin structure were considered to 

derive simplified failure criteria. These criteria can be used in the Kinematics Model to define 

trigger values for the kinematic hinges as well as to determine reserve factors or potential 

exceeding in the frame structure apart from the kinematic hinges.  

Both problem definitions were investigated numerically with a generic frame-stringer-skin 

model. Several reasons led to the decision to concentrate on numerical simulation and not to 

consider analytical methods. One reason is the effective width of the skin that contributes to the 

global bending stiffness and which is complex to be determined analytically. There are 

formulations which define an effective width for high bending beams, such as a frame-skin 

component, assuming a constant stress-based effective width along the beam [140]. However, 

such assumptions can lead to discrepancies in the stiffness calculation and in the definition of the 

elastic centre. Other reasons which contributed to the abandonment of analytical methods are 

structural details that significantly influence the elastic behaviour but cannot easily be considered 

in an analytical approach. Such details are mouseholes in the outer frame web as well as cleats 

which provide lateral frame support.  

The numerical model that was used in this investigation is illustrated in Figure 4-5a). A detailed 

description of the model is given in Appendix A2.1. To identify the structural behaviour in 

dependence of different frame stiffness, several LCF-shaped frame designs were analysed. The 

considered frame designs represent extreme cases with respect to the expected stability 

behaviour of different frame stiffness and comprise variations of frame height as well as of frame 

thickness. The four extreme cases which were analysed numerically are depicted in Figure 4-5b) 

– 4-5e). The smallest frame section, Figure 4-5e), represents a statically pre-sized frame design 

of a generic CFRP standard fuselage with respect to the complete envelope of flight and ground 

load cases, which was given by the project partner Airbus. Increased frame stiffness has to be 

potentially provided for a robust crash design. Hence, this investigation also considers massive 

frame designs and covers the full spectrum of frame profiles which are expected to be used in the 

scope of a crash design for a CFRP fuselage structure. 



4. Detailed investigation of frame failure modelling                                                                   66 

 

Figure 4-5: Numerical investigation of a frame-stringer-skin structure 

4.2.1. Potential failure initiations of a frame-stringer-skin structure loaded 

under pure bending 

In a first investigation potential failure initiations were considered to derive simplified failure 

criteria for the Kinematics Model. Thin-walled structures are typically affected by stability 

limits. Hence, structural instabilities have to be considered besides limitations of material strain. 

Three main instability failure initiations were identified and analysed. Figure 4-6 shows 

simulation results which illustrate these instability modes and which are discussed in the 

following.  

In case of closing frame bending the inner frame flange is loaded in compression with a risk of 

potential instability in this structural part. Analyses results discussed later in paragraph 4.2.1 will 

show, that the inner frame flange and the middle frame flange are loaded in the same direction 

for all considered LCF-shaped frame designs. According to the stress distribution of the 

moment-loaded frame cross-section, the inner frame flange is generally loaded more critically 

compared to the middle frame flange and local instabilities are expected at this inner flange. 

Figure 4-6a) illustrates the frame-stringer-skin component, with a filigree frame design 

according to Figure 4-5e), in a closing bending mode. Buckling of the frame inner flange is 

obvious. In addition, the interaction of frame inner flange buckling and frame inner web 

buckling is visible. The diagram depicts the longitudinal strains along frame inner, middle and 

outer flange. Additional strain output is given for the outer side of the frame inner flange. Bar 

elements for strain measurement were positioned between the flange nodes along the whole 
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frame. Good correlation of strain values in the individual flanges illustrates the constant moment 

load along the frame. After a linear increase the initiation of buckling is clearly indicated in the 

frame inner flange strains. The strains along the outer side of this flange reduce whereas further 

increase of strain occurs at the web side of the inner flange. Oscillations in the curves after 

initiation of buckling are caused by dynamic effects. As the simulations were performed using 

explicit time integration, the moment load was applied dynamically to limit the total simulation 

time. 

A further instability mode is lateral frame buckling which can occur in case of stiff frame 

designs under closing moment loads. Figure 4-6b) shows global lateral frame buckling in the 

frame-stringer-skin model with the highest frame stiffness considered in this investigation 

according to Figure 4-5b), despite of cleats which provide lateral frame support. In the diagram 

of Figure 4-6b) the strains indicate the initiation of frame buckling in a fan-shaped curve 

progression along the frame inner flange, at inner and outer side of this flange. The strain 

distribution clearly illustrates a most critical loading of the inner frame flange for this instability 

mode. According to this strain distribution, tensile failure in the frame outer flange is not 

expected. Instead, failure of the highly loaded cleats has to be considered that would lead to the 

loss of lateral frame support inducing a significant increase of lateral frame buckling. Load 

shifting in the frame inner flange that occurs in conjunction with extensive lateral frame buckling 

leads to increased strain values at the web side of the inner flange. Hence, potential failure of the 

lateral support would lead to more distinct lateral frame buckling and subsequently can be 

observed as instability of the web-sided frame inner flange strain. 

The third instability mode that was identified and analysed with the numerical model is skin 

buckling which can occur under opening bending loads. In this loading condition, the frame 

inner flange is loaded in tension whereas the frame outer flange respectively the skin is loaded in 

compression. Figure 4-6c) shows the frame-stringer-skin model in an opening bending mode 

with extensive skin buckling. The initiation of this instability mode is observable by (dynamic) 

oscillations in the strain graphs along frame inner, middle and outer flange. In general, buckling 

of the skin is allowed and does not necessarily lead to failure initiation. But in case of extensive 

skin buckling other failure effects can be initiated. The rivet connections of stringer and frame to 

the skin are at risk. In addition, potential crippling failure of the frame outer flange has to be 

considered. Furthermore, after initiation of buckling in the skin potential failure could occur in 

the frame outer web which is weak because of the mousehole sections. These potential failure 

modes can be covered by a strain limit criterion of the longitudinal frame outer flange strain. In a 

preliminary design phase such a strain based failure criterion can not be derived from detailed 
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failure effects as such detailed structural data are usually not available. Hence, a simplified 

criterion has to be defined to cover such potential failure modes in an appropriate way. This 

criterion considers the crippling strain limit of the frame outer flange and defines this value as 

maximum allowed strain along the outer frame flange.  

In Figure 4-6c) the strain distribution shows a frame inner flange that is loaded much higher in 

opposite load direction than the frame outer flange. Hence, tensile strain limit in the frame inner 

flange has to be considered in addition to the crippling strain limit of the frame outer flange in 

case of opening bending.  

Summarising the discussion of potential failure initiation modes of a frame-stringer-skin 

structure, the identified structural behaviour can be checked for potential failure by appropriate 

criteria regarding the strains at the frame inner and outer flange. Based on the required accuracy 

for a preliminary design tool, the strain values measured in these flanges can be checked for 

(compressive) crippling strain limits as well as for (tensile) material failure strain limits. These 

criteria are used in the Kinematics Model to identify potential failure of the frame respectively to 

define appropriate trigger criteria for the kinematic hinge macros. 

The above discussion of potential failure modes is based on numerical investigations which 

consider pure moment loads. Paragraph 4.6 considers the influence of additional load 

components in normal direction. Nevertheless, the validity of the above defined failure criteria 

can be extended similarly to combined bending-compression loads. Regarding the frame cross-

section under combined loads, the most critical region will similarly be at the frame inner and 

outer flange. Especially with respect to typical LCF-shaped frame designs the middle flange is 

designed similar to the inner flange and therefore remains less critical. 
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Figure 4-6: Consideration of instability modes of a frame-stringer-skin structure 

4.2.2.  Elastic behaviour of a frame-stringer-skin structure 

A further investigation in the scope of the pre-failure analysis of a frame-stringer-skin structure 

regarded the elastic behaviour up to failure, to derive an appropriate kinematic hinge architecture 

from the identified characteristics. Considering again the four extreme cases of LCF-shaped 
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frame designs, the numerical frame-stringer-skin model was analysed regarding the strain 

distribution over the frame height to conclude to the elastic centre of the frame-stringer-skin 

component in dependence of the frame stiffness. The numerical model corresponds to the one 

used in paragraph 4.2.1 and is described in detail in Appendix A2.1.  

The macro architecture as described in chapter 3.2 defines the frame bending mechanism by the 

rotational degree of freedom of the macro element. With respect to the elastic behaviour of a 

frame-stringer-skin structure under bending load, the pivot point of this rotation has to be 

positioned in the elastic centre to ensure accurate representation by the macro architecture. 

Pure bending load is considered in this investigation although the typical crash load in a fuselage 

frame structure is a combined moment-compression load. The normal load ratio in a combined 

loading shifts the neutral axis compared to pure bending loading, nevertheless the bending mode 

acts with respect to the elastic centre. Applying a pure moment load on the frame-stringer-skin 

model, the neutral axis corresponds with the elastic centre. Hence, the location of the elastic 

centre can be identified directly by the consideration of the longitudinal strains in the frame 

flanges. 

Figure 4-7 illustrates the ‘average strain - rotation’ graphs of the frame-stringer-skin model with 

the four frame designs, which were presented in Figure 4-5b) – 4-5e). The average strain is the 

average value of all strain bar elements along the frame. Hence, the set of strain curves for each 

frame flange, as illustrated in Figure 4-6, is replaced by their average value. The rotation which 

is plotted in the diagrams corresponds to the rotation angle that is applied at each end of the 

model. Thus, the bending angle is of twice this value. Strain graphs are depicted for opening and 

closing bending motion.  

In all four diagrams of different LCF-shaped frame stiffness in Figure 4-7 a symmetrical strain 

distribution can be identified for opening and closing bending in the range of linear-elastic 

behaviour. In Figure 4-7a) the strain magnitude in the frame outer flange is very small. With this 

frame design of typical static sizing the elastic centre is close to the skin. Looking at cases with 

an increased frame stiffness, Figure 4-7b) and 4-7c) show the elastic centre between frame outer 

and middle flange. Figure 4-7d) represents the massive frame design with a total frame height of 

hF = 120 mm and a flange thickness at the inner and middle flange of tIFF/OFF = 9.2 mm. Such an 

extreme frame design shifts the elastic centre to the frame middle flange as it is obvious in this 

diagram. Here, the strain magnitude in the frame middle flange is close to zero.  

An important outcome of this comparison is the fact that regarding all conceivable LCF-shaped 

frame designs the elastic centre is positioned between frame outer and middle flange. 

Consequently, the inner and middle flange is loaded in all considered variants in the same 
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direction and leads to a generally more critically loaded inner flange. With respect to the 

discussion of potential failure initiations in paragraph 4.2.1, this result proves the definition of 

failure criteria which are based purely on the consideration of failure at outer and inner frame 

flange. 

 

Figure 4-7: Longitudinal strain distribution in a frame-stringer-skin component with different frame stiffness 

As a further result, the graphs in Figure 4-7 illustrate the dependence of the elastic centre 

position on the frame stiffness, which is in the range between outer and middle flange. Whereas 

the typical frame design of a static sizing has its elastic centre located very close to the skin, the 

most massive frame design holds its elastic centre close to the frame middle flange. Regarding 

the kinematic hinge architecture the positioning of the macro element would depend on the 

frame stiffness if the elastic bending should be represented accurately with respect to the elastic 

centre. 

Such an accurate representation of the pre-failure behaviour is one requirement of the kinematic 

hinge architecture. A further requirement is a realistic representation of the post-failure 

behaviour. The following paragraph 4.3 discusses the post-failure bending mechanism of a 

frame-stringer-skin structure and identifies a mandatory position of the bending pivot point that 

is located in the skin plane. Considering both, the pre-failure and the post-failure representation 
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of a frame-stringer-skin bending mechanism, a compromise was defined which specifies the 

macro element position in the skin plane. With this approach the pre-failure behaviour is 

described accurately for typical frame designs and sufficiently for massive frame designs. The 

post-failure bending mechanism is represented accurately independent from the frame stiffness.  

Based on this kinematic hinge architecture with a bending rotation axis that is located in the skin 

plane, a method had to be defined to calibrate the elastic stiffness of the macro element. As 

mentioned at the beginning of paragraph 4.2, the analytical analysis of the elastic behaviour of a 

frame-stringer-skin structure is not trivial. To enable an efficient method for the calibration of 

the kinematic hinge bending stiffness, the macro element is calibrated numerically with respect 

to the strain along the frame inner flange. Analogously to the strain bar elements along the frame 

flange, the bending stiffness of the kinematic hinge is measured with a strain bar element that 

bypasses the cut of the kinematic hinge in the frame. Figure 4-8 compares these strain values and 

plots the strain along the frame inner flange as well as of the kinematic hinge. The illustrated 

simulation models in Figure 4-8 show a simplified structural model according to the Kinematics 

Model approach. This procedure of equal discretisation level ensures the calibration of the 

kinematic hinge similar to the simplified represented frame structure of the preliminary design 

tool. The diagrams in Figure 4-8a) and 4-8b) of typical and massive frame design illustrate a 

good correlation of frame structure and calibrated kinematic hinge. Good correlation was 

achieved similarly for the massive frame design with an elastic centre of the surrounding frame 

structure that is located near the frame middle flange whereas the macro element is positioned in 

the skin plane.  

 

Figure 4-8: Calibration of the kinematic hinge bending stiffness 



73                                                                   4. Detailed investigation of frame failure modelling 

4.3. Post-failure behaviour of a frame-stringer-skin structure 

The behaviour of a frame structure after failure initiation is the main mechanism that has to be 

represented by the kinematic hinge architecture. This post-failure mechanism has to be modelled 

by the macro architecture in a way that typical frame failure is represented and global crash 

kinematics can be simulated accurately.  

The definition of appropriate kinematic hinge architecture for the representation of the post-

failure behaviour was investigated on the basis of experimental tests which were performed in 

the past. Sub-structure level tests as well as fuselage section and full-scale drop tests were 

considered [15-19,24-26,28-38,46-51,56,62-65,134]. Post-failure damages of frame-stringer-skin 

structures were analysed to conclude to the spectrum of potential failure mechanisms. Based on 

the captured frame failure modes, the mechanisms were classified. Typical frame failure 

behaviour could be derived from this classification. Besides typical frame failure, several other 

failure mechanisms were identified which generally occur under specific conditions that differ 

from typical fuselage design.  

4.3.1. Frame failure of typical fuselage design 

In the following, examples of frame failures are presented and discussed. Figure 4-9 gives 

examples of the so-called typical frame failure mode. Basis of the typical frame failure 

mechanism is the structural interaction of the frame with the fuselage skin. Frame failure 

initiated by tensile rupture or compressive buckling reduces the frame stiffness so that the elastic 

centre shifts to the skin plane. The frame-skin component provides a significantly reduced 

bending stiffness which is in the final case of total frame rupture defined by the bending stiffness 

of the skin. Therefore flexion is concentrated in this failure location that forms a hinge whereas 

the circumjacent frame structure remains intact. In the hinge location, the skin with its 

comparably small thickness bends up to very high curvatures without exceeding the material 

failure strain. Thus, the skin provides structural integrity and forms the hinge. According to this 

effect, typical frame failure describes a bending mechanism with a pivot point that is finally 

located in the skin plane.  

Figures 4-9a) – 4-9e) show examples of typical frame failure in a closing bending condition. The 

examples illustrate typical closing failure that is initiated by compressive buckling of the frame 

flanges. Figures 4-9a) and 4-9b) depict results of dynamic tests on sub-structure level. A320 

fuselage panels in a 2-frame configuration were tested under crash relevant loads. Results of 

fuselage section drop tests are given in Figure 4-9c) and 4-9d). Finally, Figure 4-9e) depicts 

results of the ATR 42-300 full-scale drop test. Notable in Figure 4-9e) is the comparison of 
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typical frame and massive wing frame of this high-wing aircraft design. Similar hinge kinematics 

developed in both frame designs. 

In Figures 4-9f) – 4-9j), examples of typical frame failure in an opening bending condition are 

given. Typical opening failure is initiated by tensile rupture of the frame inner flange that 

propagates through the frame cross-section. Figures 4-9f) – 4-9h) show different opening hinge 

locations of the drop tested A320 fuselage section. Similar hinge kinematics is given in Figure 4-

9i) for the drop tested B707 fuselage section. Finally, typical opening frame bending failure of 

the ATR 42-300 structure is given in Figure 4-9j). 

Notable in this selection of frame failure examples in Figure 4-9 is the occurrence of similar 

frame failure kinematics despite of different frame and stringer designs in an A320, B707 and 

ATR42 fuselage structure. The illustrations in Figure 4-9k) and 4-9l) depict the schematic failure 

modes in closing and opening bending condition.  
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Figure 4-9: Typical frame failure mechanism 
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4.3.2. Frame failure of non-typical fuselage design 

Regarding post-failure damages in regions of the fuselage that differ from the typical fuselage 

section, further frame failure mechanisms were identified which can not be categorized to the 

typical frame failure discussed above. These additional failure modes are illustrated in Figure 4-

10. In Figures 4-10a1) and 4-10a2) results of the drop tested ATR 42-300 are shown. The 

complete area of the wing-fuselage interaction is depicted. In this high-wing aircraft 

configuration high crash loads acted during the drop test on the massive wing frames and led to 

complete rupture at five of the six wing frames. Separation of the skin in the frame failure 

location prohibited the formation of a hinge kinematics. High stiffness in the upper fuselage area, 

provided by the wing structure, hindered the massive wing frames from an inwards closing hinge 

rotation. Instead, high inertia loads of the wing led to a vertical shift of the upper frame parts 

including the separation of the skin. One wing frame experienced a closing hinge kinematics 

according to the typical frame failure mode, which is already illustrated in Figure 4-9e).  

Results of a drop tested B707 fuselage section are given in Figures 4-10b1) and 4-10b2). This 

airframe test section is tapered and provides a cargo door at one side. In addition, the cargo area 

was loaded with bulk luggage. Asymmetry of the fuselage section in longitudinal (tapered 

section) and lateral (cargo door) direction as well as high interaction of the fuselage structure 

with cargo loading led to an asymmetric global crash kinematics and untypical frame failures. 

The flattening effect of the fuselage section caused skin folding inside the frame hinge location 

at the left fuselage side, Figure 4-10b1). At the opposite side, Figure 4-10b2), the frame ruptured 

at two locations. The frame part between both failure locations shifted outwards and enabled the 

skin to fold.  

Drop test results of a tapered B707 section with an auxiliary fuel tank that was installed in the 

cargo floor are depicted in Figures 4-10c1) and 4-10c2). This fuselage section without cargo 

door provides symmetry in lateral direction. On both sides of this section, frame shear failure is 

visible. The frame ruptured and shifted in vertical direction which was enabled by additional skin 

separation. The cause of such frame shear failure can be found in the tapered geometry of the 

fuselage section. This asymmetric fuselage structure leads to asymmetric impact loads during the 

crash sequence with the first impact at the front end of the section.  

Results of a drop tested B737 fuselage section with cargo door and conformable fuel tank in the 

cargo floor are depicted in Figures 4-10d1) and 4-10d2). On the left (cargo door) side, Figure 4-

10d1), a closing hinge rotation of the frame is visible. This hinge kinematics differs slightly from 

typical hinge failure mechanism as lateral frame bending led to an enlarged area of the failure 

location. On the opposite side, Figure 4-10d2), closing hinge failure is visible. In this failure 
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location the frame ruptured completely. Due to the asymmetry, caused by the cargo door, and the 

flattening effect, caused by the fuel tank, the skin folded extensively in this frame failure 

location.  

Figures 4-10e1) and 4-10e2) illustrate drop test results of a further B737 fuselage section with 

cargo door that was loaded with bulk luggage. Typical asymmetric crash kinematics is visible, 

which is caused by the structural asymmetry introduced by the cargo door. Opening and closing 

hinges developed similar to the test results shown in Figures 4-10d1) and 4-10d2). Here, a global 

view shall be given on this asymmetric crash kinematics. 
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Figure 4-10: Further frame failure mechanisms (non-typical fuselage design) 
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Two additional main failure mechanisms can be derived from the captured frame failures 

discussed in Figure 4-10: Frame shearing and skin separation. Both failure mechanisms differ 

significantly from the typical frame failure kinematics. Both additional failure mechanisms are 

caused by structural designs which differ from the typical fuselage design. Such differences are 

high-wing aircraft design, tapered fuselage section or the existence of a cargo door, for instance. 

In the considered test results, the effect of these design variants was partly intensified by 

different cargo loadings. Such cargo loading avoids an unrolling of the lower fuselage shell and 

leads to higher constraints in the structure.  

With respect to the development of a kinematic hinge macro architecture the selection of failure 

modes that have to be represented has to be discussed. In general, representation of complex 

failure mechanisms by simplified macro models can not consider the full spectrum of potential 

failure effects. Different macro architectures would be necessary in dependence of the individual 

failure mode. Nevertheless, besides typical frame failure, the need of representation of frame 

shearing and skin separation has to be assessed on the basis of the definition of the Kinematics 

Model. As a preliminary design tool for composite fuselages, crashworthy designs shall be 

assessed and developed with the Kinematics Model. According to the basics for crashworthy 

composite designs all failure occurrences have to be controlled by crash devices to avoid 

uncontrolled crash scenarios. Hence, the kinematic hinges represent crash devices in the frame 

which avoid uncontrolled failure. Potential energy absorption and structural integrity has to be 

ensured by such crash devices.  

Typical frame failure as identified above is a frame bending mode that enables a controlled 

failure motion. In contrast to this, frame shearing leads to a separation of the frame structure that 

can hardly be controlled. Consequently, frame shearing should not be considered in a robust 

crash design. Skin separation is a failure mechanism that can occur even in combination with the 

typical frame failure mode. Especially in case of an opening hinge rotation, risk of skin 

separation is supposable. Tendencies of this combined effect are visible in Figure 4-9g). 

Nevertheless, skin separation is a failure mode that is hardly controllable. Propagation of rivet 

failure can lead to uncontrolled skin separation that induces further failure location outside of 

crash devices. For that reason, the philosophy for crashworthy design specifies the avoidance of 

skin separation wherefore this failure mode is not considered in the kinematic hinge architecture.  

The specification of the kinematic hinge architecture - to represent exclusively typical frame 

failure - is well sufficient and effective regarding its usage in a preliminary design tool on the 

typical fuselage section level. Nevertheless, further natural frame failure mechanisms of non-
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typical fuselage sections can not be represented with that macro modelling approach, which is 

why the usage of the Kinematics Model is generally limited to typical fuselage design.  

4.3.3. Failure behaviour of CFRP frame structures 

The previous discussion about the post-failure behaviour of a frame-stringer-skin component 

considered failure mechanisms of metallic structures. In the following, failure behaviour of 

CFRP frame structures was analysed to conclude to potential differences in the frame failure 

mode compared to metallic structures. Several tests of CFRP frame structures under crash 

relevant loads were conducted in the past. These results are discussed in the following.  

Valuable results were generated in the past by drop tests of CFRP frame components as well as a 

skeleton subfloor section and a skinned subfloor section, which were already discussed in 

paragraph 4.1. The generally observed failure pattern for the tested CFRP frames and sections 

was similar to the drop test results of metallic transport fuselage sections [46]. Especially in the 

drop test of the skinned subfloor section typical frame failure behaviour could be identified. Due 

to the brittle material behaviour of CFRP the frames partly failed more distinct, but the skin 

remained intact and served as less stiff boundary condition for the broken frames. The CFRP 

skin provided structural integrity and generated the hinge rotation.  

Further results of CFRP frame structures tested under crash related loads are depicted in Figure 

4-11. Test results of semi-circular CFRP frame structures are given in Figures 4-11a1) and 4-

11a2). A CFRP skin with a width of 1.4 times the frame outer flange width was co-cured with 

the graphite/epoxy I-shaped frame. The tests were performed quasi-statically. Again, the CFRP 

skin did not fail in the test but served as integer part and formed the hinge between the ruptured 

frame parts. In Figure 4-11a1) opening frame failure is illustrated at the lower centre (α1 = 0°) of 

the semi-circular frame. In addition, skin delamination from the frame is visible at this opening 

bending failure. A closing hinge at the same frame-skin specimen is shown in Figure 4-11a2) 

which occurred at an angle of α2 = 50°.  

Further test results of a similar semi-circular CFRP frame-skin component are pictured in 

Figures 4-11b1) and 4-11b2). The quasi-statically loaded semi-circular frame-skin component 

shows an opening hinge with delamination of the skin in Figure 4-11b1). In Figure 4-11b2) a 

closing hinge is pictured. In both frame failure locations the skin remained intact.  

Another example of CFRP frame failure is given in Figures 4-11c1) – 4-11c4). Results are 

presented of a commuter sub-passenger floor structure in a 2-frame configuration made of 

CFRP, that was drop tested with an initial velocity of vi = 7 m/s. Figures 4-11c1) and 4-11c2) 

illustrate an opening hinge that developed in the lower centre of the structure at both frames. At 
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this location a splice plate connects two frame parts to the full frame length. The splice plate 

ruptured across the complete cross-section. The skin remained intact and formed the opening 

hinge. Figure 4-11c3) gives an overview on the left part of the sub-floor specimen. The opening 

hinge is visible on the right side of this picture. Figure 4-11c4) shows the right side of the 

specimen. High curvature of the CFRP skin with an angle of about 90° is observable. This test 

result demonstrates the capability of the skin to provide structural integrity and to generate a 

hinge formation, even if the skin is made of CFRP.  

 

Figure 4-11: Failure behaviour of CFRP frame structures 
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4.3.4. Outcomes of the investigation of the post-failure behaviour 

Summarising the discussion of the post-failure behaviour of a frame-stringer-skin component, 

several test results on frame structures were evaluated to identify the spectrum of frame failure 

mechanisms. Besides several other frame failure modes, a typical frame failure mechanism could 

be identified. The concentration on this typical frame failure mode with respect to the definition 

of a macro architecture was stated reasonable. Further evaluation of test results of CFRP frame 

structures identified very similar frame failure hinge kinematics compared to the previous 

discussion of metallic structures.  

Based on this investigation on frame failure mechanisms, the kinematic hinge macro architecture 

was defined in a way that typical frame failure is represented accurately. As the skin described 

the integrating structural part and frame bending rotation occurs with a pivot point that is located 

in the skin, the macro element was positioned in the skin plane. Similar to the discussed test 

results of typical frame failure this macro element describes the frame failure behaviour 

respectively the behaviour of a frame crash device by a moment-rotation relation. The (CFRP) 

skin is modelled linear-elastically as this structural part remains inside of its material failure 

strain. The element size of the discretised skin was adapted so that element edges correspond 

with the length of the macro element respectively the length of the kinematic hinge gap. At least 

one element row is positioned inside the hinge gap. This enables the skin elements to experience 

high curvatures with its typical linear shape functions. Figure 4-12 illustrates the kinematic hinge 

mechanism and compares this hinge kinematic with typical frame failure of CFRP and metallic 

frame structures. 
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Figure 4-12: Kinematic hinge architecture for representation of typical post-failure behaviour 

4.4. Influence of the kinematic hinge architecture on lateral frame 

stability 

A typical design of an aircraft fuselage structure provides cleats for lateral support of the frames. 

Cleats increase the lateral frame stiffness significantly. Hence, potential lateral frame buckling 

occurs at higher loads, or vice versa frames can be designed lighter when support by cleats is 

provided. As mentioned in chapter 3.1 the Kinematics Model does not provide the modelling of 

cleat structures. These structural details are not considered in a preliminary design phase. On the 

other hand, the neglect of lateral support may lead to an over-dimensioned frame design. 

Especially in case of crash, the frame structure is typically loaded with high compression and 

bending loads which leads to an increased risk of lateral frame buckling. Hence, assumptions 

have to be defined to consider appropriate lateral frame support.  
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Furthermore, the influence of the frame cross-sections reinforced by rigid bodies in the 

kinematic hinge architecture has to be analysed. It has to be ensured that the kinematic hinges do 

not provide unrealistically stiff lateral frame support. Otherwise, this could lead to a non-

conservative frame design.  

The numerical frame-stringer-skin model as well as the Kinematics Model on the fuselage 

section level was used to investigate the lateral frame behaviour. Typical frame behaviour of 

detailed numerical models was compared to the behaviour of a coarse structural representation 

according to the Kinematics Model approach. In the following, this investigation is discussed.  

The numerical frame-stringer-skin model which was used in this investigation was already 

discussed in paragraph 4.2. A detailed model description is given in Appendix A2.1.  Three 

different model variants were analysed to investigate the lateral frame stiffness of different 

modelling techniques. Figure 4-13 illustrates these model variants. A detailed FEM model, 

pictured in Figure 4-13a), represents the reference with a typical structural design. In this variant 

cleats are modelled in detail. Typical cleat design was assumed with a thickness of t = 2.5 mm 

and a material stiffness based on aluminium material data. The variant in Figure 4-13b) 

corresponds to the Kinematics Model approach and provides a kinematic hinge in the centre of 

the frame segment. Cleats are not modelled in this approach. Figure 4-13c) represents a variant 

with a coarse discretisation according to the Kinematics Model. Neither a kinematic hinge nor 

lateral frame support by cleats are modelled here. 

 

Figure 4-13: Frame-stringer-skin model variants used in the investigation on lateral frame stiffness 

Similar to previous investigations different LCF-shaped frame designs were analysed to consider 

the whole spectrum of frame sizing which will potentially be used in a crash design process. 
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These designs represent the extreme cases with respect to instability modes and were already 

pictured in Figure 4-5b) – 4-5e). Pure moment load was considered in this investigation.  

As expected, a general outcome of this investigation identified that filigree frame designs with 

thin flanges are less affected by the design of lateral frame support. Flange buckling is the major 

mode of instability for such filigree designs. In contrast to this, high influence of lateral frame 

support was identified for massive frame designs. Here, lateral frame buckling is the major mode 

of instability, as discussed in paragraph 4.2.1. For that reason, the discussion of simulation 

results concentrates in the following on the massive frame designs. In Figure 4-14 the graphs 

illustrate the strain along the frame inner flange of the variant with the most massive frame 

design, which corresponds to Figure 4-5b). A comparison of the modelling technique variants 

obviously shows that the neglect of lateral frame support leads to extensive frame buckling. The 

detailed FEM model variant as well as the Kinematics Model variant show similar strain 

distributions. The magnitude of both graphs is at a strain level between ε1 = -7000 microstrain 

and ε2 = -8500 microstrain. The crippling strain limit of this frame design is εcc = -8290 

microstrain. Thus, the graphs represent the strain distribution at a maximum allowed load level at 

which the crash devices in the frames have to trigger at the latest. At this state the strain 

distribution of the variant without lateral support indicates strain exceeding up to ε3 = -12,300 

microstrain. As a result of this exceeding, modelling approaches without consideration of lateral 

frame support would lead to over-sized frame designs.  

Compared to the variant without lateral support, the detailed FEM variant and the Kinematics 

Model variant correspond well. Small curvatures in both graphs indicate lateral frame buckling 

between the cleats respectively between boundary condition and the kinematic hinge. Strain 

oscillations in the centre of the graph of the Kinematics Model variant indicate little influence of 

the kinematic hinge on the strain distribution.  
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Figure 4-14: Strain along the frame inner flange with different frame lateral supports 

After the investigation on generic fuselage sub-structure level, a similar investigation was 

performed with numerical models on the fuselage section level which were drop tested with an 

initial velocity of vi = 6.7 m/s (22 ft/s). The basis of this investigation is a generic CFRP standard 

fuselage structure with a massive frame design. In contrast to the frame-stringer-skin model 

analyses more realistic loading of combined compression and bending will occur in the frame 

structure of these fuselage section analyses. In addition, a curved frame structure and more 

realistic boundary conditions can be found in these models. Figure 4-15 depicts the section 

model variants. All three variants provide the same discretisation. The reference variant in Figure 

4-15a) provides artificial lateral support by constraints of frame inner flange nodes at each 

stringer position. These constraints in lateral direction represent an ideal cleat like frame support. 

The Kinematics Model is illustrated in Figure 4-15b) with a kinematic hinge distribution 

according to the outcomes of paragraph 4.1. A third section model without lateral frame support 

is pictured in Figure 4-15c). In this model, lateral frame support of the lower side shell structure 

between passenger crossbeam and cargo-crossbeam is given exclusively by the lower vertical 

support strut connection which is modelled using a rigid body.  
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Figure 4-15: Fuselage section model variants used in the investigation on lateral frame stiffness 

The results of this investigation on the fuselage section level are comparable to the results of the 

frame-stringer-skin model presented above. The strain along the frame inner flange of the lower 

fuselage side shell is depicted in Figure 4-16 at t = 20ms after the first impact. At this state, the 

crushing of the sub-cargo area is nearly completed and the frame is loaded highly up to failure. 

The graphs illustrate the strain along the frame between cargo-crossbeam and passenger 

crossbeam. The frame coupling as well as the vertical support strut connection provides certain 

lateral support. Thus, the graph illustration concentrates on the regions between these structural 

supports. The region between cargo-crossbeam and vertical support strut is obviously the most 

critical one. The graph of the variant without lateral frame support indicates extensive lateral 

frame buckling in this region. The strain distribution of the Kinematics Model variant shows 

minor frame buckling whereas the variant with frame support by nodal constraint indicate 

negligible frame buckling. Regarding this critical region between cargo-crossbeam and vertical 

support strut, maximum strain level of the variant without lateral frame support reached high 

values of up to ε = -7600 microstrain. The maximum strain values of the Kinematics Model 

variant is ε = -6200 microstrain. The variant with frame support by nodal constraint reached a 

maximum strain level of ε = -6000 microstrain. Hence, the Kinematics Model variant provides a 

lateral stiffness behaviour that is comparable to variants with exclusively defined lateral support. 

The graphs in the region between vertical support strut and passenger crossbeam show similar 

strain distributions for all variants. Here, the loading is not critical at this state. Thus, extensive 

lateral frame buckling does not occur.  
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Figure 4-16: Strain along the frame inner flange of different frame lateral supports in the section model 

Summarising the investigations on lateral frame stability, analyses on the sub-structure level as 

well as on the fuselage section level identified good agreement of the Kinematics Model 

approach with more detailed model representations of lateral frame support. The investigations 

showed that appropriate lateral frame support is provided by the kinematic hinges and vice versa 

the rigid body modelling in the kinematic hinges does not influence the lateral frame stiffness in 

an unrealistic manner.  

To achieve this good agreement an appropriate density of kinematic hinges along the frame 

structure is required. Especially with regard to the upper fuselage, potential need of additional 

lateral frame support by nodal constraints has to be considered. In this area, the number of 

installed kinematic hinges is typically much lower compared to the lower fuselage and 

comparably long frame segments without any lateral frame support are at risk to buckle laterally. 

The definition of additional lateral support by nodal constraints can be specified individually in 

dependence of the occurrence of potential buckling events.  

4.5. Influence of the discretisation 

The basic idea of the Kinematics Model, which was described in chapter 3.1, specifies a coarse 

modelling for representation of the fuselage structure. Based on the linear-elastic material 

formulations an increased element size can be defined as structural deformations of the finite 

elements are comparatively small, at least in the range of structural design allowables.  
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In addition, the coarse modelling can be applied to the layup definition. Simplifications in the 

stacking sequence by merging of identical layers will reduce the number of integration points 

through the thickness of a finite element. Furthermore, as the material behaviour is reduced to 

linear-elastic formulation the number of integration points through the thickness of each layer 

could be reduced.  

Finally, a reduced integration of the shell elements would significantly reduce the number of 

integration points in an element compared to fully integrated elements. 

All these modelling aspects lead to a significant reduction of calculation time. This is of prime 

importance as modifications and adaptations are typical for a preliminary design phase and 

various simulation runs are necessary to finally result in a crash optimised design.  

In this paragraph the aspects of coarse modelling are discussed to ensure an accurate model 

representation of the fuselage structural behaviour.  

At first, the influence of the element size was analysed. Based on the frame-stringer-skin model, 

which is described in detail in Appendix A2.1, four representative LCF-shaped frame designs 

were calculated on different discretisation levels. The LCF-shaped frame designs correspond to 

the profiles which are illustrated in Figure 4-5b) – 4-5e). Pure moment load was assumed in this 

investigation.  

In a first analysis, a fine discretised variant with an element size of Le1 = 12 mm was compared 

to a coarse modelled variant with an element size of Le2 = 39 mm. In addition to a large element 

size, the coarse model provides a simplified structural representation according to the Kinematics 

Model approach. The stringers are represented by beam elements. Mouseholes are omitted in this 

variant. In Figures 4-17 and 4-18 results of this comparison are given for the small, filigree 

frame design (Fig. 4-17) as well as the large, massive frame design (Fig.4-18). The strains along 

the frame inner flange are depicted over the time, respectively over the moment load. Both 

diagrams obviously show discrepancies between fine and coarse discretisation. In Figure 4-17, 

the set of graphs of the fine discretised variant approximately describes a unique slope up to 

initiation of flange buckling which is indicated in the graph oscillations starting at a strain level 

of about ε = -3500 microstrain. The set of graphs of the coarse modelled variant shows a fan-

shaped distribution with significant differences in the slope. Oscillations which indicate potential 

flange buckling are visible at significantly higher loads compared to the fine modelled variant. In 

Figure 4-18, results of the large, massive frame design are given. A similar discrepancy between 

the fine and the coarse modelling variant is obvious. Here, a spread in the set of graphs of the 

fine modelled variant indicates frame buckling. The graphs of the coarse modelling variant show 

a fan-shaped distribution.  
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In this investigation the coarse model was discretised with one element over the width of all 

frame flanges. The frame inner web provides two elements over the height, the frame outer web 

provides one element over the height – in case of small frame design. In these explicit numerical 

simulations typical shell elements with linear shape functions are used. Such coarse 

discretisation in combination with linear interpolation of the elements results in significant 

constraint effects. The frame flanges, discretised with one element over their width, can not 

resolve the natural buckling mode of the filigree frame design and constraint such instability 

modes. The constraint of flange buckling results in an early frame buckling mode indicated by 

the fan-shaped strain distribution.  

 

Figure 4-17: Strain along the frame inner flange with different discretisation level – small, filigree frame design 

 

Figure 4-18: Strain along the frame inner flange with different discretisation level – large, massive frame design 
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In the following, the element size in the coarse variant was reduced in a way that the frame 

flange width was discretised with two element rows. Three element rows are modelled over the 

frame inner web height, two element rows over the frame outer web height – in case of the small 

frame design. With this mesh refinement constraint effects could be avoided and an accurate 

elastic behaviour was achieved, as the results in Figures 4-19 and 4-20 illustrate. Here, the fine 

modelled variant is compared with the refined Kinematics Model variant. Both diagrams 

illustrate good agreement in the elastic behaviour.  

With respect to initiation of instabilities the filigree frame design as well as the massive frame 

design show a slightly delayed initiation of flange buckling respectively frame buckling for the 

Kinematics Model variant. This small discrepancy has no influence on the model accuracy as 

strain limit criteria in the Kinematics Model are not defined by the FE model, but according to 

the empirical handbook criteria.  

 

Figure 4-19: Strain along the frame inner flange, kinematics and detailed modelling – small, filigree frame design 
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Figure 4-20: Strain along the frame inner flange, kinematics and detailed modelling – large, massive frame design 

As an outcome of this study, a maximum reasonable element size can be defined so that at least 

two elements are modelled over the flange width of frame inner and outer flange. Such an 

element size leads to five elements over the frame height for the considered small frame profile 

(typical design). Up to seven elements over the frame height are modelled in this discretisation 

level for the large frame profile (massive design). 

A further aspect regarding efficient calculation schemes is the usage of reduced integration for 

the shell elements. With reduced integration, one section point is used instead of four section 

points in the fully integrated shell element. This effect can reduce the calculation time 

significantly. Nevertheless, the combination of reduced-integration elements with a coarse 

regular mesh under bending loads is critical. Excessive hourglassing can increase the artificial 

energy of the hourglass control which is provided by the FE solver. Therefore, at least four 

elements through the section of bending regions are recommended when reduced-integration 

elements are used [111,112]. With respect to the frame web this recommendation is satisfied 

with the refined Kinematics Model variant discussed above. But the frame flanges are modelled 

in the refined variant with only two elements over the flange width. In case of frame buckling, 

the elements of the frame flanges experience in-plane bending loads. In this special case the 

recommendation to use at least four elements through the section is not satisfied. It is obvious 

that a mesh refinement is not reasonable. This would lead to a significant increase of calculation 

time caused by a comparably fine FE mesh which is not acceptable for an efficient preliminary 

design tool. Instead, the elements of frame inner and middle flange are calculated fully 

integrated. Hourglass modes can not occur with fully integrated elements. Hence, potential 

increase of artificial energy by hourglass control is avoided. The frame outer flange is 
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furthermore modelled with reduced-integration elements as this flange is connected to the skin 

by tie constraints which avoid the occurrence of hourglass modes. In addition, potential in-plane 

bending loads in this outer flange are negligible.  

Further calculation efficiency was realised by a reduction of the number of layers as well as by 

the reduction of the number of integration points through the thickness of each layer. Potential 

influence of both simplifications was analysed with the frame-stringer-skin model considering 

the four representative LCF-shaped frame designs which are illustrated in Figure 4-5b)-e). Pure 

moment load was assumed in this investigation.  

The investigation of effects caused by the merging of stacking sequences identified no influence 

on the elastic behaviour for all considered frame designs. Reasonable merging was conducted in 

this study which considered the fusion of similar plies. 

The reduction of the number of integration points through the thickness did not show observable 

influence on the elastic behaviour, either. In this study, the number of integration points was 

reduced from three points per ply to one point per ply. With respect to the initiation of 

instabilities small effects were observed. In one frame design variant, flange buckling occurred 

marginally later with reduced layup and one integration point per ply. Once more, the initiation 

of instabilities has no effect on the accuracy of the Kinematics Model as empirical handbook 

criteria for failure initiation are used.  

Summarising the investigation on the influence of the discretisation, several discretisation 

parameters were analysed with the focus on a maximum coarse structural representation to 

achieve model efficiency without the loss of model accuracy. 

Investigations of the required mesh size led to a model efficient compromise that specifies a 

minimum number of elements along the frame height and uses fully integrated elements in the 

inner and middle flange to ensure model accuracy without further mesh refinement. Further 

model efficiency could be achieved by reasonable merging of the layup stacking sequence as 

well as by the reduction of the number of integration points per layer. Figure 4-21 compares the 

model efficiency of typical detailed modelling with the final kinematics modelling on the basis 

of the frame-stringer-skin simulation model with the small, filigree frame design. Summarising 

the discretisation aspects discussed above the model efficiency of the final kinematics modelling 

approach provides a factor of f = 0.034 relative calculation time compared to detailed modelling. 

Minor discrepancies in the initiation of instability modes compared to detailed modelling will 

have no influence on the model accuracy as the initiation of instabilities is defined in the 

Kinematics Model by empirical handbook criteria. 
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Hence, the finally defined discretisation for the Kinematics Model significantly improved the 

model efficiency without the loss of accuracy.  

 

Figure 4-21: Model efficiency of the final kinematics modelling 

4.6. Influence of the bending-compression ratio 

In some of the investigations discussed in the paragraphs above, generic frame-stringer-skin 

models were analysed with pure moment load. The concentration on pure moment load should 

focus on the individual targets of the above investigations. In realistic crash scenarios a 

combined load of moment and normal force acts on the frame-stringer-skin structure. Depending 

on the location in the fuselage section and the crash phase, high normal forces can act on the 

structure. Especially in the critical sub-passenger floor area the normal forces are generally in 

compression direction. In this area, high compression forces can lead to small bending-

compression ratios which influence the failure behaviour of the fuselage structure.  

In this paragraph typical bending-compression ratios are discussed which act on a frame 

structure of a fuselage section during a typical crash event. The influence of these bending-

compression ratios on the behaviour of the kinematic hinge architecture is highlighted. Finally, 

the influence of the bending-compression ratio on the failure behaviour of a frame-stringer-skin 
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structure is discussed and assessed with the failure criteria which were defined for pure moment 

loads in paragraph 4.2.1.   

4.6.1. Identification of typical bending-compression ratios 

The frame structure of the sub-passenger floor area can be divided in two different regions which 

experience different maximum loadings at different phases during a typical crash event. The 

frame region between cargo-crossbeam and vertical support strut is one of these frame regions. 

After the failure of the sub-cargo area first frame failure typically occurs in this region. The crash 

phase which is of interest to analyse the bending-compression ratio in this region is the period 

between the first impact of the fuselage and the failure of the frame, respectively the triggering 

of the kinematic hinges. With respect to a standard crash scenario2 of a typical single-aisle 

transport aircraft this period is approximately between t1 = 0 ms and t2 = 50 ms. Figure 4-22 

illustrates the bending-compression ratio during this period in two cutting surfaces which are 

positioned in this critical frame region at α1 = 25° and α2 = 34°. The depicted results were 

generated in a simulation of a generic CFRP single-aisle fuselage section. The bending-

compression ratio is defined as 

r = bending moment / normal force [mm]. 

The moment load was analysed with respect to a reference point that is located in the centre of 

the cross-section area. The cutting surfaces include the frame as well as the skin structure. 

Caused by the dynamic nature of a crash event the bending-compression ratio tends to high 

oscillations. Therefore, the graphs in the diagrams of Figure 4-22 are filtered with a butterworth 

filter and a cut-off frequency of f = 180 Hz. The raw data graphs, with a sampling frequency of   

f = 2 kHz, are additionally illustrated in grey colour.  

Figure 4-22a) depicts the measured bending-compression ratio of cutting surface CS-02. A mean 

value of r2 = 400 mm can be identified for the considered crash phase. The ratio in cutting 

surface CS-01 is illustrated in Figure 4-22b). The graph shows values which are mainly above a 

ratio of approximately r1 = 200 mm.  

In general, a bending-compression ratio higher than r = 150 mm was identified in the frame 

region between the sub-cargo area and the vertical support strut.  

                                                 

2 Within this thesis, the ‘standard crash scenario’ specifies impact conditions of a vertical impact with vi = 6.7 m/s, 

fully loaded overhead bins, occupied seats, zero pitch and roll angle. Cargo loading is not considered in this case. 
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Figure 4-22: Typical bending-compression ratios in the lower side shell 

The second frame region of the sub-passenger floor area is the frame part between vertical 

support strut and passenger crossbeam. Here, the crash load typically reaches its maximum at a 

later state of a crash event, when the vertical struts hit the ground. With respect to a standard 

crash scenario of a typical single-aisle transport aircraft this period is approximately between t1 = 

80 ms and t2 = 140 ms. Figure 4-23 illustrates the bending-compression ratio of two cutting 

surfaces which are located in the so-called “Bermuda triangle” at α3 = 49° and α4 = 60°.  Similar 

to the graphs in Figure 4-22 a butterworth filter with a cut-off frequency of f = 180 Hz was used 

to filter the raw data which were sampled with a frequency of f = 2 kHz. Both graphs in Figure 

4-23a) and 4-23b) show the typical plateau of a low bending-compression ratio which is caused 

by high compression forces during the impact of the Bermuda triangle. The results depicted in 

Figure 4-23 are based on a load case with a high initial velocity of vi = 9.1 m/s (30 ft/s). In such a 

crash scenario, a certain amount of kinetic energy is still in the fuselage structure when the 

Bermuda triangle impacts on the ground. This leads to minimum values of the bending-

compression ratio in both cuttings surfaces of r = 75-100 mm.  

In general, a bending-compression ratio higher than r = 50 mm was identified in the frame region 

of the Bermuda triangle. In a few crash cases, ratios lower than r = 50 mm could be identified for 

short durations.  
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Figure 4-23: Typical bending-compression ratios in the Bermuda triangle 

4.6.2. Influence of the bending-compression ratio on the kinematic hinge 

behaviour 

The investigation on typical bending-compression ratios identified values of r > 150 mm in the 

critical frame region between cargo-crossbeam and vertical strut and r > 50 mm in the region of 

the Bermuda triangle. In the following, the influence of these bending-compression ratios on the 

behaviour of the kinematic hinges is investigated.  

The investigation on the bending-compression ratio is based on the generic frame-stringer-skin 

model that was simulated with different frame profiles according to Figure 4-5b) – 4-5e). The 

generic simulation model represents the frame-stringer-skin structure in the Kinematics Model 

approach and is illustrated in Figure 4-24a). A kinematic hinge is positioned in the centre of the 

frame segment. The stiffness of the kinematic hinge was calibrated under pure moment load with 

respect to the frame inner flange strain, as discussed in paragraph 4.2.2. After the calibration 

under pure moment load different bending-compression ratios were applied on the model. 

Results with filigree as well as with massive frame design are depicted in Figure 4-24b) and 4-

24c). In the diagrams the strains along the frame inner flange are illustrated over the simulation 

time respectively over the moment/compression load.  
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Under pure moment load (r = ∞) both model variants (filigree and massive frame design) show 

good correlation between the flange strain and the kinematic hinge strain. With a bending-

compression ratio of r = 150 mm a small derivation of the kinematic hinge strain is visible. 

Significant discrepancy between the kinematic hinge strain and the strain along the frame inner 

flange can be identified with a bending-compression ratio of r = 50 mm for both model variants. 

Furthermore, in case of r = 50 mm higher deflection of the kinematic hinge strain can be 

identified for the massive frame design compared to the filigree frame design.  
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Figure 4-24: Elastic behaviour of the kinematic hinge in dependence of the bending-compression ratio 



4. Detailed investigation of frame failure modelling                                                                   100 

The effects that lead to the observed differences of kinematic hinge stiffness and frame stiffness 

with decreasing bending-compression ratio are explained in the following. Exemplarily, the 

strain graphs of Figure 4-24c), for r = ∞ and r = 50mm, are plotted again in Figure 4-25. Here, 

the mean value of the frame inner flange strains as well as the kinematic hinge strain is plotted 

over the frame inner flange displacement. For r = ∞ good correlation of the linear slope can be 

identified between the mean values of the frame inner flange strains as well as the kinematic 

hinge strain. In contrast to this, the kinematic hinge strain of r = 50 mm clearly differs. Besides 

the discrepancy in the elastic slope a small difference in the trigger strain of the kinematic hinge 

of ∆ε ≈ 0.5e-03 can be identified. 

The small difference in the trigger strain is caused by the kinematic hinge architecture. The 

characteristic of the kinematic hinge is described by a moment-rotation relation. The 

translational degrees of freedom are constrained. These numerical constraints in the connector 

element are not infinitely rigid. In case of high normal forces a marginal displacement in the 

translational degree of freedom leads to this small difference in the trigger strain.  

The more significant deflection in the elastic slope of the kinematic hinge strain is caused by 

different locations of the elastic centre of the frame-skin cross-section and the pivot point of the 

kinematic hinge. The positioning of the macro element in the kinematic hinge architecture was 

already discussed in paragraph 4.2 and 4.3 with respect to the pre- and post-failure behaviour of 

a frame-skin structure. The position of the macro element in the skin plane is essential with 

respect to the post-failure behaviour. The drawback of this location is a load-dependent elastic 

behaviour of the kinematic hinge. In case of a combined loading of moment and normal force, 

the normal force acts in the elastic centre of the frame-skin cross-section. With respect to the 

kinematic hinge pivot point positioned in the skin plane this normal force induces an additional 

moment on the rotational degree of freedom of the macro element. Figure 4-26 illustrates this 

relation. The effect is a higher strain in the kinematic hinge compared to the frame inner flange 

strain. The higher the distance between elastic centre and pivot point the more this effect is 

observable. Hence, low bending-compression ratios in combination with a massive frame design 

leads to higher deflection of the kinematic hinge behaviour compared to a filigree frame design, 

as observed in Figure 4-24.   
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Figure 4-25: Strain along the frame inner flange for different bending-compression ratios 

 

Figure 4-26: Additional moment load caused by different locations of the elastic centre and the pivot point 

The comparison of the kinematic hinge accuracy in dependence of the bending-compression 

ratio in Figure 4-24 generally shows an acceptable behaviour up to a ratio of r = 150 mm. Ratios 

smaller than r = 150 mm lead to a significant loss of the kinematic hinge accuracy. The 

investigation discussed in paragraph 4.6.1 highlighted that a ratio smaller than r = 150 mm 

typically occurs in the region of the Bermuda triangle when high compression forces are induced 

by the impact of the vertical struts. With respect to such cases, the kinematic hinges in that 

region should be calibrated for low bending-compression ratios instead of pure moment load. 

This calibration would represent too stiff kinematic hinge behaviour during the first crash 

phases. But during the critical crash phase, when triggering of the kinematic hinges is expected, 

good correlation can be achieved. 

Summarising the above discussed investigation, typical bending-compression ratios were 

identified and the kinematic hinge behaviour was analysed for different ratios. In general, good 
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accuracy of the kinematic hinge was identified for typical bending-compression ratios. With 

respect to very low bending-compression ratios, the kinematic hinge showed inaccurate 

tendencies. Potential calibration based on lower bending-compression ratios may compensate 

this effect.  

4.6.3. Influence of the bending-compression ratio on the failure behaviour of a 

frame-stringer-skin structure 

In the following, the influence of the bending-compression ratio on the validity of failure criteria 

is discussed. In paragraph 4.2.1 failure criteria were defined with respect to pure moment load on 

a frame-stringer-skin structure. The strain along the frame inner flange as well as along the frame 

outer flange of a LCF-shaped frame was identified to serve as failure criteria for opening and 

closing bending failure. In case of additional normal load the same failure criteria are still valid 

for the indication of potential frame failure. The frame middle flange remains uncritical in all 

load variations.  

In the extreme case of pure normal load (r = 0 mm) the frame middle flange experiences the 

same strain magnitude compared to frame inner and outer flange. Typical LCF- shaped frame 

design defines the frame inner and middle flange of higher stiffness, respectively thickness, 

compared to the frame outer flange. The crippling strain criteria are more critical for the frame 

outer flange as for the frame middle and inner flange. Hence, the frame middle flange is 

uncritical in all loading conditions. To illustrate this effect, simulations were performed of 

different LCF-shaped frame profiles and different loading conditions (r = ∞, r = 50 mm). Figure 

4-27 provides the simulation results and depicts the mean value of the frame flange strains 

plotted over the frame inner flange displacement. Exemplarily, the filigree frame design, Figure 

4-27b), and the massive frame design, Figure 4-27c), are given. The diagrams illustrate opening 

bending in case of positive frame inner flange displacement and closing bending in case of 

negative frame inner flange displacement. The diagrams of the variant r = 50 mm illustrate a 

combined loading of bending and compressive normal force. In the diagram r = 50 mm, Figure 

4-27c) shows that frame middle and outer flange strains are close to each other. This is one of the 

cases when the frame middle flange experiences nearly the same strain magnitude than the frame 

outer flange. Nevertheless, the crippling strain limit of the frame outer flange is generally more 

critical which is why even in such cases the frame middle flange is not critical. Hence, the 

general validity of the frame failure criteria, defined in paragraph 4.2.1, could be proved even in 

case of untypical high normal load. 
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Figure 4-27: Influence of the bending-compression ratio on the elastic behaviour of a frame-stringer-skin structure 

4.7. Summary – the final kinematic hinge macro architecture 

The final macro architecture of the kinematic hinge is based on the investigations discussed in 

the previous paragraphs. In chapter 3.2.3 the basic macro architecture was already presented. In 

the following the main properties of the kinematic hinge, which were derived from the detailed 

investigations, are summarised. Figure 4-28 illustrates the properties of the final kinematic hinge 

architecture.  
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The positioning of the kinematic hinges in a model of a fuselage section is firstly defined 

according to the data basis of known experimental test results. Secondly, the positioning is 

defined according to the strain distribution in the frame flanges which are derived from 

numerical simulation of a preliminary Kinematics Model without kinematic hinges in the frame.  

Lateral frame support is effected sufficiently by the kinematic hinge itself, as discussed in 

paragraph 4.4. Potentially, additional lateral support by nodal constraints can be defined in 

regions of the fuselage section where long frame segments are defined without kinematic hinge. 

This is potentially the case in the upper fuselage area where frame failure is expected only at few 

locations.  

The kinematic hinge architecture is described mainly based on the discussion of pre- and post-

failure behaviour of a frame-stringer-skin structure. A cut in the frame represents the 

discontinuity of the elastically modelled frame structure. Both free cross-sections of the frame 

are reinforced by rigid bodies. The macro element, a connector element in case of the FE code 

ABAQUS/Explicit, is positioned in the skin plane and connects both rigid bodies of the frame 

cross-sections. The connector element describes the frame pre- and post-failure characteristic by 

a moment-rotation curve. In this macro element the rotational degree of freedom is the only 

active one. In particular, the degree of freedom in the longitudinal frame direction is constraint. 

Due to the small length of the kinematic hinges compared to the total frame length in a fuselage 

section this rigid behaviour has no significant influence. With respect to the kinematic of such a 

hinge the longitudinal displacement in the skin plane respectively in the frame outer flange is 

fixed whereas the longitudinal displacement in the frame inner flange is described by the 

moment-rotation curve. Hence, calibration of the initial slope in the moment-rotation curve, 

which represents the elastic frame behaviour, is defined with respect to the frame inner flange 

strains. In addition, the trigger moment is generally calibrated with respect to a limit strain in the 

frame inner flange. This definition is conform to typical trigger mechanisms which are specified 

and located in the frame inner flange. Nevertheless, potential failure of the frame outer flange 

has to be checked besides the kinematic hinge by empirical strain criteria, as discussed in 

paragraph 4.2.1. 

In addition to that, Figure 4-28 illustrates some properties of the kinematic hinge with the focus 

on model simplifications. For an improved simulation performance a coarse modelling is 

desired. In paragraph 4.5 minimum modelling refinements were identified to ensure adequate 

accuracy. These minimum refinements are a discretisation with at least two shell elements along 

the frame inner flange width to allow the formation of instability modes. At least five shell 

elements over the frame height are required to avoid the risk of extensive generation of hourglass 
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energy. In addition, reduced element integration, merged layup definition as well as a reduced 

number of integration points through the thickness were identified as a proper method to 

improve simulation performance within an adequate accuracy. With respect to the frame inner 

and middle flange, full element integration is used in favour of a relatively large element size.  

 

Figure 4-28: Final kinematic hinge macro architecture 

 



 

5. Implementation of a user element for frame failure 

modelling 

The development of the kinematic hinge architecture, discussed in chapter 4, was performed on 

the basis of standard macro elements which are provided by the commercial FE solver. The 

selection of an appropriate standard macro element was described in chapter 3.2.1. Outcome of 

this development is the final kinematic hinge architecture that is described in paragraph 4.7. This 

macro architecture enables the representation of typical frame failure mechanisms in a realistic 

and adequately accurate way. Although this failure representation is well sufficient with respect 

to a preliminary design tool, some limitations in the kinematic hinge architecture were the 

motivation to raise some effort for further improvement of the frame failure representation. In 

paragraph 5.1 a discussion of these limitations will identify that some of them are caused by 

restrictions of the standard macro element which is used in the kinematic hinge. The absence of 

proper standard macro elements, which are able to overcome these restrictions, led to the 

consideration of the development of a specific user element.  

Implementation of user subroutines in an explicit finite element code is a decision which has to 

be balanced carefully. High effort is essential to obtain a qualified user element. Besides the 

programming of the subroutine an extensive verification is essential. In addition, the 

performance of element calculation is very important in an explicit code. Hence, the source code 

has to be written primarily with respect to efficient calculation, otherwise the user element is not 

suitable due to high costs of CPU time. 

The weighting of arguments finally resulted in the decision to program such a user element. 

Paragraph 5.1 discusses the requirements which were gathered with respect to an improved 

macro element in the kinematic hinge. These requirements are mainly based on some limitations 

of the standard connector element which is used in the final kinematic hinge architecture 

according to chapter 4.7. 

The following described work is based on the explicit finite element code ABAQUS/Explicit. A 

user element interface for explicit time integration is available in ABAQUS since the version 

V6.7 [104,116]. The implementation of the user element was performed based on ABAQUS 

versions V6.7, V6.8 and V6.9. Due to the recent option of a user element interface, the 

implementation was affected by several bugs which were partly solved in later versions (V6.9) of 
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ABAQUS. Some issues in the ABAQUS subroutine interface are still present for what reason the 

user element could finally not be implemented in the fuselage section model. Nevertheless, the 

implementation of the user element is completed and all functionalities could be proved.  

In the following, paragraph 5.1 discusses requirements for an improved macro element. 

Paragraph 5.2 describes the programming of the user element.  The verification process is 

documented in paragraphs 5.3 and 5.4 whereas paragraph 5.5 gives an outlook due to unsolved 

issues in the considered FE solver versions.  

5.1. Requirements for an improved macro element 

A catalogue of requirements was prepared which represents the basis for the development of a 

user element subroutine. A critical review of the final kinematic hinge architecture based on 

standard finite elements identified some limitations which shall be solved by the user element. 

Some additional requirements define the format of input definition as well as further 

improvements of the kinematic hinge options. 

As discussed in paragraph 4.6 the kinematic hinge provides limited accuracy in case of low 

bending-compression ratios smaller than r = 150 mm. These low ratios can occur in case of high 

compression peaks, for instance when the vertical support struts hit the ground. The main reason 

for a deflection in the kinematic hinge accuracy in case of such low bending-compression ratios 

is the representation of frame longitudinal stiffness located exclusively in the skin plane. Due to 

this offset with respect to the elastic centre an additional moment is induced which leads to 

higher displacement in the kinematic hinge at the frame inner flange. This circumstance was 

discussed in paragraph 4.6 and is illustrated again in Figure 5-1a). To improve the kinematic 

hinge accuracy in case of low bending-compression ratios, the frame longitudinal stiffness has to 

be defined uniformly over the frame height. Hence, additional forces of the kinematic hinge 

macro element have to be applied at the frame inner flange, as displayed in Figure 5-1b). The 

ratio of applied force at the frame inner and outer flange has to be defined in a way that 

equilibrium of moment is given with respect to the elastic centre. A consequence of this 

requirement is the definition of a 4-node user element instead of a 2-node element, like the 

standard connector element, to apply the required forces in the frame inner flange.  
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Figure 5-1: Applied forces of normal stiffness in the kinematic hinge 

In addition, the discussion in paragraph 4.6 identified a small discrepancy in the trigger strain of 

the kinematic hinge in case of low bending-compression ratios. This discrepancy is caused by a 

finite stiffness of the fixed translational degree of freedom in the standard connector element. A 

trigger criterion based on strain instead of moment load would enable accurate triggering with 

respect to a strain failure criterion defined in the frame inner flange. In Figure 5-2 this trigger 

concept is compared to the trigger procedure of the standard connector element. Using the 

connector element, the trigger moment in the moment-rotation input curve is defined by 

calibration with a frame-stringer-skin reference model. The trigger moment is calibrated such 

that the desired strain in the frame inner flange is reached in the reference model. In contrast to 

this, the user element shall directly measure the strain in the frame inner flange and initiate 

triggering when the measured value exceeds the defined trigger strain criterion. A consequence 

of this requirement is again a 4-node user element. Additional element nodes in the frame inner 

flange are necessary to obtain the nodal displacement respectively the strain in the frame inner 

flange.  
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Figure 5-2: Comparison of trigger concepts in the kinematic hinge 

A further requirement was identified in the critical review of the kinematic hinge architecture 

based on the standard connector element. The unloading and reloading characteristic of the 

connector element can be defined in the tabular input version with an unloading curve as well as 

a slope which defines the transition between main curve and unloading curve. Reloading 

behaviour of the connector element follows the unloading curve backwards and finally along the 

slope to the point at the main curve where unloading started. Physically more correct with 

respect to the unloading/reloading behaviour is the characterisation of a hysteresis. Especially in 

dynamic problems numerous unloading/reloading cycles are expected so that hysteresis effects 

can have influence on the kinematic hinge behaviour. Figure 5-3 illustrates this unloading 

behaviour and compares the hysteresis approach with the standard connector element behaviour.  
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Another requirement with respect to the unloading/reloading characterisation is the behaviour 

after zero crossing. The standard connector element behaviour during unloading follows the 

defined unloading input curve up to the main curve of opposite direction loading. Further 

unloading follows this main curve input. In Figure 5-3a) this behaviour is displayed. With 

respect to the physical behaviour of frame failure this characterisation is not correct. Although 

such a large unloading is expected only in very few cases, the user element shall provide 

physically correct behaviour in this item. Figure 5-3b) illustrates the unloading behaviour which 

is required for the user element.  

 

Figure 5-3: Comparison of unloading/reloading concepts in the kinematic hinge 

Finally, requirements for the user element were defined with respect to the input format. Several 

input options are possible to define failure behaviour. Failure definition by damaging or 

plasticity parameters are conceivable as well as tabular curve input. Characterisation by tabular 

input is advantageous in this case as the failure behaviour can easily be described by a moment-
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rotation relation. This is even more favourable when the kinematic hinge input is based on 

component test data or the final hinge characteristic defines the basis for the development of a 

crash device in the frame. Nevertheless, pure tabular input does not offer the possibility of strain 

based triggering. Hence, a combined input format is required for the user element. Elastic 

behaviour shall be defined by a stiffness value whereas tabular curve input is required for the 

description of the post-failure behaviour. The strain based trigger criterion initiates the transition 

from the elastic behaviour to the post-failure characteristic. The slope of this transition shall be 

definable by a stiffness value. With respect to the unloading behaviour the slope between main 

curve and unloading curve shall similarly be defined by a stiffness value. The unloading as well 

as the reloading curve shall be assumed to be constants. Figure 5-4 illustrates these input 

parameters which shall be individually definable for the opening and the closing bending 

direction. 

Additional input parameters shall be defined for the normal stiffness in tension and compression 

for consideration of normal loads. Finally, the interval for history output of the element variables 

shall be defined in the input deck. In contrast to the output frequency, the list of element 

variables to be output shall be defined directly in the subroutine and not in the ABAQUS input 

deck of the user element.  

 

Figure 5-4: Required input parameters of the user element for the description of the moment-rotation behaviour 
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5.2. Implementation of the user element 

The user element subroutine, called VUEL, was written as FORTRAN code and included in the 

kinematic hinge model using the Intel FORTRAN Compiler version 10.1.014 as well as the 

ABAQUS/Explicit versions V6.7-3, V6.8-1 and V6.9-1 on a Microsoft Windows machine. The 

interface which is used to implement the user subroutine in an ABAQUS analysis is given in 

[116].  

In the following the description of the user element programming is organized chronologically to 

discuss the routine of the user element step by step. Figure 5-5 gives an overview of the user 

element architecture. The individual aspects of the source code architecture are discussed in this 

paragraph with the focus on the calculation of the internal loads which represent the user element 

behaviour respectively the frame failure characteristic of the kinematic hinge. 

 

Figure 5-5: User element (VUEL) architecture 
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The ABAQUS input deck provides an interface for the user element where element data (*user 

element) as well as data of the element behaviour (*uel property) can be defined. The element 

data contain:  

• Number of nodes of the element 

• Number of property parameters to describe the element behaviour 

• Number of coordinates at each element node 

• Number of solution-dependent state variables to be stored within the element 

The input deck of the user element is given in Appendix A3.1. 

Based on the requirements of paragraph 5.1 a 4-node user element was developed. With respect 

to the kinematic hinge architecture this user element substitutes the standard connector element 

in one rotational (frame bending) as well as in one translational (frame normal compression) 

degree of freedom. Both degrees of freedom are used to describe the main crash behaviour of a 

frame structure. All other degrees of freedom are still constraint by a connector element that is 

installed in the kinematic hinge in parallel. The outer nodes of the user element are positioned in 

the skin plane and share these nodes with the standard connector element. The inner nodes are 

positioned at the frame inner flange in the frame web plane and share these nodes with the 

structural shell elements. All four user element nodes are included in the rigid bodies which 

reinforce the frame cross-sections. Each element node is defined with three translational and 

three rotational degrees of freedom. Figure 5-6 illustrates the kinematic hinge architecture with 

the user element as well as the definition of nodal degrees of freedom in the user element. 

Whereas nodal forces of frame normal stiffness is applied to all user element nodes, the moments 

of the rotational degree of freedom are applied exclusively to node 1 and 2, similarly to the 

standard connector element. 

 

Figure 5-6: Kinematic hinge architecture with the user element 
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In the element behaviour definition of the ABAQUS input deck (*uel property) all property 

parameters can be specified. In the user element subroutine these property parameters are 

imported from the ABAQUS input deck in a first step. In Figure 5-4 of paragraph 5.1 the 

required moment-rotation behaviour is described which had to be developed. Most of the 

property parameters are illustrated in this Figure. In total, 47 property parameters are necessary 

to describe the element behaviour and which are imported in the user element. In this 

configuration the post-failure curve of each loading direction can be defined with eight pairs of 

values. An overview of these parameters is given in Appendix A3.1. 

In a second step, nodal rotary inertia and mass are specified. The user element developed for the 

kinematic hinge is a macro element and not a structural element. Material density is not 

specified. Hence, definition of rotary inertia and mass does not represent structural mass but is 

important to ensure stable numerical calculation. As all user element nodes are coupled to rigid 

bodies in the kinematic hinge, small values for rotary inertia and mass can be defined here. 

In a third step, a constant stable time increment has to be defined for element calculation. The 

stable time increment of a macro element strongly depends on the input characteristic defined by 

the user. The elemental time increment cannot be defined as the user element is not a structural 

element. Nevertheless, the critical time increment can be calculated based on the nodal time 

increment.  

k
mt ⋅≤∆ 2 , 

L
AEk ⋅

⋅= 2  (5.1) 

The critical spring stiffness k is defined by the highest slope (E·A) in the input property 

definition as well as the element length (L). Although a nodal stable time increment could be 

defined based on nodal mass and spring stiffness, the definition of a user-defined stable time 

increment was preferred here. This procedure is used similarly in standard macro elements of 

some commercial explicit finite element codes. In this procedure, the user is responsible for 

stable element calculation with respect to the time increment.  

The interface between finite element code and user element is based on global coordinates. In a 

further step a coordinate transformation from a global to a local system has to be conducted after 

the import of the nodal displacements. With respect to the application of the user element in a 

fuselage section model, the coordinate transformation was simplified so that the yaw angle is 

assumed to be negligible (Ψ = 0). This simplification is reasonable in a fuselage section model 

with symmetry boundary conditions. The transformation as well as the definition of the local 

coordinates in the kinematic hinge is illustrated in Figure 5-7. 
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Figure 5-7: Coordinate transformation and local coordinate definition 

The calculation of internal loads in a subsequent step is the main part of the element calculation. 

The calculation of this element behaviour needs several solution-dependent variables which are 

stored within the element. A total number of 15 solution-dependent variables are defined to 

calculate the required moment-rotation as well as force-displacement behaviour. A list of all 

solution-dependent variables is given in Appendix A3.2. Most of the variables of moment-

rotation calculation are illustrated in Figure 5-8. The pictured variables are used to store the 

history load path and to find the correct load path of the current increment. The ‘salph_sX’ 

variables store the rotational displacements at which a change of sign in the loading direction 

leads to individual transition in the load path. For instance, ‘salph_s1’ stores the rotational 

displacement at which unloading was initiated. With the stiffness of the unloading slope, the 

variables ‘salph_s3’ and ‘salph_s2’ can be directly calculated. In a subsequent reloading the 

element behaviour has to pass ‘salph_s3’ and ‘salph_s1’ again to continue the loading along the 

post-failure curve. In addition, the ‘loadflag’ variable indicates the loading status of the last 

increment and defines along which load path the current increment has to be calculated.  

Two assumptions in the calculation of the moment-rotation behaviour are given to limit the 

complexity of element calculation particularly with respect to element performance. The 

unloading slope has to be defined with a stiffness value which is equal or higher than the elastic 

slope. Otherwise, an unloading can lead to the crossing of the elastic slope which requires further 

loops in the element calculation. Another simplification requires constant moments in the post-

failure curve between the first and the second pair of values. The transition-slope has to cross the 

post-failure curve in this constant segment.  
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Figure 5-8: Solution-dependent variables for the element calculation 

Two additional state variables are used for normal stiffness calculation. The normal forces are 

calculated as required in paragraph 5.1 and are applied to the element nodes as pictured in Figure 

5-1b).  

More details on the calculation of the internal loads are given in Appendix A3.3, where an 

extraction of the structogram is documented. 

After calculation of the internal loads, these values have to be transformed from the local to the 

global coordinate system to assemble the nodal loads in the right hand side vector. This vector is 

the interface for the export of nodal loads to the solver.  

Finally, the internal energy has to be calculated and exported to the solver. The determination of 

the user element internal energy is essential with respect to the conservation of energy of the 

whole model. Internal energy calculation considers the rotational as well as the translational 

degree of freedom and is defined as follows: 
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Whereas the energy calculation for the translational degree of freedom is trivial due to the purely 

elastic behaviour, the summation of internal energy for the rotational degree of freedom is 
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depicted in Figure 5-9 for a better understanding. In this figure the graph clearly illustrates the 

unloading/reloading hysteresis with its additional energy absorption effect.  

 

Figure 5-9: Internal energy calculation of the rotational degree of freedom 

In the final step of the element calculation the state variables are updated and data are written to 

the output data file. Unfortunately, solution-dependent state variables of user elements can not be 

written to the ABAQUS output database (.odb) file [141]. Hence, these variables are written in a 

separate ASCII-file and can additionally be imported in a postprocessor. The element output is 

defined in a way that all 15 state variables as well as ‘time’ and ‘internal energy’ are written to 

the output data file, with an output frequency that can be defined by the property variable 

‘history_interval’ in the ABAQUS input deck.  

5.3. Verification on the quasi-single element level 

Extensive verification of a user subroutine is essential to ensure a correct functionality for all 

potential loading conditions. After the implementation of the user element, the verification firstly 

concentrated on the internal element calculation, more precisely on the calculation of internal 

loads and internal energy as well as on the coordinate transformation. This verification was 

conducted on a quasi-single element level. As the user element was developed exclusively for 

implementation in the kinematic hinge, a simplified model of the kinematic hinge was built up 

which is equivalent to the single element level. Figure 5-10 illustrates this verification model. In 

this model the frame structure is represented by rigid bodies consisting of both user element 

nodes at one side and an additional node to apply external loads on the kinematic hinge.  
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Figure 5-10: Quasi-single element model for the verification 

The verification of the coordinate transformation routine was conducted with a parameterised 

version of this quasi-single element model that can be rotated arbitrarily with respect to the 

global coordinate system. The coordinate transformation routine was verified regarding all 

combinations of quadrants of both transformation angles Θ and Φ, see Figure 5-7. This 

verification ensures that in a fuselage section model the kinematic hinge can be positioned 

arbitrarily with respect to roll and pitch angle. The simplified assumption of Ψ = 0, discussed in 

paragraph 5.1, implicates a negligible yaw angle.  

Further verification considered the calculation of the moment-rotation behaviour. The potential 

load paths and unloading/ reloading combinations were verified with the quasi-single element 

model. Figure 5-11 depicts an exemplary user element output of the verification procedure. The 

graphs show details like unloading during the transition from elastic behaviour to the post-failure 

curve, unloading with zero crossing as well as different unloading/reloading combinations 

including unloading during reloading phases.  
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Figure 5-11: User element output of the moment-rotation behaviour 

The verification on the quasi-single element level identified a correct functionality of the user 

element with respect to all element internal calculation procedures. Nevertheless, some bugs 

were identified which are located in the ABAQUS solver respectively in the interface between 

solver and user element.  

One bug refers to the output of the internal energy [142]. After the export of the element internal 

energy to the solver this value is included in the ‘whole model internal energy’. Nevertheless, the 

requested internal energy output exclusively of the user element is written as null-energy to the 

output data base (.odb) of the solver. This bug was solved in ABAQUS V6.9.  

Another bug was identified in the import of rotational displacements of the user element nodes 

[143]. In combination with several constraints (e.g. rigid body, multi-point constraint, etc.) 

which are defined at the user element nodes, the solver transfers incorrect nodal rotations to the 

user element subroutine. Generally, additional nodal mass can help to solve such problems. 

Nevertheless, any solution failed to solve this problem especially in combination with rigid body 

constraint. A solution of this bug was implemented in the subsequent solver version ABAQUS 

V6.8-EF1 respectively V6.8-2. In the meantime, to avoid this bug in (at that time) current solver 

versions, rotational degrees of freedom of the 4-node user element were derived from 

translational degrees of freedom with the scalar product.  

Finally, another discrepancy was identified in the export of internal loads to the solver. In 

combination with some constraints at the user element nodes, moment loads calculated from the 

user element are not applied to the model. Although correct moment history is written to the data 
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base as desired, the solver does not apply these moments to the nodes. Despite of extensive 

investigation and discussion with the FE solver developer this bug is not solved completely yet. 

Nevertheless, one solution to by-pass this bug was found in using multi-point constraints 

(*MPC) instead of rigid body formulations to constrain the user element nodes within the 

kinematic hinge architecture. This modified kinematic hinge architecture worked well in the 

quasi-single element model. The moment loads were applied to the user element nodes and the 

kinematic hinge behaviour was identified as intended.  

Unfortunately, this solution with modified kinematic hinge architecture using multi-point 

constraints does not work successfully on a reference model level which is discussed in the next 

paragraph. The transfer of the same kinematic hinge architecture from the quasi-single element 

model to a frame-stringer-skin model led to the well-known discrepancy with missing applied 

moment load on the user element nodes as described above.  

5.4. Verification on the reference model level 

Further verification after the quasi-single element level was conducted on a reference model 

level. The reference model corresponds to a frame-stringer-skin model which is similar to the 

models used in the investigations of chapter 4. A detailed definition of the reference model is 

given in Appendix A3.4. 

The frame-stringer-skin model enables a user element verification which is implemented in a 

reference structure with typical dynamic behaviour. Instead of rigid body motions as used on the 

quasi-single element level, a more realistic elastic behaviour leads to dynamic oscillation loading 

of the user element. Stable element calculation under typical short-duration unloading/reloading 

can be verified. 

In addition, the requirements of the user element with respect to the elastic behaviour can be 

verified in the reference model. Whereas the post-failure behaviour with its unloading/ reloading 

options was verified intensively on the quasi-single element level, the elastic behaviour up to 

failure was verified mainly on the reference model level. This is in more detail the strain-based 

triggering as well as the user element behaviour under low bending-compression ratios. 

As discussed in paragraph 5.3, an unsolved bug regarding applied moment loads hindered the 

verification on the reference model level. Whereas a solution was found to run the user element 

successfully on the quasi-single element level, the calculated moment loads are not applied by 

the solver on the reference model level. To verify the elastic behaviour of the user element 

despite of this bug, the assembly of internal loads on the right hand side was modified in the user 

subroutine. Instead of moments on the outer user element nodes, forces on the inner user element 
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nodes were applied. These forces in combination with the moment arm induce the same moment 

on the outer user element nodes, as shown in Figure 5-12. This modification is accurate for small 

rotation angles, hence, is an appropriate solution to verify the elastic behaviour.  

 

Figure 5-12: Modified right hand side in the user subroutine without applied moments 

The verification procedure is illustrated in Figure 5-13. For a better understanding the internal 

loads of the user element are illustrated with respect to the original right hand side. In a first step, 

the rotational elastic stiffness is calibrated based on the frame inner flange strain, Figure 5-13a). 

Pure moment is applied on the model in this step. With calibrated rotational stiffness, applied 

load with low bending-compression ratio leads to a discrepancy similar to the kinematic hinge 

with a standard connector element, Figure 5-13b). In a next step, the distribution of normal 

forces over the frame height of the user element is adapted so that the kinematic hinge strain 

agrees with the structural frame behaviour with respect to the frame inner flange, Figure 5-13c). 

This final setup of calibrated rotational stiffness and normal force distribution leads to the 

required accuracy in the representation of the elastic behaviour for low bending-compression 

ratios, Figure 5-13c), as well as for high bending-compression ratios, Figure 5-13d).  

In addition, the strain based trigger criterion in Figure 5-13 illustrates the required behaviour. In 

this example, a trigger strain of ε = -2000 microstrain was defined in the user element input deck. 

Independently of the bending-compression ratio, the kinematic hinge triggered accurately at this 

defined trigger strain level, Figure 5-13a) – d). 
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Figure 5-13: Verification on the reference model level 
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5.5. Summary and outlook 

The discussion of the kinematic hinge architecture based on standard macro elements identified 

limitations in the frame failure representation which are caused by restrictions of the standard 

macro element. On the basis of a catalogue of further requirements, a user element was 

implemented to achieve improved frame failure representation by the usage of a user-defined 

macro element instead of the standard macro element.  

Enhanced unloading/ reloading behaviour as well as an improved triggering on the basis of 

frame inner flange strains was implemented in the user-defined macro element. Further 

improvement could be achieved by an accurate representation of the frame failure behaviour for 

very low bending-compression ratios. 

The verification of the user element on the quasi-single element level and the reference model 

level demonstrated the fulfilment of all requirements which were defined in paragraph 5.1. All 

functionalities of the user element could be proved.   

Unfortunately, a solver bug with missing applied moment loads on the user element nodes could 

neither be definitely clarified with the FE solver developer nor solved in a subsequent solver 

version. Due to this circumstance, the improved kinematic hinge architecture on the basis of the 

implemented user element could not be implemented in the Kinematics Model for the aircraft 

section. Hence, the Kinematics Model applications, which are discussed in the following 

chapters are based on the final kinematic hinge architecture with the standard connector element, 

as defined in paragraph 4.7.  

However, the discussed limitations of the standard connector element mainly refer to load cases 

which differ from the standard crash scenario1. Thus, the usage of the standard connector 

element had minor impact on the development of a crashworthy fuselage design which is 

discussed in the following chapters 6 and 7.  

Nevertheless, with the foresight beyond the scope of this thesis, a final solution of the bug 

situation is awaited to use the enhanced kinematic hinge architecture in the Kinematics Model. 

 

                                                 

1 Within this thesis, the ‘standard crash scenario’ specifies impact conditions of a vertical impact with vi = 6.7 m/s, 

fully loaded overhead bins, occupied seats, zero pitch and roll angle. Cargo loading is not considered in this case. 



6. Development of a crashworthy composite fuselage design 

– crash scenario assessment 

The fundamentals of the Kinematics Model were developed and discussed in the previous 

chapters. The following chapters deal with the approach to develop a crashworthy composite 

fuselage design based on numerical simulations using the Kinematics Model. In this approach 

basic principles were established for the investigation and development of crash kinematics for 

composite fuselage structures. Figure 6-1 gives an overview of this approach. 

The considered method of development of crashworthiness is based on the general idea to install 

discrete crash devices in the fuselage structure which control the crash behaviour. Figure 1-4 in 

chapter 1 already illustrated this concept. The definition of the crash behaviour in particular 

includes the crash kinematics of a fuselage section. In contrast to traditional fuselage structures 

fabricated of aluminium material, the crash kinematics of composite fuselages should not 

develop uncontrolled. Hence, the definition of a favourable crash kinematics, which should be 

ensured by an appropriate activation of the individual crash devices, is the first step in the 

development of a crashworthy composite fuselage design. To identify the most favourable crash 

kinematics of a fuselage section, an assessment of crash scenarios was performed based on 

numerical simulation with the Kinematics Model. Chapter 6 deals with this general investigation 

of crash scenarios.  

Based on the selection of the most favourable crash kinematics, the detailed development of such 

a crash scenario was conducted by numerical simulation using the Kinematics Model. The basis 

of this crash scenario development is a statically pre-sized CFRP narrow-body fuselage structure. 

The final target of this investigation is the definition of an optimised crash scenario which 

includes the characterisation of local crash devices in a way that reduced loads, which act on the 

passengers and the fuselage structure, can be realised. In a subsequent step the reduction of crash 

loads induces a reduction of the structural mass. Chapter 7 discusses this development process. 

The optimised crash device characteristics, load-deformation relations which are outcomes of the 

Kinematics Model, can be used as basis for the development of local crash devices. In several 

experimental investigations on the design of crash devices, axial crush absorbers as well as 

generic frame components were tested under crash related loads. Appropriate test setups were 
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developed to investigate the general characteristics of technological concepts. These 

experimental investigations are discussed in chapter 8.  

 

Figure 6-1 : Approach for the development of a crashworthy composite fuselage design 

The present chapter deals with the investigation of crash kinematics in general. Several known 

drop tests of fuselage sections and structural components, conducted in the past by different 

research facilities, were assessed to derive natural crash kinematics of typical fuselage structures 

from the test results. The natural crash kinematics were analysed with the Kinematics Model. 

Based on these simulation results, an assessment of the crash scenarios identified main benefits 

and drawbacks with respect to the differences in the crash kinematics and led to the selection of a 

most favourable crash scenario.  

6.1. Natural crash kinematics 

With respect to the development of a crash concept, a lightweight design solution aligns to the 

natural crash kinematics of a fuselage structure. Consequently, it is important to understand the 
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natural crash behaviour. All attempts to achieve a crash kinematics differing from the natural 

structural behaviour will lead to an additional weight penalty.  

In the past, several tests of fuselage structures were performed with respect to crash relevant 

loads. Fuselage section drop tests performed in the last decades have given valuable information 

about the natural crash kinematics of typical fuselage structures [15-19,24-26,30-32].  

In addition, several detailed investigations of different research projects provided useful data, 

too. The NASA research on composite frame structures, already discussed in chapter 4, shows 

valuable results with respect to typical crash kinematics of frame as well as fuselage structures 

[46-51].  

Further experimental and numerical studies on simplified fuselage structures are documented in 

[132,133]. The influence of the vertical passenger crossbeam position on the crash scenario was 

investigated in these studies. The results provide basic information with respect to typical crash 

kinematics of different fuselage section designs.  

Other valuable results regarding general crash kinematics are given in [117]. Experimental, 

analytical and numerical studies were performed considering semi-circular frame structures 

which were pressed against a rigid plane. The formation of plastic hinges as well as their 

kinematics was investigated which contributed to the definition of typical kinematics of semi-

circular frames under crash related loads.  

Experimental studies on simplified fuselage section models, loaded under crash related 

conditions, are documented in [118,119]. Crash kinematics of typical fuselage section designs 

can be derived from these experimental results.  

A numerical study on the influence of different vertical support strut configurations is given in 

[115]. Plastic hinge locations in the frame were identified in dependence of the vertical support 

strut position. Based on the plastic hinge locations typical crash kinematics can be derived.  

Based on this range of empirical and analytical results two general crash kinematics of typical 

fuselage structures could be identified. Figure 6-2 illustrates both kinematics and compares the 

schematic scenarios with exemplary results from documented experiments.  

The first natural crash kinematics, called “scenario A”, describes three main locations of frame 

failure. The first frame failure occurs in the lower centre at α1 = 0°, the point of the first impact. 

Induced by this first failure a second frame failure develops between α2 = ±45 to ±60°. Details on 

these failure locations were already discussed in chapter 4.1. With these three main locations of 

frame failure an unrolling crash kinematics develops with an upwards movement of the lower 

fuselage shell. This scenario was identified as typical crash kinematics of fuselage structures 
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with quasi-circular geometry and lateral stiffness provided by a passenger crossbeam. Figure 6-

2I) illustrates examples with a crash kinematics of scenario A which are of different fuselage size 

respectively different structural design. In Figure 6-2a), the crash kinematics is shown after the 

drop test of an A230 fuselage section which provides a narrow-body fuselage design with 

vertical support struts. Figure 6-2c) displays a B707 fuselage section after the drop test with 

similar crash kinematics. This narrow-body fuselage structure is designed without vertical 

support struts. A NAMC YS-11 fuselage section is depicted in Figure 6-2e) after the drop test. 

The YS-11 is a short-range aircraft of smaller size compared to typical narrow-body fuselage 

aircraft. Figure 6-2e) pictures the fuselage structure after removal of dummies and seats. Finally, 

a component test of a 1.8 m (6 ft) diameter circular CFRP frame is illustrated in Figure 6-2g) 

which shows the crash kinematics according to scenario A.  

Besides scenario A, one further typical crash kinematics was identified, which develops when 

different factors hinder the formation of scenario A. This so-called “scenario B” describes 

multiple frame failure locations in the lower fuselage shell, as illustrated in Figure 6-2II). Instead 

of an unrolling with an upwards movement, a flattening of the lower fuselage shell occurs in 

scenario B. One potential factor that can lead to scenario B is illustrated in Figure 6-2b). This 

figure pictures the same A320 drop test as in Figure 6-2a), but the opposite side of the tested 

fuselage section. On this side, the passenger crossbeams failed and provided no further lateral 

stiffness. This effect led to higher lateral flexibility in the lower fuselage shell that induced a 

flattening with multiple failures in the lower frame. Besides failure of the passenger crossbeam a 

fuselage design with reduced stiffness at the crossbeam connection may similarly lead to a crash 

kinematics according to scenario B.  Another factor that potentially effects a crash kinematics 

according to scenario B is cargo loading. In case of cargo loading the upwards movement of the 

lower fuselage shell can be hindered by the cargo mass, or in case of container loading by the 

cargo rigidity. Figure 6-2d) illustrates a B737 fuselage section with bulk loading after the drop 

test. In Figure 6-2f), a B737 fuselage section with an auxiliary fuel tank is depicted after the drop 

test. Figure 6-2f) pictures the fuselage structure after removal of dummies, seats and passenger 

crossbeams. Both examples of B737 drop tests show the flattening effect that is caused by 

constraints of the lower shell unrolling. Finally, a scaled drop test of a simplified subfloor 

fuselage section is shown in Figure 6-2h). In this scaled test, the frame stiffness was smeared in 

the skin so that the fuselage structure was represented only by a comparably stiff skin. Further 

examples are known where the frame stiffness is smeared in the skin for scaled fuselage section 

drop tests [119]. In these tests, perfect flattening of the lower fuselage shell occurred in 

combination with travelling plastic hinges. In contrast to a smeared representation of fuselage 

shell stiffness, local frame failure of a real fuselage structure leads to significantly reduced 
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bending stiffness compared to the adjacent shell structure. This is the postulate for the formation 

of local hinges. A smeared stiffness represented exclusively by a stiffer skin cannot represent 

such local stiffness reduction, hence cannot represent the rotation of undamaged structural parts 

around a location with reduced stiffness caused by damage. The given example of a scaled 

model test in Figure 6-2h) shall clarify that a crash kinematics according to scenario B can occur 

exclusively in combination with travelling hinges respectively (in case of a frame-skin structure) 

with multiple frame failure. 

 

Figure 6-2: Natural crash kinematics 
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Both crash kinematics, scenario A and B, were identified as natural crash kinematics of typical 

fuselage structures. Further crash kinematics of typical fuselage sections could not be identified 

in the review of experimental and analytical studies which were considered in this investigation. 

However, in case of non-typical fuselage sections, such as cargo-door installation or tapered 

fuselage section, some differing crash kinematics could be identified. For instance, cargo door 

installation can lead to asymmetric crash kinematics. In a tapered fuselage section, frame failure 

can develop as shear failure instead of hinge failure with according differences in the crash 

kinematics. However, these untypical crash kinematics are generally based on the above 

described typical scenarios A and B and are expected to be controllable by the considered crash 

devices. Finally, the development of a crashworthy fuselage design concentrates on the typical 

fuselage section for what reason untypical crash kinematics are not considered in the design 

process. 

The results of documented experimental and analytical studies discussed above exemplarily 

show that both crash kinematics, scenario A and B, can occur independently of different typical 

fuselage designs or fuselage sizes. Hence, with respect to the development of a crash concept for 

a CFRP fuselage structure both scenarios have to be considered. 

6.2. Development of crash scenario A & B 

Based on the identified natural crash kinematics, both scenarios A and B were developed and 

assessed using the Kinematics Model.  

A generic procedure was selected for this assessment of crash scenarios: 

• With respect to the fuselage structure a generic CFRP design of a typical fuselage section 

was used to compare the crash scenarios. The generic CFRP structure was exclusively 

used for the comparison of several effects without structural adaptation during the 

assessment procedure.  

• Regarding structural loads generic strain limit criteria were used to assess differences in 

both crash scenarios. These strain criteria exclusively consider the most critical frame 

inner flange. Tensile and compressive limit strains were defined with respect to 

simplified assumptions regarding material failure respectively instability failure. The 

tensile strain limit in the frame inner flange was defined as εt = +10,000 microstrain. The 

compressive strain limit was defined as εc = -6000 microstrain. 

• The Kinematics Model used in this scenario assessment represents an early generation 

version with comparably coarse FE mesh particularly with respect to the frame structure. 
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Due to this discretisation, full accuracy of the frame bending behaviour as discussed in 

chapter 4.5 was not provided in this model version. However, the model accuracy was 

reasonably evaluated with respect to an assessment of crash scenarios on the generic 

level. 

The basis for the assessment is a generic CFRP structure of a typical fuselage section of narrow-

body size with LCF-shaped frame design. This generic fuselage design provides a specific sub-

cargo structure with a stiff cargo-crossbeam that enables to absorb energy in a first crash phase 

by the crushing of the sub-cargo structure (bend-frame concept) [120]. Based on this fuselage 

design the schematic crash kinematics of Figure 6-2 were adapted to idealised kinematics as 

illustrated in Figure 6-3.  

 

Figure 6-3: Idealised crash kinematics for a fuselage design with a stiff cargo-crossbeam 

In both scenarios the idealised crash kinematics specify a first crash phase with energy 

absorption by a crushing process below the cargo-crossbeam.  

In a second phase, frame failure occurs along the lower fuselage shell and specifies different 

crash scenarios dependent on the failure locations. In scenario A, crash devices in the frame, 

located directly below the connection of the vertical support strut, as well as in the cargo-

crossbeam shall trigger and initiate an appropriate crash kinematics. Energy has to be absorbed 



131       6. Development of a crashworthy composite fuselage design – crash scenario assessment 

by a closing bending rotation of the crash devices in the frame. In scenario B, failure in the 

cargo-crossbeam is not specified. In addition to the frame failure located directly below the 

vertical support strut, further frame failure is specified at the coupling of frame and cargo-

crossbeam in this scenario. According to the desired crash kinematics, closing frame bending is 

specified at the vertical support strut connection whereas opening frame bending is specified at 

the frame coupling to the cargo-crossbeam. Energy shall be absorbed by frame bending rotation 

of the opening frame hinge as the development of an opening bending absorption mechanism 

was expected to be less complex.  

In both scenarios the last phase of the crash sequence is specified by the crushing of the vertical 

support struts.  

According to the specification of the idealised crash kinematics, the Kinematics Model was built 

up with a refined modelled sub-cargo area, as discussed in paragraph 3.4.1, to allow the crushing 

of the sub-cargo structure without kinematic constraints. The main crushing characteristic of the 

sub-cargo structure is described by axial macro elements. Two macro elements at each cargo-

crossbeam, at a lateral position of y = ±150 mm, represent the crash absorbers. A typical crush 

characteristic was assumed in this study which was derived from several known test results of 

CFRP crush absorbers [136]. This force-deflection characteristic describes a linear slope up to 

the triggering with a following constant force plateau at 80 % of the trigger load. Figure 6-4a) 

illustrates this characteristic. During the assessment study the trigger load of the axial macro 

elements was the parameter for the variation of the sub-cargo crush behaviour.  

The kinematic hinges in the frame where positioned similarly to the discussion of paragraph 4.1. 

With the exception of the active kinematic hinges all other hinges were defined with trigger 

moments that correspond to the strain limit criteria of the frame structure. Hence, passive 

kinematic hinges triggered at frame inner flange strains of εt = +10,000 microstrain for opening 

bending and εc = -6000 microstrain for closing bending. The active kinematic hinges were 

allowed to trigger in the range between static sizing and material failure respectively instability 

failure. With respect to opening bending, the range of potential hinge triggering was specified 

between εtr_min = +4000 microstrain and εtr_max = +10,000 microstrain. The range of potential 

hinge triggering for closing bending was specified between εtr_max = -4000 microstrain and   

εtr_min = -6000 microstrain. The moment-rotation characteristic for absorbing hinge rotation was 

based on detailed analysis which was conducted by the project partner ONERA [121]. In this 

analysis an absorber mechanism in the frame inner flange was considered. A maximum 

absorbing force level in the frame inner flange was determined over the bending rotation angle, 

based on the strength and the lateral stability of the defined LCF-shaped frame design. The 
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outcome of this analysis is a moment-rotation characteristic with decreasing absorbing moment 

level over the hinge rotation, as illustrated in Figure 6-4b). During the assessment study the 

trigger moment was the parameter for the variation of the frame failure behaviour. In case of an 

absorbing kinematic hinge the absorption levels in the moment-rotation characteristic were 

defined fix, independently of the trigger moment.  

In addition to the kinematic hinges in the frame, bending failure macro elements were positioned 

in the cargo-crossbeam to allow brittle failure of this crossbeam as specified in scenario A. 

During the assessment study the trigger moment was the parameter for variation of the cargo-

crossbeam failure behaviour. 

The crushable vertical support struts were described by axial macro elements. The force-

deflection characteristic was defined according to experimental investigations on a crushable 

strut design concept, conducted by the project partner EADS-IW [122]. The failure characteristic 

is illustrated in Figure 6-4c). During the assessment study the trigger force of the axial macro 

element was the parameter for variation of the strut failure behaviour. The failure characteristic 

after triggering was defined fix according to the experimental results.  

Details of the generic fuselage structure, the Kinematics Model definition as well as the 

assumptions on the macro input characteristics are documented in Appendix A4.1. 

The basis of the scenario development is a so-called ‘standard crash case’ that specifies impact 

conditions with an initial velocity of vi = 6.7 m/s (22 ft/s) and a zero pitch and roll angle. All 

seats are occupied with a passenger mass of mP = 77 kg, cargo loading is not considered. The 

overhead bins were loaded with a distributed mass of mH = 47.5 kg/m on each side. An 

acceleration field of aZ = -9.81 m/s2 was applied on the model. This load case definition is based 

on well-known fuselage section drop tests, which were performed in the past (e.g. A320 section 

drop test [30]) and represent the metallic equivalent. 

 

Figure 6-4: Characteristic input for the macro elements 
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In a first step the Kinematics Model simulations started with a sub-cargo study. As the structural 

design of the fuselage section was fixed, the maximum possible energy absorption of the sub-

cargo crushing had to be identified with respect to the load carrying capacity of the above 

fuselage structure. In this simulation step all kinematic hinge trigger moments were set to the 

maximum strain limit values and the trigger forces of the sub-cargo absorber macros were varied 

stepwise between Fmin = 5 kN and Fmax = 25 kN per crush absorber. The frame inner flange 

strains and the cargo-crossbeam flange strains were checked against the limit criteria. The 

reached crushing distance inside the strain limit criteria was measured for each force level to 

identify the absorbed energy. Figure 6-5 illustrates this approach. The diagram of the crushing 

distance illustrates the results of the individual trigger force levels. The upper fuselage structure 

could withstand trigger forces up to F = 15 kN. Higher trigger forces in the sub-cargo absorber 

macro could not be supported by the fuselage structure, hence, the macro elements did not 

trigger and frame failure was initiated, instead. As expected, the highest crushing distance 

occurred with the lowest trigger force level. Nevertheless, the highest energy absorption, as an 

integral of force level over crushing distance, was achieved with a trigger force of F = 10 kN 

respectively a crushing force plateau of F = 8 kN. Regarding the above fuselage structure the 

strains in the cargo-crossbeam lower flange reached the limit strain of εmin = -6000 microstrain 

with the variant of F = 10 kN trigger force. Hence, further safety margin is not provided in this 

variant. For that reason a trigger force of F = 5 kN was selected as final setting for the sub-cargo 

crash absorbers although this value is very low and significantly more energy could be absorbed 

with the F = 10 kN variant. It is obvious that a trigger force of F = 5 kN is low and may conflicts 

with static loads. Nevertheless, this approach is reasonable against the background of a generic 

assessment of crash scenarios. 
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Figure 6-5: Sub-cargo study 

With the final setting of the sub-cargo absorber macros the development of the different crash 

scenarios was realised with the determination of the individual kinematic hinge characteristics. 

In an iterative process the trigger moments of the active hinges were adapted so that the desired 

crash kinematics could be achieved and, in a further proceeding, improved with respect to the 

crash performance. Both scenarios A and B were developed with the same simulation model 

only by varying of the kinematic hinge characteristics.  

Figure 6-6 illustrates the final model developed for scenario A. The kinematic hinge 

characteristics are given in Figure 6-6a). A trigger strain of εtr = 4000 microstrain in the cargo-

crossbeam flange was defined to achieve a smooth transition from the sub-cargo crushing phase 

to the frame failure phase. Higher trigger moments would lead to a delayed triggering of the 

second crash phase with a high amount of elastic energy stored in the fuselage structure. After 

cargo-crossbeam failure a trigger strain in the frame inner flange of εtr = -6000 microstrain is 

sufficient to achieve controlled frame failure at the kinematic hinges located directly below the 

vertical support strut connection. These kinematic hinges describe an absorbing characteristic as 

illustrated in Figure 6-4b). The calculated crash sequence of scenario A is depicted in Figure 6-

6b).  
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Figure 6-6: Scenario A - developed with the Kinematics Model 

Figure 6-7 illustrates the final scenario B. The kinematic hinge characteristics are given in Figure 

6-7a). As the cargo-crossbeam failure load was set to the strain limit values, first failure in the 

frame occurred at the critical location directly below the vertical support strut connection. A 

trigger strain of εtr = -6000 microstrain was sufficient to achieve controlled frame failure at these 

kinematic hinges. For further initiation of the desired flattening effect, frame failure at the cargo-

crossbeam connection had to occur directly after the first frame failure. In this crash phase the 

frame experiences a change of sign in the moment load from closing direction to opening 

direction at this location which is caused by frame failure of the kinematic hinge above. This 

effect is clarified in more detail in Appendix A4.2.1. To achieve a smooth transition into the 

flattening effect, a trigger strain of εtr = +4000 microstrain was defined at the frame inner flange 

of the kinematic hinges positioned at the cargo-crossbeam connection. These kinematic hinges 

describe an absorbing characteristic as displayed in Figure 6-4b). The crash sequence of scenario 

B is given in Figure 6-7b). 
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Figure 6-7: Scenario B - developed with the Kinematics Model 

6.3. Assessment of crash scenario A & B 

The basis of the scenario assessment is the ‘standard crash case’ that is defined in detail in 

paragraph 6.2 and that aligns to boundary conditions of well-known fuselage section drop tests 

performed in the past.  

In addition, further crash load cases were considered in this assessment to determine the 

robustness of both scenarios (A/B). These load cases differ from the standard crash case in: 

A/B 1. a higher initial velocity of vi = 9.1 m/s (30 ft/s),  

A/B 2. one-sided loading with occupied triple seat and loaded overhead bins at one side 

combined with free triple seat and unloaded overhead bins at the other side,  

A/B 3. cargo loading represented by a flat plate with a distributed mass of m = 745 kg,  

A/B 4. a roll angle of φ = 5°.  

With respect to the standard crash case, Figure 6-8 displays the energy plot of both scenarios. As 

expected the comparison of both diagrams illustrates a similar first crash phase, the crushing of 

the sub-cargo area. After the crushing of the sub-cargo structure the storage of elastic energy in 
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the fuselage structure increases up to failure of the cargo-crossbeam respectively the frame. This 

elastic storage is visible in the plots of total kinetic and internal energy.  

In the further sequence of scenario A, the kinematic hinges rotate with energy absorption up to 

the impact of the vertical support struts on the ground. With that impact the crushing of the struts 

is initiated and further energy is absorbed. The total kinetic energy of scenario A altogether 

shows a steady decrease during the crash sequence, except a little elastic storage effect in the 

transition from sub-cargo crushing to the frame failure phase. 70 % of the initial kinetic energy 

was absorbed by the crash devices respectively material failure in the sub-cargo area. The 

remaining energy (kinetic and potential energy) was stored elastically in the fuselage structure 

respectively remained kinetically.  

After the crushing of the sub-cargo structure, the further sequence of scenario B also shows 

kinematic hinge rotation with energy absorption. In contrast to scenario A significantly higher 

rotation angle of the absorbing kinematic hinge must be reached to fulfil the required kinematics. 

Based on the defined absorbing characteristic of the kinematic hinge according to Figure 6-4b), 

the absorption capacity was exceeded and further non-absorbing hinge rotation followed up to 

the impact of the vertical support struts. This non-absorbing rotation phase is obvious in the 

energy plot where in the sequence of approximately t = 100-125 ms the total kinetic energy 

increases. A steep decrease of the total kinetic energy at approximately t = 125-130 ms indicates 

the impact of the vertical support struts on the ground. This steep decrease of the kinetic energy 

is equivalent to high acceleration loads on the passengers. In the following phase, the crushing of 

the vertical support struts could not be realised due to tensile failure of these struts in the 

previous phase of the crash sequence. According to the crash kinematics of scenario B the struts 

are loaded in tension during the frame bending phase. At about t = 110 ms these tensile loads 

exceed the strength of the defined strut characteristic as displayed in Figure 6-4c). In Figure 6-

7b) the crash sequence at t = 100 ms illustrates the kinematic with oblique strut positions which 

leads to tension loading of the vertical struts. Although tensile failure could be avoided by the 

definition of a higher tensile failure load in the axial macro element, a modification of the basic 

macro characteristics was not the objective in this assessment study as the defined characteristic 

of the vertical support struts is based on experimental test results. In fact, the tensile failure can 

be seen as a general indication of high tension loads acting in the vertical support struts in case 

of a crash kinematics according to scenario B. Altogether, about 60 % of the initial kinetic 

energy was absorbed by the crash devices respectively material failure in the sub-cargo area. The 

remaining energy (kinetic and potential energy) was stored elastically in the fuselage structure 

respectively remained kinetically. 
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Figure 6-8: Energy plot of scenario A and B in the standard crash case 

Finally, the assessment identified the following benefits and drawbacks of both crash scenarios: 

The general crash kinematics leads to significantly higher frame bending rotation in case of 

scenario B. The simulation results of scenario B show a maximum hinge rotation of about φ = 

43° of the absorbing opening hinge. In contrast to this, the absorbing closing hinge of scenario A 

experienced a maximum rotation angle of about φ = 34°. With respect to a crash device concept 

that considers energy absorption by frame bending, significantly higher complexity is expected 
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when high absorbing rotations are required. Hence, a reduced frame bending rotation in scenario 

A is clearly a benefit. Appendix A4.2.2 provides a comparison of both kinematic hinge rotations. 

The simulation results provided strain values along the frame inner flange that indicate 

tendencies of higher frame loading in case of scenario B during the whole hinge rotation phase. 

The spectrum of strain values in scenario B reaches the tensile as well as the compressive limit 

criteria whereas the spectrum of scenario A is clearly less critical. A more massive frame design 

is expected in case of scenario B according to these simulation results. A comparison of the 

frame inner flange strains is given in Appendix A4.2.3. 

The tensile failure of the vertical support struts in scenario B clearly indicates higher tensile 

loads compared to scenario A where the crash kinematics does not result in an oblique strut 

position. Especially with respect to the trigger mechanism of a crushable vertical strut high 

tensile loads are complex to withstand. Reduced strut loads during the first crash phases up to 

ground impact of the strut are a clear benefit of scenario A. Appendix A4.2.4 compares the 

tensile loads in the vertical struts of scenario A and B. 

With respect to the robustness load cases one obvious drawback of scenario A is a high 

interaction with potential cargo loading. As mentioned in the discussion of the natural crash 

kinematics in paragraph 6.1, cargo loading can hinder the developing of scenario A. In that case 

of cargo loading (A3) the simulation results indicated a high risk of failure at the frame coupling 

to the cargo-crossbeam. Failure at this location could potentially lead to scenario B. Another 

robustness case (A4: roll angle of φ = 5°) indicates risk of frame failure at this location, too. 

Hence, a drawback of scenario A is the needful requirement of additional crash devices in the 

coupling of frame and cargo-crossbeam if a robust crash concept is desired.  

On the other hand, some robustness load cases of scenario B identified frame failure above the 

passenger crossbeam (B1: vi = 9.1 m/s; B3: cargo loading). Failure of the frame in the cabin area 

is assessed critical and therefore a clear drawback of scenario B. 

Detailed results of the robustness analyses are given in Appendix A4.2.5 and A4.2.6. 

Finally, the summation of benefits and drawbacks identified scenario A as the most favourable 

crash kinematics. Nevertheless, a potential change to a crash kinematics according to scenario B, 

caused by effects such as cargo loading constraints, has to be considered secondarily to ensure 

the development of a robust crash concept. 

Summarising the investigations of the crash scenario assessment, natural crash kinematics of 

typical fuselage sections were identified on the basis of a review of documented experimental 

and analytical results which were generated in several research projects in the past. The 
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identified natural crash kinematics were developed in the Kinematics Model on the basis of a 

generic CFRP fuselage design. The crash kinematics were analysed and assessed regarding 

several identified effects. The outcome of the assessment is the selection of scenario A as the 

preferred crash kinematics which has to be considered primarily in the following steps of the 

crash scenario development. 

 



 

7. Development of a crashworthy composite fuselage design 

– crash scenario development 

The crash kinematics assessment in chapter 6 identified scenario A to be the most favourable 

crash kinematics. Based on this selection, the detailed development of a crash scenario is 

discussed in this chapter. Figure 7-1 again illustrates the scope of the development of a 

crashworthy composite fuselage design and highlights this detailed development step. The basis 

of the crash scenario development is a CFRP narrow-body fuselage structure which was 

statically pre-sized with respect to relevant flight and ground loads by the project partner Airbus. 

Based on this pre-sized fuselage structure the final target of this investigation is the definition of 

an optimised crash scenario which includes the characterisation of local crash devices to achieve 

an optimised crash kinematics, as well as the adaptation of the fuselage structure to these 

optimised crash loads. Hence, the outcome of this investigation is a crashworthy fuselage design 

which includes information about additional mass penalty between statically sized and 

crashworthy frame structure regarding the selected crash concept.  

The statically pre-sized narrow-body fuselage structure which is considered in this investigation 

differs in some parameters from the generic fuselage design which was used in the crash 

kinematics assessment in chapter 6. Main differences are the length of the 2-bay fuselage section 

and, as a consequence of the increased section length, the definition of two seat rows instead of 

one. Nevertheless, the main fuselage design is similar and the same crash concepts shall be used 

here. Details on the fuselage design as well as the Kinematics Model definitions are given in 

Appendix A5.1.   

In the following, paragraph 7.1 deals with the structural allowables which were used in this 

scenario development. In contrast to the crash kinematics assessment of chapter 6 more precise 

criteria were used, especially for the representation of compressive failure limits.  

In paragraph 7.2 an analytical estimation for the crash scenario development is described. The 

individual crash zones as well as the crash loads in the individual phases are discussed.  

Paragraph 7.3 gives a detailed overview on the approach which was used for the crash scenario 

development.  
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The crash scenario development in detail is presented in paragraph 7.4. The adaptation of the 

crash kinematics as well as of the fuselage structure are described in this paragraph. Finally, as 

an outcome of the crash scenario development, the final crash scenario is discussed. 

In paragraph 7.5 a further investigation of a modified final crash scenario is presented. With an 

additional crash device in the passenger crossbeam connection, this investigation illustrates how 

the Kinematics Model can be used efficiently for crash analyses in a preliminary design phase.  

Finally, the determined macro characteristics are given in paragraph 7.6 which can be used as a 

basis for the development of local crash devices.  

 

Figure 7-1 : Approach for the development of a crashworthy composite fuselage design 

7.1. Definition of structural allowables 

The crash kinematics assessment, described in chapter 6, used simplified criteria to describe the 

structural load limits of the frame structure - which is the main structural part in case of crash. 

Here, in the detailed development of a crash scenario, more precise criteria are required to 

represent the structural limits.  
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The tensile strain limit is based on material failure and was defined similarly to the crash 

kinematics assessment with εt = +10,000 microstrain. Different criteria were defined for the 

compressive strain limits which are based on structural instability failure. The basis for the 

definition of compressive strain limits is the assumption of crippling failure in the flanges of the 

LCF-shaped frame. Crippling failure is characterised by a local distortion of the cross-sectional 

shape. With the beginning of buckling the more stable portions of a cross-section take additional 

load and support the already buckled portions. This leads to a typical stress distribution of a 

buckled structure as displayed in Figure 7-2 for a LCF-shaped frame with compressive loaded 

inner flange, e.g. caused by closing frame bending. With further increase of the compressive 

load, material failure stress is exceeded in the more stable portions of the cross-section and 

complete collapse of the structure may occur. This failure mode, characterised by local material 

failure in the more stable portions of a cross-section, is called crippling failure.  

 

Figure 7-2: Stress distribution along a buckled inner flange of a LCF-shaped frame just before crippling 

The use of crippling failure criteria for the definition of compressive strain limits allows the 

occurrence of frame flange buckling during the crash phase. Hence, the frame structure is well 

utilised and a massive frame design caused by conservative strain limit criteria can be avoided.  

With respect to crippling failure, no satisfactory theory exists for the prediction of the cross-

sectional average stress at failure, which is called ‘crippling stress’. Thus, it is necessary to rely 

on test results or empirical methods. Empirical formulations based on tests of different carbon 

composite material layups are given in the MIL-HDBK-17 [123]. In these formulations the 

crippling stress is related to the laminate strength. Figure 7-3a) compares one of these empirical 

formulations with test results for the ‘one-edge free’ variant. The ‘one-edge free’ formulation 

describes test results of flat laminates under compression load which are supported only at one 
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edge. This setup is comparable with the flanges of an LCF-frame design. The ‘one-edge free’ 

formulation recommended for preliminary design is 

717.0
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where FCC is the crippling stress and FCII is the laminate compression strength. b/t is the ratio of 

flange width to flange thickness. Assuming linear-elastic material behaviour up to failure this 

formulation can be described as 
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With this formulation the crippling failure strain εCC can be determined based on the laminate 

compression failure strain εCII. This crippling failure strain is the average strain over the cross-

section at failure. Figure 7-3b) illustrates a ‘one-edge free’ test setup after crippling failure. 

Further discussions about post-buckling and crippling effects are given in [124-126]. 

 

Figure 7-3: Normalised crippling data of the 'one-edge free' tests [123] 

With respect to the Kinematics Model the structural frame loads are measured with strain bar 

elements, as discussed in paragraph 3.3.2. These bar elements are positioned at the corners of the 

inner flange respectively the outer flange and the web, and measure the local strains along the 

frame. Thus, an average strain over the frame flange cross-sections, which could be used directly 

for a check against the crippling strain, is not measured.  

On the other hand, the strain measured with bar elements in the more stable frame corners can be 

checked directly against laminate failure strain according to the crippling theory. The 
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investigations on the accuracy of the Kinematics Model approach in paragraph 4.5 identified 

good agreement of the elastic frame behaviour compared to detailed FEM analysis. The buckling 

modes could be resolved acceptably in the Kinematics Model. Nevertheless, the Kinematics 

Model approach does not aim to represent buckling modes in detailed accuracy. Thus, it is not 

recommended to use this procedure in the Kinematics Model. 

Instead, a conservative assumption was used which checks the bar element strains of the frame 

section corners against the average crippling strain. The check of locally increased strain values 

measured at the frame corners against average crippling strains represents a conservative 

estimation which is reasonable in a preliminary design process.  

Accordingly, the structural allowables used in this crash scenario development for the frame 

structure are defined as illustrated in Figure 7-4. Tensile failure is assumed at a strain of εt1 = 

+10,000 microstrain. The static sizing was conducted with maximum tensile strain of εt2 = +6000 

microstrain. Regarding compression loads, the minimum allowed compression strain for static 

sizing, εc2, depends on the frame laminate. This static strain allowable includes several 

parameters like open-hole reduction, b-values or hot-wet conditions. Compressive failure is 

assumed by crippling, the failure strain εc1 depends on the frame flange layup thickness 

according to the ‘one-edge free’ crippling formulation. Potential trigger mechanisms in the frame 

are allowed to trigger in the range between static sizing and material tensile respectively 

structural instability failure. 

Similar structural allowables were used for the design of the cargo-crossbeam. 

 

Figure 7-4: Structural allowables used in the crash scenario development 
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7.2. Analytical consideration of the crash zone 

In one of the first steps of the crash scenario development a general estimation of the required 

energy absorption capacity in the individual crash zones of a fuselage section shall provide a 

basic understanding that can be used in the following simulation procedure. 

In general, a common basis for comparison of crashworthiness is the ‘standard crash case’ of a 

vertical drop test with an initial velocity of vi = 6.7 m/s (22 ft/s), according to several drop tests 

which were performed in the past. Regarding this standard crash case one potential analytical 

approach considers the Emergency Landing Conditions of the Federal Aviation Regulations, 

FAR Part 25.561, which specifies a crashworthiness that is verified by a quasi-static crash 

approach: “The structure must be designed to give each occupant every reasonable chance of 

escaping serious injury in a minor crash landing when… the occupant experiences the following 

ultimate inertia forces… downward, 6.0g” [10]. The crash load case is covered in this regulation 

by a quasi-static load which specifies a vertical acceleration of az = 6.0 g.  

According to these regulations, one conceivable approach is the development of a crash concept 

which enables an average acceleration of less than az = 6.0 g with respect to the standard crash 

case of vi = 6.7 m/s (22 ft/s). Considering the narrow-body soft section of this development 

process the sub-cargo area specifies a crushable height of about H1 = 150 mm, as illustrated in 

Figure 7-5. A concept which specifies only the usage of this crash zone for the standard crash 

case would lead to an average acceleration of about az1 = 15.0 g. Therefore, further crash 

concepts are necessary in the fuselage structure above the sub-cargo area to reduce the average 

acceleration. Considering additionally the crash zone between cargo floor and vertical support 

struts the crushable height is about H1+2 = 450 mm. A concept which specifies the usage of these 

two crash zones for the standard crash case would lead to an average acceleration of about az1+2 = 

5.0 g, and would fulfil the quasi-static crash approach which is specified in the FAR. With 

respect to this approach passive vertical support struts could be defined for the standard crash 

case. Further energy absorption capacity could be provided in these struts for robustness crash 

cases, e.g. with a higher initial velocity. This theoretical approach identified the necessity of 

energy absorbing crash devices above the cargo floor and gives a first estimation of a potentially 

necessary crash distance with respect to the standard crash case.  

In this approach specified acceleration levels are considered and not the energy absorbing 

capacity of a typical fuselage structure. For that reason, the crashworthiness of novel CFRP 

fuselage structures is not verified against this regulation. Instead, an equivalent crashworthiness 

has to be demonstrated based on certified fuselage structures of the same size that are 

traditionally fabricated from metallic material [11]. Hence, higher acceleration levels than the 
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average values discussed above are supposable if the metallic equivalent shows such crash 

behaviour.  

 

Figure 7-5: Crash zones of a typical narrow-body fuselage section 

The outcome of the above discussion is a general estimation of the required energy absorption. 

Looking at the individual crash zones of a fuselage section, different issues are discussed in the 

following. 

A theoretically optimised crash design offers constant accelerations and therefore constant and 

minimised crash loads during the whole crash sequence. In the different phases during the crash 

of a fuselage structure the crash load is associated with different moment arms and different 

critical structural parts as illustrated in Figure 7-5.  

In the first crash phase, the crushing of the sub-cargo structure, a high moment arm acts with 

respect to the frame in the lower side shell and induces high loads. Furthermore, the cargo-

crossbeam is highly loaded with moment and compression loads. A massive crossbeam and 

frame design is expected which strongly depends on the crushing force level of the sub-cargo 

structure. Hence, it is expected that the usage of a comparably small crash height of H1 = 150 

mm would lead to significant mass increase of the crashworthy fuselage structure.  

In the second phase, the frame bending phase, the moment distribution along the frame differs 

from phase 1 due to the specified failure of the cargo-crossbeam in scenario A. The moment arm 
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of the average crash load is reduced compared to phase 1. It is expected that this crash phase is 

less critical for the backing structure and will not affect the frame sizing. The crash distance of 

zone 2 is approximately twice the height of zone 1. Considering a constant acceleration level 

during the whole crash sequence, the energy absorption of the frame bending mechanism in the 

kinematic hinges has to be twice the energy which is absorbed in the sub-cargo area. The 

challenge here is to develop a frame bending concept which provides this high energy absorption 

capacity. It is expected that an absorbing bending concept will not be able to achieve such a high 

mass specific energy absorption as it is feasible in a crushing process of the CFRP structure in 

zone 1. 

In a last crash phase, a high crash distance of zone 3 can be used in case of several robustness 

cases. In Figure 7-5, the illustration of this crash distance is limited to the lower part of the 

Bermuda triangle without a specific length. Regarding zone 3 the typical fuselage section has to 

be considered in the scope of a full-scale fuselage structure. Structural parts like the centre wing 

box and the landing gear bay influence the crash behaviour of a typical fuselage section. 

Therefore, it is expected that the height of the Bermuda triangle can not be used completely in a 

real crash scenario. Nevertheless, the lower part of the Bermuda triangle can be defined as a 

realistic crash zone. In this final crash phase, the moment arm of the average crash load is small 

and little mass penalty is expected to achieve a crashworthy backing structure above this crash 

zone. The limiting factor of this crash zone is the kinematic behaviour of the Bermuda triangle. 

A crushing of the vertical support struts has to be supported by the frame structure, otherwise the 

stiff frame structure may carry the crash load with a limited crushing capability, and accordingly 

high accelerations may act on the structure. In addition, it is expected that a disintegration of the 

Bermuda triangle may lead to critical crash kinematics which has to be controlled by the local 

crash device.  

The analytical consideration explained above showed benefits and drawbacks in all individual 

crash zones. None of the crash zones was identified as a clear favourite. Hence, it is not 

reasonable to differ from the strategy of an optimised crash kinematics with constant crash loads 

during the whole crash phase. In case of a clear favourite, a compromise of theoretical 

kinematics optimisation and realisation of a crash concept could specify a higher energy 

absorption in the favoured crash zone compared to the other zones with the price of a certain 

deviation of the optimised constant acceleration level. 
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7.3. Approach for the crash scenario development 

The effects of crash loads in the individual phases of a crash sequence were discussed in 

paragraph 7.2. In general, it is expected that the crash loads will clearly exceed the load carrying 

capacity of the statically pre-sized fuselage structure, in particular on the basis of a bend-frame 

concept as it is considered in this study. 

Hence, an adaptation of the statically pre-sized frame structure was foreseen in this crash 

scenario development to adapt the frame sizing to the finally identified crash loads. The 

adaptation of the frame structure was conducted on the basis of a frame profile catalogue which 

was provided by a static analysis of the project partner Airbus. The frame profile catalogue 

offers LCF-shaped frame profiles of similar design with increasing stiffness respectively flange 

thicknesses and frame heights. The smallest frame profile of this catalogue represents the 

statically sized frame design with a frame height of Hf = 92 mm and a flange thickness of tf = 2.6 

mm. The stiffest frame profile provides a frame height of Hf = 120 mm and a flange thickness of 

tf = 9.2 mm. In total 15 different profile definitions were provided, Figure 7-6a) shows examples.  

Regarding the cargo-crossbeam a similar profile catalogue was provided. A total number of 12 τ-

shaped profiles was given in this catalogue. The smallest profile of this catalogue provides a 

crossbeam height of HCCB = 55 mm and flange thicknesses of tUF = 3.4 mm as well as tLF = 5.5 

mm. The stiffest profile specifies a crossbeam height of HCCB = 100 mm and flange thicknesses 

of tUF = 5.5 mm as well as tLF = 8.75 mm. Figure 7-6b) shows examples of the cargo-crossbeam 

profile catalogue. 



7. Development of a crashworthy composite fuselage – crash scenario development               150 

 

Figure 7-6: Examples of a) the frame and b) the cargo-crossbeam profile catalogue  

The approach for the crash scenario development starts with a frame and cargo-crossbeam 

definition according to the stiffest profile to avoid instability failure and strain limit exceeding 

during the development process. A subsequent adaptation of the frame and cargo-crossbeam 

structure is conducted downwards based on the stiffest profile.  

Figure 7-7 provides an overview on this approach. The starting point of the development 

procedure is a maximum structural frame and cargo-crossbeam design according to the profile 

catalogues. In addition, the trigger loads of all crash devices above the cargo floor were set to the 

maximum values according to the strain criteria discussed in paragraph 7.1. Based on this 

starting point a sub-cargo study was conducted in the first step of the crash scenario 

development. The outcome of this study is the maximum energy value which can be absorbed in 

the sub-cargo area with the given maximum frame and cargo-crossbeam structure. Based on the 

specified fuselage geometry this energy value is equivalent to a specific crushing force level. As 

the bend-frame concept specifies a crushing of the sub-cargo structure without failure of the 

above fuselage structure, this sub-cargo study could be performed independently from the 

following crash kinematics.  
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In the second step of the scenario development the crash kinematics were optimised by the 

determination of appropriate input characteristics for the kinematic hinges in the frame region 

between cargo-crossbeam and vertical support struts, as well as in the cargo-crossbeam. These 

macro input characteristics were determined in a way that an optimised crash kinematics 

according to scenario A was achieved. The outcome of this development step are optimised crash 

loads with respect to a scenario A kinematics and the given fuselage structure, as well as the 

input characteristics in the kinematic hinges which are necessary to achieve the requested crash 

kinematics.  

With this optimised crash kinematics the maximum frame design was adapted to the crash loads 

in a further step. The outcome of this adaptation is a more filigree frame design compared to the 

maximum design. Nevertheless, this crashworthy frame design will be significantly more 

massive compared to the filigree design after the static sizing. 

 

Figure 7-7: Approach for the crash scenario development  
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In the following crash scenario development, the basic characteristic input of the macro elements 

was defined similarly to the crash kinematics assessment discussed in chapter 6. One exception 

is the input characteristic of the kinematic hinges. In chapter 6, the absorption levels in the 

moment-rotation characteristic were defined at fixed values. These moment levels were based on 

the lateral stability behaviour of the generic frame structure during a frame bending process. 

Here, the crash scenario development includes a structural adaptation. Hence, the frame design 

can vary and with the frame design the lateral frame stability varies, which leads to different 

maximum possible moment levels during frame bending. To take this into account, the absorbing 

moment level of the kinematic hinge was defined in dependence of the trigger moment. A basic 

assumption was used here which describes the absorption level at 50 % of the trigger level. 

Although this assumption is generic, the general dependence of the absorbing moment level on 

the lateral frame stability is considered. In addition, the maximum absorbing rotation was 

defined more conservative compared to the crash kinematics assessment of chapter 6. The 

complex absorption characteristic of different moment levels used in the kinematics assessment 

was replaced by a constant moment level and the maximum absorbing rotation was reduced to   

φ = 20°.  

Figure 7-8 illustrates the general characteristic macro input for the individual macro elements 

which were used in this crash scenario development. For all macro elements the trigger load is 

the independent parameter for the variation of the crash device behaviour.  

 

Figure 7-8: Characteristic input for the macro elements 

7.4. Crash scenario development 

The crash scenario development started with a sub-cargo study, similar to investigations on sub-

cargo crushing described in paragraph 6.2. The maximum possible energy absorption by the 

crushing of the sub-cargo floor structure was analysed, based on the given profile catalogues. 

The investigation started with the stiffest of the given τ-profile for the cargo-crossbeam. 



153                7. Development of a crashworthy composite fuselage – crash scenario development 

Simulation runs with different trigger loads in the sub-cargo crushing macro elements identified 

the individual crushing distances respectively amounts of absorbed energy.  

The structural allowables in this sub-cargo study were checked by the longitudinal strains along 

the frame as well as the cargo-crossbeam, which were measured with the strain bar elements. 

The strain limit criteria were defined according to the discussion of paragraph 7.1. 

The outcome of the sub-cargo study is an optimised trigger force for the sub-cargo absorbers of 

F = 15 kN in combination with the stiffest crossbeam profile according to the profile catalogue.  

Based on these results of the sub-cargo study the crash kinematics optimisation is presented in 

paragraph 7.4.1. The subsequent structural adaptation of the frame structure is discussed in 

paragraph 7.4.2. The results of the final crash scenario are summarised in paragraph 7.4.3. 

7.4.1.     Crash kinematics optimisation 

The crash kinematics optimisation starts with the investigation of the maximum possible crash 

scenario. Based on the maximum frame structure according to the frame profile catalogue as well 

as the outcomes of the sub-cargo study, the input characteristics of the kinematic hinges were 

defined in a way that the trigger strains in the frame reach the structural allowables. Based on the 

characteristic macro input, given in Figure 7-8 of paragraph 7.3, this scenario provides the 

maximum possible energy absorption for the given fuselage structure.  

All active kinematic hinges, which describe the crash kinematics, are defined here with an 

absorbing characteristic. The crash sequence of the standard crash case, vi = 6.7 m/s (22 ft/s), is 

given in Figure 7-9. With maximum possible energy absorption in the kinematic hinges a 

remaining distance of Δz ≈ 170 mm was identified at the end of the crash between the vertical 

support struts and the ground. Figure 7-10 illustrates the output of the active kinematic hinges. 

The cargo-crossbeam experienced a maximum rotation of more than φCCB = 35°. Hence, the 

energy absorbing capacity, defined over a rotation of φabs = 20°, was utilised completely. The 

kinematic hinges in the frame, located below the vertical support struts, experienced a maximum 

rotation of about φFrame = 17° on each fuselage side. Here, the energy absorbing moment plateau 

was not used up completely.   
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Figure 7-9: Crash sequence of the ‘standard crash case’ with maximum possible energy absorption 

 

Figure 7-10: Kinematic hinge output of the ‘standard crash case’ with maximum possible energy absorption 

This variant of maximum possible energy absorption implicates high acceleration loads for the 

passengers as the kinetic energy is absorbed over a minimum crash distance. Figure 7-11 shows 

the passenger accelerations in the Eiband diagram. The results of the front seat-row for the 

passengers A-F are given. The second seat-row in the simulation model shows similar 

acceleration values. All passengers experience high accelerations which are close to the limit of 

severe injury.  
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Figure 7-11: Passenger accelerations of the first seat row – ‘standard crash case’ with maximum possible energy 

absorption 

In the following, the kinematic hinge input characteristics were modified stepwise to utilise the 

remaining distance of Δz ≈ 170 mm between the vertical support struts and the ground for a 

smoother crash kinematics. Nevertheless, passive vertical struts are still foreseen for the standard 

crash case. Hence, the total kinetic energy has to be absorbed up to the ground contact of the 

struts. The trigger moments respectively the absorbing levels of the frame kinematic hinges were 

stepwise reduced to 75 %, 60 % and 50 % of the maximum possible level.  

Figure 7-12 compares plots of the total internal energy of these three variants with the ‘100 % 

variant’ investigated above. The first crash phase, the crushing of the sub-cargo structure, shows 

identical curves for all variants, as expected. In the following, the frame failure, more precisely 

the kinematic hinge triggering, can be identified by a small decrease of the internal energy which 

is caused by the partly release of elastically stored energy. The plots illustrate the influence of 

the trigger moment on the triggering time. With decreasing trigger moment, the kinematic hinges 

trigger accordingly earlier. Whereas in the ‘100 % variant’ the kinematic hinges trigger at t = 35 

ms, the ’50 % variant’ shows a trigger time of t = 14 ms. After triggering of the kinematic hinges 

in the frame different absorbing moment levels in the individual variants are indicated by 

different averaged slopes of the internal energy curves. In the further progress of the curves a 

reduction of the averaged slope indicate the exceedance of absorbing bending in the cargo-

crossbeam. The absorbing rotation of φCCB = 20° is reached at that time. A further reduction of 

the averaged slope indicates the end of energy absorbing rotation in the frame hinges. In the 

further progress of the energy curves the averaged slope is almost horizontal.  
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The final progress of the curves is of interest in this investigation, too. Here the curves give 

valuable information about potential ground contact of the vertical support struts as well as the 

amount of remaining kinetic energy at that time. As already discussed above, the ‘100 % variant’ 

with maximum possible energy absorption shows no ground contact of the vertical support 

struts. A remaining distance of Δz ≈ 170 mm was determined in that variant. The internal energy 

curve of this variant illustrates in the last crash phase a smooth progress to a horizontal level 

which indicates the end of the crash sequence. In contrast to this, the variants with decreasing 

energy absorption show a more distinct increase of internal energy in the final crash phase which 

finally decreases again. This curve progression is caused by an elastic rebound effect of the 

fuselage structure. The reduction of energy absorption leads to a higher crash distance with the 

utilisation of the remaining distance of Δz ≈ 170 mm. With further reduction of energy 

absorption in the kinematic hinges, the vertical support struts hit the ground with an increasing 

amount of remaining kinetic energy. Hence, the ’50 % variant’ shows a very distinct rebound 

effect. In this variant the energy absorption in the frame is not sufficient for the standard crash 

case. The ’60 % variant’ shows a small rebound effect whereas in the ’75 % variant’ a rebound 

effect is hardly visible.  

In this crash kinematics optimisation, the trigger force of the vertical support struts was defined 

artificially high to indicate the ground contact and to obtain valuable information as discussed 

above. 

 

Figure 7-12: Internal energy (ALLIE) with reducing energy absorption capacity in the frame  
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The structural loads of the ’75 %’ and the ’60 % variant’ are presented in Figure 7-13. The 

strains along the most critical frame inner flange are displayed over the crash duration. The first 

negative peak is at the time of kinematic hinge triggering in the frames. The crash loads in the 

frames abruptly reduce to a lower, constant level which is the absorbing moment level of the 

kinematic hinges. After the exceedance of energy absorbing rotation the strain values drop again, 

followed by a further increase up to a second negative peak. This second peak is the ground 

contact of the vertical support struts. The elements showing the strain values of the first peak are 

located in the most critical frame region between cargo-crossbeam and vertical support struts. 

The elements showing the strain values of the second peak are located in the vertical orientated 

frame region of the Bermuda triangle and above the passenger floor.  

The comparison of both diagrams in Figure 7-13 clearly shows a reduction of the first peak value 

for the ’60 % variant’ compared to the ’75 % variant’. This reduction is equivalent to the reduced 

trigger moment in the kinematic hinge. In addition, the second peak in Figure 7-13b) shows 

higher absolute values compared to the ’75 % variant’ in Figure 7-13a). This increase of absolute 

strain value indicates a more distinct impact of the vertical support struts.  

Regarding the analysed variants the utilisation of the remaining distance of Δz ≈ 170mm was 

achieved most favourable with the ’75 % variant’. Hence, a reduction of 25 % of the maximum 

possible energy absorption was found to be an improved solution. 

The passenger accelerations of this optimised crash kinematics are given in Figure 7-14. 

Compared to the accelerations of the maximum possible scenario, displayed in Figure 7-11, the 

acceleration values could be reduced significantly, with a larger margin to the limit of severe 

injury.  
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Figure 7-13: Frame inner flange strains of a): 75 % variant, and b): 60 % variant 
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Figure 7-14: Passenger accelerations of the first seat row – ‘standard crash case’ with optimised crash kinematics 

7.4.2. Structural adaptation 

With the outcomes of the sub-cargo study as well as of the crash kinematics optimisation all 

macro element characteristics, except the vertical support strut macro characteristic, were 

defined and the crash kinematics was optimised with respect to the standard crash case. In this 

further step, the fuselage structure was adapted to the optimised crash loads. The most critical 

structural part with respect to typical crash loads is the frame structure, followed by the 

crossbeam structure. The fuselage skin as well as the stringers are less critical. The cargo-

crossbeam structure was already defined in the sub-cargo study. The passenger crossbeam was 

not considered in this structural adaptation.  

The adaptation of the frame structure is based on the most critical frame inner flange strains 

which were measured in the above discussed optimised crash kinematics, the ’75 % variant’. 

Structural reserve factors were determined which compare these strain values with the structural 

allowabels according to the following formulation: 

Allowable

FlangeFrameInnerRF
ε

ε
=  (7.3) 

The reserve factors were determined for local frame regions. Figure 7-15 shows the results of the 

optimised crash kinematics with the maximum frame profile. The distribution of the reserve 

factors is as expected and shows the highest loaded frame region between cargo-floor and 

vertical support struts. The reserve factors increase in the upper fuselage region. One exception 

is the frame region below the overhead bins. Inertia effects of the loaded overhead bin mass 
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induce higher loads in that frame region. In addition, poor lateral frame support is existent here, 

due to a large distance between the kinematic hinges. This effect was discussed in paragraph 4.4.  

With respect to the frame adaptation a desired reserve factor of RF = 1.0 is used instead of the 

typical factor of RF = 1.5. The standard crash load case considered here is not within the 

envelope of flight and ground loads which is the basis for static sizing. In addition, the mass 

penalty which is caused by a crashworthy frame design should be as low as possible. A reserve 

factor of RF = 1.0 leads to the full utilisation of the frame structure in the standard crash case and 

as a result leads to minimised mass penalty.  

The distribution of reserve factors in Figure 7-15 shows a minimum value of RF = 1.5. Hence, 

the current frame design with maximum profile according to the frame profile catalogue can be 

reduced in all frame regions.  

 

Figure 7-15: Structural reserve factors of the optimised crash kinematics with the maximum frame profile 

The adaptation of the frame structure was conducted iteratively as the reduction of frame 

stiffness directly influences the overall crash behaviour. In addition, the adaptation of the frame 

design was conducted in sections. Inside these frame sections a constant frame design was 

specified. The sections were defined according to general local crash effects. The first section is 

between the cargo-floor and the vertical support struts (stringer #31-#26). The frames in this 

region experience high loads during the sub-cargo crushing phase. The second section is between 
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the vertical support struts and the passenger crossbeam connection and covers the Bermuda 

triangle (stringer #26-#20). A third section is defined above the passenger floor (stringer #20-

#13) and finally the last section starts above the window area (stringer #13-#1).  

In a first step, the most critical frame section between the cargo-floor and the vertical struts was 

adapted. In this step, the frame design of the upper sections was kept maximal. The results of this 

adaptation are given in Figure 7-16. The structural reserve factors in the considered frame 

section were reduced from RF = 1.5 to RF = 1.2 respectively RF = 1.1. In the following iteration 

the frame profile of the upper sections were adapted stepwise as illustrated in Figure 7-16.  

 

Figure 7-16: Adaptation of the frame design 

The final frame distribution is given in Figure 7-17. Although the reserve factors could be 

reduced significantly compared to the maximum frame design, the final reserve factors show a 

wide range between RF = 0.8 and RF = 1.8. The lowest reserve factor of RF = 0.8 is located in 

the window area. Inertia loads of the overhead bins act in this frame region. The distance 

between the kinematic hinges is comparably high in that region. Hence, lateral support provided 

by the kinematic hinge macro architecture is marginal. This fact is important as lateral frame 

support by cleats is not modelled. In chapter 4.4 sufficient lateral frame support by the kinematic 

hinges was determined for typical distances between the hinge macros. In the upper fuselage 

area, this distance is significantly higher and the influence of less lateral support is obvious. A 

detailed view on the window region identified little frame buckling caused by the overhead bin 
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loads. Considering lateral frame support by cleats a reserve factor above RF = 1.0 is expected 

here. 

The adaptation of the frame design was conducted exemplarily and on a rough basis as it is 

reasonable for a preliminary design. Further optimisation of the fuselage structure can be 

performed in a detailed design phase. 

 

Figure 7-17: Final frame distribution of the structural adaptation (grey: static sizing) 

In Figure 7-17 the frame distribution of the final crashworthy frame design is compared to the 

frame design of the static pre-sizing. Regarding the structural weight the increase of mass from 

static sizing to maximum frame design is about +257 % with respect to the frame mass. The 

structural adaptation leads to a mass reduction from maximum frame design to optimised frame 

design of about -140 %. Hence, compared to the statically sized frame structure, the crashworthy 

frame structure of this crash concept leads to a mass penalty of +117 %. 

The energy plot in Figure 7-18 compares the optimised crash kinematics with maximum frame 

profile to the structurally optimised scenario. The macro input characteristics of both variants are 

identical. The variants distinguish only in the frame stiffness distribution. The total kinetic 

energy as well as the internal energy curves show the same overall behaviour. Nevertheless, a 

detailed view on the curves identifies differences in the time of the kinematic hinge triggering in 

the frames. The stiffer maximum frame profile leads to higher moments at a certain crash 

distance compared to the structurally optimised frame design. Hence, the trigger moment in the 



163                7. Development of a crashworthy composite fuselage – crash scenario development 

kinematic hinges is reached at a bit later time with the stiffness reduced, structurally optimised 

frame profile distribution. Despite of the observed difference in the kinematic hinge trigger time, 

the differences of the crash kinematics optimisation is marginal in this structurally optimised 

variant.  

 

Figure 7-18: Comparison of ‘crash kinematics optimised’ and ‘structurally optimised’ scenario 

7.4.3. Final crash scenario 

The final crash scenario represents the outcomes of the sub-cargo study, the crash kinematics 

optimisation as well as the structural adaptation. Figure 7-19 illustrates the sequence of the 

‘standard crash case’ with vi = 6.7 m/s (22 ft/s). The energy plot in Figure 7-20 shows a smooth 

and steady increase of the internal energy (ALLIE) which indicates approximately constant 

energy absorption. Unsteadiness in the curve progression is caused by crossbeam and frame 

failure which leads to a partly release of elastically stored energy due to the differences between 

trigger and absorption moment level. This release of elastic energy is described by a spring back 

effect of the surrounding structure with further structural oscillations. Hence, the released elastic 

energy converts directly to kinetic energy which can be seen in the plot of total kinetic energy 

(ALLKE).  

In Figure 7-20 the plot of external work (ALLWK) represents the effect of the gravity field. The 

loss of potential energy, caused by the vertical translation of the structural mass in the gravity 

field, leads to an additional amount of energy which has to be absorbed. In this scenario the 

amount of external work is approximately 20 % of the initial kinetic energy.  
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Besides the absorption of the kinetic energy by the fuselage structure, further energy is absorbed 

by frictional effects, mainly between fuselage skin and the ground. A friction coefficient of μ = 

0.4 was specified here. This value aligns to recent outcomes of research projects and is 

significantly higher compared to test results of previous research [127,128]. About 21 % of the 

initial kinetic energy could be absorbed by friction in this crash scenario (ALLFD). 

Finally, the numerical energies show marginal values in Figure 7-20. The artificial strain energy 

(ALLAE), representing the energy to control hourglass effects, reaches approximately 2 % of the 

total energy (ETOTAL). This is a comparably small amount of energy which is clearly inside of 

common limits. Further numerical energies, applied by the solver to control contact (ALLPW) as 

well as constraint (ALLCW) penalties, are less than 1 % of the total energy. Hence, the small 

amount of numerical energies indicates a numerically acceptable modelling.  

A detailed view on the energy absorption in the individual fuselage areas is given in Figure 7-21. 

The absorbed energy in the macro crash devices as well as the absorbed energy by material 

failure in the detailed modelled sub-cargo structure is illustrated in this diagram. With respect to 

the sub-cargo area the energy curves very clearly show the necessity of a detailed modelled sub-

cargo structure including material failure formulation. The largest amount of energy, absorbed in 

the sub-cargo area, is attributed to material damage and failure described by detailed FEM, 

which is approximately 45 % of the sub-cargo energy dissipation. This high amount of energy 

absorption by the material is mainly founded in the bend-frame concept which specifies material 

crushing below the cargo-crossbeam. Other concepts without a bend-frame would lead to 

significantly less material failure in this lower fuselage area. Due to early failure of the cargo-

crossbeam caused by interaction with the lower frame, the amount of energy absorbed by the 

macro crush absorbers is comparably small and reaches only 15 % of the sub-cargo energy 

dissipation. The remaining approximately 40 % of the sub-cargo energy dissipation are absorbed 

by cargo-crossbeam failure which is described with an absorbing kinematic hinge characteristics.  

In total, 35 % of the total internal energy was absorbed in the sub-cargo area. In contrast to this, 

the kinematic hinges in the frames absorbed 52 % of the total internal energy. 13 % of the total 

internal energy is stored elastically in the fuselage structure. This value is comparably low, 

particularly with respect to a CFRP structure with its high potential to store elastic energy 

compared to a metallic structure. Hence, the comparably small amount of elastic energy indicates 

a correct modelling. The Kinematics Model approach with mainly linear-elastic material 

formulation did not lead to excessive strain energies in the structure. 

Considering the discussion of the individual crash zones in paragraph 7.2, the crash height 

influenced by the frames is twice the crash height of the sub-cargo area. Hence, a constant level 
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of energy absorption during the crash sequence would require an appropriate ratio of absorbed 

energy in both crash zones. The results of the final crash scenario provide energy absorption in 

the sub-cargo area of 35 % of the total internal energy. Thus, 70 % of the total internal energy 

had to be theoretically absorbed in the second crash zone. Instead, the final crash scenario 

provides only 52 % energy absorption in the frames. A detailed view on the cargo-crossbeam 

failure clarifies this discrepancy from the desired ratio of energy absorption. The absorbing 

rotation of the cargo-crossbeam kinematic hinge is part of both, crash zone 1 and 2. The 

crossbeam fails as discussed before the complete crushing of the sub-cargo area. This absorbing 

rotation continues in the crash phase of zone 2. Hence, the phases of zone 1 and zone 2 overlap 

in this case, and therefore the ratio of absorbed energy in the individual crash zones can hardly 

be determined. In Figure 7-21, the absorbing rotation of the cargo-crossbeam was assigned to the 

sub-cargo energy absorption. Despite of this circumstance, the smooth and steady increase of the 

total internal energy indicates an approximately constant energy absorption which concludes to 

the desired ratio of absorbed energies in the individual crash zones.  

Further results of the final crash scenario are presented in Appendix A5.2.  

 

Figure 7-19: Crash sequence of the final crash scenario 
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Figure 7-20: Energy plot of the final crash scenario 

 

Figure 7-21: Energy absorption in the final crash scenario 

7.5. Modification of the final crash scenario – the ovalisation effect 

After the discussion of the final crash scenario an additional option for the final crash scenario is 

discussed in this paragraph and shall demonstrate the capability of the Kinematics Model. 

In this investigation, an additional local crash device is installed in the connection of the 

passenger crossbeam to the frame structure. During the first crash phases up to the frame failure, 

the frame structure is elastically loaded with an oval deformation. A full development of this 

ovalisation is hindered by the passenger crossbeam which is tensile loaded during this crash 

phase. The definition of an appropriate flexibility in the connection between the passenger 
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crossbeam and the frame structure would assist this ovalisation effect and would lead to a certain 

displacement in this connection. Such a displacement could be used for further energy 

absorption. The advantage of this mechanism is its tensile loading direction. In general, energy 

absorbing concepts in tensile direction are less complex compared to compressive concepts as no 

risk of instability effects exists. The crossbeam connection could be equipped with a comparably 

simple bearing absorber which provides an ideal characteristic with an absorbing level of almost 

100 % of the trigger load level.  

Hence, the advantage of such an additional crash concept is obvious for what reason the option 

of energy absorption by an ovalisation effect was analysed in the Kinematics Model. Based on 

the final crash scenario, an additional macro architecture was implemented in the passenger 

crossbeam connection, according to paragraph 3.2.5. In this macro architecture the passenger 

crossbeam is linked to the frame structure with a connector element. Both structural parts are 

reinforced with rigid bodies for the load introduction of the connector element. The lateral 

displacement as well as the rotational displacement around the fuselage longitudinal axis was 

defined as independent degree of freedom which had to be investigated to achieve an improved 

crash performance. The input characteristic was defined linear-elastically for the rotational 

stiffness. The lateral displacement was defined with a constant force plateau after triggering 

which is 100 % of the trigger load. 

In a first step, the tensile loads in the passenger crossbeam of the final crash scenario were 

analysed to determine the load progression over the crash duration and to define a potential 

trigger time and trigger load level. As expected, the natural crash behaviour of the fuselage 

section provides high tensile forces in the crossbeam after the sub-cargo crushing and before 

frame failure. Figure 7-22 illustrates the longitudinal loads in the passenger crossbeam of the 

final crash scenario.  

Based on these crossbeam loads potential trigger loads could be defined for the ovalisation 

device. The influence of these trigger loads as well as different rotational stiffness were analysed 

in a parameter study. Three different trigger loads were defined as illustrated in Figure 7-22. In 

addition, three different rotational stiffness values were defined in this parameter study. The 

stiffness values of the rotational degree of freedom were defined artificially. In total, nine 

different variants were simulated in this study.  



7. Development of a crashworthy composite fuselage – crash scenario development               168 

 

Figure 7-22: Longitudinal loads in the passenger crossbeam of the final crash scenario 

A first outcome of this limited parameter study was that none of the variants led to a change in 

the overall crash kinematics. For all variants a crash kinematics according to scenario A could be 

identified. The additional ovalisation phase occurred as desired after the sub-cargo crushing and 

before the frame failure. Figure 7-23 illustrates macro element output data of a variant with a 

trigger load of F = 20 kN. The elongation of the macro elements is given in this diagram over the 

crash duration. In a first crash phase the modified cascading scenario shows the crushing of the 

sub-cargo area. After complete crushing, the ovalisation devices experience lateral displacement 

up to the triggering of the frame kinematic hinges with the following frame bending phase.  

 

Figure 7-23: Modified cascading scenario with ovalisation (F = 20 kN) 
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The influence of the rotational stiffness was determined to be less important compared to the 

influence of the lateral trigger force. Figure 7-24 gives an overview on the results of this 

parameter study. The lateral displacement of the ovalisation device is displayed over the crash 

duration. The highest energy absorption in the ovalisation device is provided at a force level of  

F = 20 kN.  

Regarding a force level of F = 20 kN approximately 9 % of the initial kinetic energy could be 

absorbed by the tensile mechanism in the ovalisation device. In the further crash sequence this 

amount of energy absorption leads to a reduced utilisation of the energy absorbing capacity of 

the frames. Figure 7-25 illustrates the frame kinematic hinge rotation and shows a reduction of 

the frame rotation of approximately Δφ = 12°. With respect to the energy absorbing capacity, 

defined for the frame kinematic hinges, the ovalisation device led to a rotational reduction of   

Δφ = 5° due to the end of the absorption plateau in the frame hinges. 

 

Figure 7-24: Lateral displacements of the ovalisation device 
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Figure 7-25: Frame kinematic hinge rotations 

Using the identical macro input characteristics of the final crash scenario, the implementation of 

an ovalisation device with a trigger load of F = 20 kN led to a reduced crash distance of Δz = 150 

mm. Figure 7-26 compares the final crash scenario with the option of an additional ovalisation 

device and illustrates the reduction of the crash distance. 

The trigger load of F = 20 kN is an outcome of an investigation which considered exclusively 

crash aspects. The feasibility of such an ovalisation concept has to be checked against the static 

sizing. The static analysis by the project partner Airbus identified maximum static tensile loads 

in the passenger crossbeam connection of F = 21 kN with respect to all flight and ground load 

cases. For that reason, the final trigger load of the ovalisation device has to be increased at least 

to F = 22 kN to fulfil the static requirements. Despite of this marginal adaptation of the trigger 

load, the general feasibility of such a concept could be proved. 

Further results on the investigation of the ovalisation effect are given in Appendix A5.3. 
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Figure 7-26: Final crash scenario vs. additional ovalisation device 

7.6. Summary - definition of the final macro input characteristics 

On the basis of the selected natural crash kinematics, scenario A, the development of a crash 

scenario was discussed in this chapter. A procedure was defined to conclude to an optimised 

crash kinematics as well as to an optimised fuselage structure. The development process was 

conducted exemplarily on the basis of a statically sized CFRP fuselage structure with a cargo-

crossbeam according to the bend-frame concept. The developed final crash scenario provides 

valuable information about the expected crash loads, the requirements for crash devices as well 

as the potential structural mass penalty of the considered crash concept. In addition, the effect of 

frame ovalisation, using an additional crash device at the passenger crossbeam connection, could 

be analysed efficiently with the Kinematics Model. 

The final macro input characteristics of this exemplary scenario development are given in Figure 

7-27.  

The sub-cargo crushing absorbers trigger at a load level of F = 15 kN. With two absorbers 

defined per frame, the static loads in the sub-cargo framework have to be less than F = 30 kN. 

This small load value is challenging, but regarding a bend-frame concept this requirement is 

expected to be feasible. 

The cargo-crossbeam triggers at a moment of M = 8000 kNmm. The selected τ -profile of 

highest stiffness according to the profile catalogue is fully utilised at this load level.  
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The frame structure directly below the vertical support strut connection triggers at a moment of 

M = 19,000 kNmm. A large amount of energy has to be absorbed by this crash device in the 

frame. An estimation of the feasibility of such a requirement was conducted by detailed analyses 

of a generic frame structure. The frame region at the vertical strut connection was modelled in 

detail and analysed with full FEM. A metallic frame structure was defined in that detailed model 

with a similar frame profile compared to the final crash scenario. The moment-rotation curve of 

this numerical analysis, on basis of a metallic frame structure, is presented in Figure 7-28a) and 

is compared to the kinematic hinge output of the final crash scenario. This comparison shows 

almost similar behaviour of the metallic frame and the requirements of the kinematic hinge, with 

respect to the trigger load as well as the energy absorption capacity. Comparing both curves it is 

obvious that the kinematic hinge behaviour is more of generic character whereas the metallic 

frame provides a typical, more realistic post-failure curve. However, with respect to the required 

trigger load and energy absorption the outputs of the frame kinematic hinge of the final crash 

scenario can be used as a feasible requirement. Figure 7-28b) shows the considered kinematic 

hinge in the Kinematics Model whereas Figure 7-28c) displays the detailed metallic frame 

model. Further details on this frame model are provided in Appendix A5.4. 

With respect to the vertical support struts, potential crushing could be provided in case of some 

robustness crash cases. Important is a smooth transition from the frame bending phase to the 

vertical support strut crushing phase. Appendix A5.5 discusses the axial forces in the vertical 

struts during the final crash scenario. According to the identified loads a trigger force of F = 35 

kN is recommended for potential energy absorption in the vertical support struts. 

Finally, with a modified final crash scenario using the ovalisation effect an optimised trigger 

force of F = 22 kN was identified for the ovalisation device which is positioned in the passenger 

crossbeam connection. This trigger value already considers static requirements and guarantees 

the feasibility of the ovalisation concept. 
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Figure 7-27: Final macro input characteristics 

 

Figure 7-28: Frame bending of the kinematic hinge output and the metallic frame 



8. Development of a crashworthy composite fuselage design 

– experimental investigation on the design of crash devices 

The crash scenario development in chapter 7 identified crash device characteristics which are 

required to achieve an optimised crash kinematics according to scenario A. Based on these 

identified requirements, general concepts of local crash devices can be developed. Figure 8-1 

again illustrates the scope of the development of a crashworthy composite fuselage design and 

highlights this final step of investigations on the design of local crash devices.  

In the scope of this thesis, the focus is on the development of the experimental methods for the 

investigation on potential crash devices. Appropriate test setups were developed to test local 

crash device concepts under reasonable conditions that consider structural loads, constraints or 

other effects which influence the crash device in a fuselage structure and thus have to be 

represented by appropriate boundary conditions in the test.  

Two general kinds of experimental investigation were considered. The first one is focused on a 

precise representation of structural boundary conditions and aims to investigate the detailed 

crash device behaviour taking into account the interaction with the structural environment of the 

aircraft fuselage. The second one is focused on fundamental experiments that concentrate on 

general characteristics, such as the energy absorbing capacity of a crash device concept. In the 

second kind of investigations, a detailed representation of boundary conditions is secondary and 

a simplified, and accordingly a more efficient, test setup can be used. Both kinds of experimental 

investigations are discussed in this chapter. 

First kind of experimental investigations are discussed in paragraph 8.1. Experiments are 

presented which consider the crushable absorber structure in the sub-cargo area. A detailed test 

setup was developed which represents important boundary effects in the sub-cargo structure on 

the crush absorber. With this specific test setup a wide range of absorber design variants was 

tested with a total number of 72 specimens [147]. However, the discussion in this paragraph 

concentrates on the development of the test setup to exemplarily show how experimental tests 

can be used to develop local crash devices, or vice versa to generate macro input data for the 

Kinematics Model.  

Second kind of experimental investigations are dealt in paragraph 8.2. Experiments are discussed 

which investigate energy absorbing concepts for the frame structure. In contrast to the specific 
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test setup of the crush absorber test programme here a basic test setup was developed. The 

experiments on the frame structure concentrate on the general feasibility of energy absorption 

concepts in a bending failure mechanism. The test setup was defined as simple as possible to 

enable an efficient investigation of different bending absorption concepts. 

 

 

Figure 8-1 : Approach for the development of a crashworthy composite fuselage design 

8.1. Axial crushing tests 

The exemplary development of a crashworthy composite fuselage design in this thesis considers 

a so-called bend-frame concept. A stiff cargo-crossbeam provides sufficient stiffness to enable 

crushing of the sub-cargo structure in a first crash phase. In Figure 8-2a) such a sub-cargo 

structure is depicted, which is in this case a highly integrally manufactured CFRP part [120]. 

Similar to the sub-cargo design defined in chapter 6 and 7, two crush absorbers are installed at 

the centre struts of the sub-cargo structure. The conceptual idea is to mount the crush absorbers 

on the statically sized structure with a riveted connection. The general crush absorber design is a 
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CFRP structure of half-tube geometry with additional flanges for the riveting connection. Such 

CFRP half-tube crush absorbers are well investigated and identified an excellent crush 

performance respectively a high mass-specific energy absorption [41,45]. Figure 8-2b) illustrates 

the general design of the considered half-tube absorber mounted to the strut of the sub-cargo 

structure.  

 

Figure 8-2: Crush absorber of a bend-frame concept in the sub-cargo structure [120] 

The focus in the development of an appropriate test setup is a detailed representation of 

boundary conditions which may influence the crush absorber in this sub-cargo structure. The 

crushing behaviour of half-tube absorbers is well investigated and documented in the literature. 

But most of these investigations concentrate on the half-tube absorber itself as well as its 

material failure behaviour and neglect the influence of the adjacent structure. Regarding a 

crashworthy composite fuselage design, these effects cannot be neglected. Hence, the required 

test setup has to consider all influence of potential interaction with the fuselage structure.  

To identify potential factors which influence the failure behaviour of the crush absorber, detailed 

finite element analyses as well as static and dynamic pre-tests were performed. A short 

documentation of the FE model as well as the pre-test setups is given in Appendix A6.1.   

One identified factor is the influence of the strut to that the half-tube absorber is riveted. The 

sub-cargo design according to Figure 8-2a) specifies a flat CFRP strut. Whereas the half-tube 

absorber provides sufficient buckling strength to achieve stable crushing, this flat strut tends to 

buckling failure. Dependent on the structural stiffness of both parts, potential failure without 

progressive crushing is expected for the riveted combination of strut and half-tube absorber. 

Thus, to analyse this effect the test specimen was defined as riveted assembly of a flat strut and a 

half-tube absorber, as illustrated in Figure 8-2b). 
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A further parameter that may have an influence on the absorber crushing behaviour is the upper 

connection of the half-tube absorber to the cargo-crossbeam. In the specified design according to 

Figure 8-2a) the absorber structure is riveted also to the web of the crossbeam to provide 

sufficient backing strength for progressive crushing. Hence, this part of the absorber which is in 

the region of the crossbeam will not be crushed, but will support the crushing of the lower part of 

the half-tube absorber. The representation of this upper connection would lead to a complex test 

setup which includes a riveted connection to the test fixture or alternatively the integration of the 

crossbeam structure. To reduce the complexity of the test setup, the upper absorber connection 

was neglected. Instead, the representation of the absorber structure concentrates on the crushable 

region below the crossbeam. The upper end of the test specimen was embedded in a fixture that 

was defined in a way that clear boundary conditions for the tests are provided and potential 

failure in the fixture is prohibited. Therefore, the specimen was bonded into the fixture. In 

addition, the fixture was designed with a bleeding system to avoid an artificial increase of the 

crushing force by the compression of the air in this closed cross-section of the specimen. In the 

real structure, the upper absorber part in the region of the crossbeam provides sufficient volume 

to avoid any compressible effects. Figure 8-3a) compares the structural environment in the 

fuselage and the derived test setup. The upper fixture is pictured and illustrates the notches for a 

bonded fixation of the specimen as well as the central whole of the bleeding system. 

Regarding the boundary condition at the lower end of the specimen the connection of the flat 

strut to the fuselage skin was identified as a further parameter which can influence the crushing 

performance of the absorber structure. According to the highly integral design pictured in Figure 

8-2a), the flat strut merges with the lower frame in this lower region. The flange of the lower 

frame is riveted to the fuselage skin. In case of a crash, first failure is expected in the radius 

between the lower frame web and the flange. Hence, progressive crushing is triggered by this 

radius design. In the test setup, the connection of the lower frame flange to the fuselage skin 

cannot be neglected. Otherwise the flange would be enabled to roll up and following to fail in a 

different mode respectively at a different failure load. This effect could be demonstrated 

numerically in the FE analyses as well as experimentally in the pre-test investigations, as 

documented in Appendix A6.1. To consider the influence of the fuselage skin, a metallic plate 

was bolted to the flange. During the impact of the specimen, this plate avoids an unrolling of the 

flange and affects the failure initiation similarly to the influence of the fuselage skin. In 

combination with this metal plate, another effect was identified which showed a lateral 

displacement of the frame flange caused by the constraint unrolling. In a real fuselage 

environment the fuselage skin constraints this lateral displacement. Accordingly, a guidance 

system was developed that constraints the metal plate against lateral displacement. With the final 
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setup of this guided plate, the failure representation of the frame radius is similar to that expected 

in the real fuselage structure. In Figure 8-3a) the bolted connection of the flange to the metal 

plate is depicted. Furthermore, a circular notch in the metal plate is visible which is used for the 

guidance system. 

The finally planned test setup is shown in Figure 8-3b). An upside-down configuration was 

defined due to the installation of the dynamic test machine. The guidance system was coupled 

with the load cell to enable the measurement of potential friction effects between metal plate and 

guidance.  

Appendix A6.1 documents the verification of this finally planned test setup by static and 

dynamic pre-tests.  

 

Figure 8-3: Test setup configuration  
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The final test setup was developed for the dynamic test machine Instron VHS (type: 

PLS100/20M) that is shown in Figure 8-4a) together with the data acquisition systems. In 

addition, the high-speed camera (FASTCAM-APX RS250K) as well as the lighting is depicted 

which was used for the recording of high-speed videos.  

The detailed setup in the test machine is given in Figure 8-4b) and mainly corresponds to the 

schematic setup of Figure 8-3b). An additional wooden plate (t = 3 mm) was installed on the 

impact plate to damp the impact of the metallic plate which is bolted to the strut flange. In 

addition to the path measuring by the cylinder signal, a laser system was installed which 

measured simultaneously the path over a distance of L = 100 mm. As one of the main objectives 

of this test campaign is the investigation of the interaction of the flat strut and the half-tube 

absorber, a mirror was installed to record the front and the rear side of the specimen with the 

high-speed camera. Using this mirror, potential buckling failure of the flat strut at the rear side of 

the specimen could be identified. In general, the visualisation of CFRP specimens with video or 

photo systems is difficult due to the limited contrast of the black specimen. Therefore, the 

specimens were painted in white colour with additional black points to improve the contrast in 

the high-speed video records.  

Finally, a modified configuration of the final test setup is given in Figure 8-4c). An oblique 

device was mounted between load cell and impact plate to investigate the crushing performance 

under an off-axis angle of β = 10°. The aim of this test setup is to identify the robustness of the 

absorber crushing performance, similar to robustness analyses of the Kinematics Model. The off-

axis crushing configuration is one of several parameters which are specified in the following.   
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Figure 8-4: Final test setup in the dynamic test machine 

A total number of 72 specimens were tested with the test setup described above. Different 

parameters of the crush absorber design or its loading condition were analysed in 36 test 

variants, each with two individual tests. The analysed parameters were: 

• Different designs of the flat CFRP strut (complex layup, simplified layup) 

• Different angles of the geometrical trigger of the half-tube absorber (α = 60°, 75°) 

• Different layup thickness of the half-tube absorber (t = 1.0 mm, 2.0 mm) 

• Different laminate types of the half-tube absorber (woven fabric, biaxial-, triaxial 

braided laminates)  

• Variants with paste bonding additionally to the riveting of the strut and the half-tube 

absorber 

• Variants with off-axis loading (roll angle β = 10°) 

• Different loading rates (v = 6.7 m/s, v = 10 m/s) 
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An overview on the complete test matrix is presented in Appendix A6.2. 

The evaluation of the test results was conducted mainly on the basis of the measured force-

displacement curves, the recorded high-speed videos as well as the post-test pictures which 

document the absorber failure modes. 

Several important effects could be identified with respect to the functionality of a robust crash 

absorber in its structural environment. Exemplary results are given in Figure 8-5, which 

illustrates two main characteristics of the identified absorber behaviour.  

The results in Figure 8-5a) represent variants that show stable and progressive crushing. As 

expected, the first load peak is influenced by the failure of the strut radius. The following phase 

at a low force level is caused by the folding mechanism of the free strut length between radius 

and the half-tube absorber. After this distance is crushed, the absorber gets into contact and the 

load level increases according to the trigger angle up to the nearly constant crushing plateau. In 

the following crushing phase, local peaks in the load level identify the individual rivet lines. 

In contrast to the results discussed above, Figure 8-5b) represents variants that show unstable 

crushing which also includes local or total failure of the specimens. Such failures were caused 

by buckling tendencies of the flat strut. In addition, the strut variant with complex layup partly 

induced local failure lines which led to total failure of the strut. The diagram in Figure 8-5b) 

illustrates the significant drop of the load level after failure of the strut, at a crushing distance of 

approximately L = 45 mm. Further stable crushing on the expected force level occurred at L = 

100 mm where the remaining intact absorber structure gets into contact again.   

Furthermore, slightly different robustness behaviour was identified for the laminate types of the 

half-tube absorbers. According to the results of the test programme, triaxial braided absorber 

specimens provided the highest robustness performance whereas the specimens with absorbers 

made of woven fabric showed the poorest robust crushing behaviour. The differences of the 

individual layups and laminate types showed significant influence on the absorber failure 

modes. Figure 8-6 shows exemplary post-test pictures of different tested specimens which 

illustrate the spectrum of the failure modes.  
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Figure 8-5: Typical characteristics identified in the absorber test programme 
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Figure 8-6: Spectrum of absorber failure modes identified in the test programme 

Summarising the axial crushing tests, a test setup was developed which appropriately represents 

the structural fuselage environment of the considered crash absorber. In contrast to several 

studies on the crushing of CFRP absorbers, which analysed mainly the material failure 

behaviour, the developed test setup represents a structural testing with focus on the absorbers 

functionality in its structural environment. The test setup was verified by numerical analyses as 

well as by experimental pre-tests. A test series of 72 specimens was conducted using the 

developed test setup.  

To link the test programme results with the kinematics modelling approach developed in this 

thesis, a comparison is presented in Figure 8-7 which depicts the test results and the required 

crushing characteristic based on the final macro inputs of the Kinematics Model according to 

paragraph 7.6. In this comparison, the selected test result represents a typical crash characteristic 

of stable crushing similar to Figure 8-5a). As the test setup additionally considered the lower 

frame structure that induced the first peak force, the macro curve starts with respect to the second 

peak force of the test curve which represents the triggering of the half-tube absorber. A detailed 

comparison of the trigger forces is hardly possible as such peak forces measured in dynamic tests 

are significantly influenced by inertia and other dynamic effects of the test setup and the testing 

machine. Nevertheless, a comparison of the crushing force plateaus identifies a good agreement 

in this example. Hence, sufficient energy could be absorbed according to the requirements of the 

final crash scenario of paragraph 7.6. 
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Figure 8-7: Comparison of the required absorber characteristic and the test result 

8.2. Frame bending tests 

The outcomes of the final crash scenario in chapter 7 identified crash characteristics in the frame 

kinematic hinges which have to provide a significant amount of energy absorption. With respect 

to the general crash concept discussed in chapter 6 and 7, one of the main challenges is the 

development of a structural crash device which provides sufficient energy absorption in a frame 

bending failure mechanism. Hence, the focus of an investigation on frame bending concepts is 

mainly on the energy absorbing capacity. Further design parameters such as the trigger 

mechanism or the detailed crash behaviour under a combined bending-compression load are of 

lower priority in this early development phase.  

For that reason, the development of an experimental test setup concentrated on the investigation 

of the general feasibility to absorb the required amount of energy. To realise an efficient test 

method which can be used for the investigation of several absorption concepts, the test setup was 

defined as simple as possible.  

Figure 8-8 illustrates a schematic extraction of the planned test setup out of a typical fuselage 

structure. Based on a LCF-shaped frame design the stiff C-frame component was considered in 

this setup. Instead of a curved frame component, the test setup was defined with straight C-frame 

segments to further reduce the complexity. A four-point bending test setup was defined to 

analyse the failure behaviour of the C-frame segments with respect to pure moment loads, as 

only a limited influence of additional compression loads on the general energy absorbing 

capacity is expected. 
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The C-profile geometry aligns to typical LCF-shaped profiles and specifies a web height of   

Hweb = 80 mm and a flange width of bflange = 40 mm. The segment length of the C-profile is 

limited to L = 600 mm due to the boundary conditions of the test machine for the quasi-static 

bending tests as well as the drop tower for the dynamic bending tests.  

 

Figure 8-8: Derivation of the frame bending test setup out of a typical fuselage structure 

Several investigations were performed to define an appropriate test setup configuration. Similar 

to the axial crushing tests, detailed finite element analyses as well as experimental pre-tests were 

performed to investigate effects of the test setup configuration. Appendix 6.3 provides a short 

documentation of the FE model as well as the pre-test setups. 

One effect that was analysed in the scope of the test setup development was the influence of the 

bending-torsion coupling. In case of the pure bending load the C-profile segment tends to rotate 

around its shear centre which is located outside of the C-profile. Hence, the C-segment has to be 

supported against lateral displacement respectively rotation in the region of support and stamp. 

Another option is the combination of two C-segments to an I-segment (back-to-back C-splicing). 

In that case, the shear centre is located in the centre of the cross-sectional area and torsion effects 

with respect to pure bending loads are not expected. The manufacturing of an I-profile is more 

complex and potential failure or other effects in combination with a back-to-back C-splicing may 

influence the test results. Therefore a supported C-profile configuration was preferred. 

A further investigation considered the development of an appropriate fixture which enables a 

smooth load introduction without local damages of the C-segment at the support and the stamp. 

First experimental pre-tests showed that limited support by metallic plates is not sufficient and as 

a consequence a robust fixture is required to avoid local material damage in the regions of the 

load introduction. 
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Another topic is the limitation of the frame segment length. Despite of the limited length of L = 

600 mm the test setup should provide realistic frame failure behaviour. As discussed in the 

previous chapters, typical frame failure is initiated by crippling of the frame flanges. Hence, the 

free length of the test setup between the stamps has to be defined so that the compression loaded 

frame flange is allowed to buckle without significant stress concentration at the transition to the 

fixture. Finite element analyses were performed to estimate the instability behaviour of the free 

segment length between the stamps. 

Further details about the investigations on the development of an appropriate test setup are given 

in Appendix A6.3. 

Based on the investigation of the above discussed effects, a test fixture was developed which is 

pictured in Figure 8-9a) and 8-9b). Solid aluminium fittings encase the C-segment in the outer 

regions between stamp and support. The aluminium fittings were manufactured with an 

appropriate tolerance of the C-notch to enable bending tests of C-profiles within a limited range 

of thickness. To fix the C-profile in the C-notch the frame segment is bonded in the fixture.  

Besides the realisation of a smooth load introduction without local material damage, this fixture 

avoids the deformation of the C-profile geometry due to the introduced load. As a result of the 

full casing of the C-segment in the fixture, bending-torsion coupling effects can be carried and 

transferred to the lateral supports, which are provided by steel brackets that were manufactured 

and installed between stamp and support, as pictured in Figure 8-9c).  

Based on FE analyses, the free length of the C-segment was defined to be Lf = 160 mm. This 

distance is a good compromise regarding the given maximum segment length and a required 

minimum distance between support and stamp to introduce the moment load.  

The transition from the bonded C-segment inside the fixture to the free segment length was 

designed with radii. In case of flange buckling, a deformation of the flange structure at the 

transition to the fixture is allowed and the flange can align to the fixture radii. Stress 

concentrations could be limited with this design.  
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Figure 8-9: Fixture and test setup of the four-point bending test 

Several frame bending tests were performed with the developed test setup. Quasi-static four-

point bending tests were conducted in a universal testing machine (Zwick 1494) whereas the 

dynamic tests were conducted in the drop tower of the DLR Institute of Structures and Design. A 

test matrix of the considered frame bending tests is given in Appendix A6.4. 

Regarding the energy absorption concept, the influence of hybrid laminates was analysed in this 

exemplary study. Besides a reference configuration, purely made of CFRP (AS4/PEEK), a 

hybrid configuration was tested with titanium sheets which were embedded in the flange 

laminate of the frame segments. Previous studies on the coupon level identified a significant 

potential of energy absorption regarding such hybrid laminates particularly in a bending mode 

[129]. Based on the coupon level results, the hybrid concept was selected for further 

investigation on the structural level. Figure 8-10 illustrates both frame variants.  

 

Figure 8-10: Reference variant (AS4/PEEK) and hybrid variant (titanium sheets in the flange) 
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Results of the quasi-static bending tests are presented in Figure 8-11. Two tests of each variant 

were conducted. The comparison of force-displacement curves shows similar behaviour of the 

reference as well as the hybrid variant. Especially the post-failure behaviour does not show any 

significant differences, neither in the force level nor in the energy absorption. 

With the focus on the development of a frame bending test setup, the results of the quasi-static 

tests could be used to verify the developed test setup. The failure mode, as depicted in Figure 8-

11, shows the desired typical frame failure behaviour. The compression loaded flange buckled 

and initiated crippling failure in the centre of the free segment length. Hence, stress 

concentrations at the transition to the fixture could be reduced by the radii design so that their 

influence is secondary and failure close to the fixture is avoided.  

After failure initiation in the compressive loaded flange the failure propagated through the frame 

web to the lower, tensile loaded flange. Further bending rotation occurred around a pivot point 

which is located in the remaining lower flange.  

The compression loaded, upper flange of the C-segments was recorded in the quasi-static tests 

with a high-speed camera (FASTCAM-APX RS250K) to allow a detailed analysis of the failure 

initiation. Figure 8-12 pictures the failure sequence of the reference and the hybrid variant. The 

sequences were recorded with a sampling frequency of 30,000 frames per second to resolve the 

crack propagation in the upper flange. Both sequences show a failure propagation which starts at 

the C-corner and propagates to the outer flange side. Hence, typical crippling failure could be 

identified which is initiated by material failure in the stiffer corners of the frame profile.  

Despite the reduced complexity, the verification of the test setup identified realistic frame failure 

behaviour in the quasi-static tests. 
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Figure 8-11: Results of the quasi-static frame bending tests 

 

Figure 8-12: Crippling failure recorded with the high-speed camera 

Further dynamic tests were performed in the drop tower at an initial velocity of vi = 3.4 m/s. This 

loading rate corresponds to the averaged loading conditions of the frame structure in a typical 

crash event according to the ‘standard crash case’. Minor modifications of the test setup were 

conducted for the dynamic tests. Fixtures, stamps and the frame web were painted in white 

colour with an additional pattern in black colour. Foam stripes with negligible stiffness were 

bonded on the frame flanges and painted with a dispersion of black points. Both modifications 

were conducted to measure displacements of the individual parts on the basis of the high-speed 

camera records using the optical measurement system GOM ARAMIS [146].   
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Furthermore, in the dynamic tests unfavourable dynamic effects are expected by the impact of 

the stamps on the fixture with a velocity of vi = 3.4 m/s. In this configuration, a sharp impulse 

could lead to the separation of the stamp and the fixture in the further bending sequence with 

accordant consequences for the measuring of displacement and load at the stamps. Furthermore, 

sharp impulses may lead to vibrations at the load cell which affect the measuring. To reduce this 

dynamic effect, a damper was installed between the stamp and the fixture to enable a smooth 

transfer of the dynamic loads.  

The dynamic effects are obvious in the presentation of the drop test results in Figure 8-13. The 

force-displacement graph compares four drop tests of the hybrid and the reference frame 

segment variants. A stiff damper configuration was used in the bending tests of the hybrid frame 

segments. Oscillations are visible in the pre-failure phase which were caused by the above 

described dynamic effects. In the tests of the reference frame segments an optimised damper 

configuration led to a steady force increase up to failure but also to a higher deflection up to 

failure. Regarding the focus of this experimental study, the post-failure behaviour, the dynamic 

tests showed similar results compared to the quasi-static tests with negligible improvements of 

the energy absorption of the hybrid frame segment variant. 

 

Figure 8-13: Results of the dynamic frame bending tests 

Summarising the frame bending tests, a test setup was developed with the focus on the 

identification of the post-failure energy absorption capacity. This focal point enabled the 

development of a comparably simple and efficient frame testing setup which considers a four-

point bending load on the stiff C-segment of a typical LCF-shaped frame design. Quasi-static 
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tests verified the developed test setup. Stable load introduction as well as realistic frame failure 

could be realised despite a limited frame segment length of L = 600 mm. Regarding the dynamic 

testing, further modifications of the test setup were defined which could be verified in the drop 

tests. 

The exemplarily tested hybrid frame segments with ductile titanium sheets in the frame flanges 

provided no significant improvements in the energy absorption capacity compared to a reference 

variant purely made of CFRP. Due to the simplified test setup, which considers only the C-

segment of a LCF-shaped profile instead of the complete frame-stringer-skin panel structure, a 

direct comparison of the test results with the required frame bending characteristics according to 

the final crash scenario is not possible. However, the final macro inputs of the Kinematics Model 

according to paragraph 7.6 specify a post-failure moment level which is 50 % of the failure load 

level. Comparing this requirement with the outcomes of the bending tests, the energy absorption 

capacity of the tested hybrid frame segments is clearly far below this requirement. Hence, the 

developed frame bending test setup can be used for further research on energy absorbing frame 

concepts, which is clearly essential.  



9. Conclusion and outlook 

The objective of the thesis is the contribution to the development of a crashworthy composite 

fuselage design of transport aircraft. This contribution comprises in a first part of the thesis the 

development of a finite element modelling approach for the investigation of crash scenarios, the 

so-called Kinematics Model, that combines benefits of currently used simulation modelling 

techniques. In a second part of the thesis, the objective is the development of a crash design 

methodology, on the basis of the developed Kinematics Model, that considers the design process 

for a composite fuselage including the verification of identified crash device requirements by 

experimental testing.  

Paragraph 9.1 summarises the final outcomes of the development of the finite element modelling 

approach. Final conclusions of the methodology of the crash design process are presented in 

paragraph 9.2. Topics for potential future research are depicted in the outlook in paragraph 9.3. 

9.1. Methodology of the finite element modelling approach 

The design for crash of composite fuselages is a topic that has to be considered in the early 

design phases of an aircraft development. The common state-of-the-art analytical methods, 

which were discussed in paragraph 2.2, show drawbacks with respect to their use in a 

preliminary design process. Based on a beneficial combination of these common modelling 

methods a specification was derived that represents the foundation for the development of a new 

modelling approach. Chapter 3 presented this approach and dealt with the general aspects of this 

modelling technique. The frame was identified as the main structural part that highly affects the 

structural behaviour of the fuselage in case of crash. Accordingly, detailed investigations on the 

frame failure modelling were discussed in chapter 4 and 5 which ensure an appropriate accuracy 

of the developed modelling approach.  

With respect to the development of the finite element modelling approach, the following 

conclusions can be drawn: 

• A new modelling approach, the Kinematics Model, was developed that combines the 

advantages of current simulation techniques with the focus on a preliminary crash design 

tool. The main benefits are the absence of composite material formulations for damage 

and failure which are still hardly predictable.  Besides a linear-elastic modelling of the 



193                                                                                                           9. Conclusion and outlook 

fuselage structure the main crash characteristics are described by macro elements. The 

usage of macro elements additionally enables an efficient method for the investigation of 

different failure characteristics in the individual structural parts. With respect to the 

requirements of a preliminary design tool the modelling approach provides a 

discretisation that considers efficient calculation without disregarding of structural effects 

that can influence the crash behaviour. 

• Typical failure modes of transport fuselage structures caused by crash related loads were 

identified and assessed. With respect to failures of primary category which are of 

relevance for composite fuselage structures, macro architectures were developed that 

accurately represent the individual structural failure behaviour.  

• Appropriate output definitions were developed which fulfil the specific requirements of a 

preliminary design tool. Of interest are efficient output data which help to quickly 

analyse the main results of a simulation run. Structural loads are evaluated by overall 

strain plots of the most critical frame structure. Passenger loads are described in Eiband 

diagrams which provide information about the risk of injury. The output for crash device 

requirements are given in load-deflection characteristics that can directly be used for the 

comparison with test data or other analysis results, like output data of local explicit FE 

calculations. 

• According to the requirements of a preliminary design tool, all relevant input variables of 

the Kinematics Model are parameterised for the efficient conduction of various 

simulation runs.  

• Detailed investigations of the frame structure led to an accurate and efficient 

representation in the Kinematics Model. Frame failure is well represented with respect to 

the identification of potential failure locations, the elastic pre-failure behaviour, the 

triggering respectively the definition of failure criteria for the frame structure, and the 

post-failure behaviour.  

• Further improvement for the representation of the frame failure behaviour was realised 

by the development of a user-defined macro element in the ABAQUS environment. 

Improvements such as strain-based triggering, physically correct unloading/reloading 

behaviour as well as high accuracy with respect to loads with a low bending-compression 

ratio were implemented in the user-defined macro element. However, due to an unsolved 

bug situation, discussed in paragraph 5.5, this user element could not be proved in the 

crash design process.  
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9.2. Methodology of the crash design process 

The review on crashworthiness research identified the need to modify the static design of a 

composite fuselage to fulfil the crash requirement. Otherwise, transport aircraft with a composite 

fuselage would provide significantly worse crashworthiness compared to metallic equivalents 

which are typically not designed for crash. 

The need was identified to implement additional crash absorbers in a composite fuselage 

structure and to adapt the structure to the expected crash loads. Chapters 6-8 dealt with a design 

process that was developed to conclude to an optimised crash kinematics, to a crashworthy 

fuselage structure and to the definition of required crash absorber characteristics. The design 

process additionally considers the verification of identified crash device characteristics by 

experimental testing on the component level. The developed crash design process was 

exemplarily performed on the basis of a statically pre-sized CFRP fuselage structure of narrow-

body size with a stiff cargo-crossbeam to allow the crushing of the sub-cargo structure in case of 

crash (bend-frame concept). 

Considering the development of the crash design methodology, the following conclusions can be 

drawn: 

• The necessity was postulated to align the crash concept with the natural crash behaviour 

of the considered fuselage structure. Otherwise, additional weight penalty is expected to 

ensure a crash kinematics that differs from the natural structural behaviour. 

• Natural crash kinematics of typical fuselage structures of narrow-body transport aircraft 

were identified and assessed using the Kinematics Model. The assessment of natural 

crash kinematics provided a good understanding of the typical fuselage crash behaviour. 

• The most favourable natural crash kinematics was adapted to a preliminary sized CFRP 

fuselage structure using the Kinematics Model. Appropriate structural allowables were 

defined to assess the structural loads during the design process. The crash kinematics was 

optimised with respect to the given fuselage design. Subsequently, the fuselage structure 

was adapted to the final crash loads. The structural adaptation was conducted starting 

with a structure of high stiffness. With respect to the final crash scenario valuable 

outcomes could be provided, which include information about the structural mass penalty 

caused by the crash related re-sizing of the frame and the cargo-crossbeam, loads on the 

passengers as well as final requirements for the crash device characteristics which are 

necessary to fulfil the optimised crash kinematics. 
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• Different experimental test setups were developed for the investigation of crash device 

concepts on the basis of the required macro characteristics. The first test setup was 

developed to investigate in detail the failure behaviour of axial crush absorbers in 

combination with an accurate representation of the fuselage boundary conditions. A 

comprehensive test programme of potential absorber designs for the sub-cargo structure 

could be tested with realistic boundary conditions. The second test setup was developed 

to efficiently investigate basic crash device characteristics of frame bending failure. The 

energy absorption capacity is in the focus of this bending test setup, which can be 

investigated with generic frame structures. The developed bending test setup was 

successfully proved by experimental bending tests with composite frame structures. Both 

developed test setups demonstrated options to investigate crash device concepts on 

different levels of complexity. In both test setup variants efficient testing was ensured by 

reasonable representation of structural boundary conditions instead of the definition of 

large component tests. 

• The integration of experimental testing into the crash design process ensures model 

accuracy with respect to the assumptions used for the macro inputs. The feasibility of 

assumed crash absorber characteristics can be checked and adapted during the design 

process, when necessary. 

9.3. Outlook 

With respect to the final target to achieve improved crashworthiness for composite transport 

fuselage structures further research work is required that may focus on the following topics. 

• An implementation of the user-defined kinematic hinge macro element into the 

Kinematics Model is desired. A solution of the bug situation would enable the usage of 

improved frame failure representation. Further options for the user-element in ABAQUS 

would enhance the usage of the developed macro element, e.g. to enable the storage of 

user-element output data in the output data base file (*.odb).  

• The exemplary development of a crash scenario in this thesis was performed on the basis 

of a generic fuselage structure which was equipped with a stiff cargo-crossbeam to realise 

the bend-frame concept. This crash concept enables extensive crushing of the structure 

below the cargo-crossbeam similar to concepts known from rotorcraft designs. The final 

crash scenario developed within this thesis identified a structural mass of the frame 

structure which is more than twice the statically pre-sized frame mass. Research on 

alternative crash concepts is recommended to reduce the structural mass penalty usually 
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associated with crashworthiness. Alternative concepts could specify e.g. a filigree sub-

cargo structure with the focus on energy absorption in the upper crash zones of the sub-

floor area. Such an alternative concept could align to the consideration of a minimum 

required backing structure to achieve energy absorption in the individual crash zones, 

according to the discussion in paragraph 7.2. 

• Further improvement of crashworthiness could be realised by the consideration of non-

typical fuselage sections in the design process. An adaptation of the crash design for 

fuselage sections with cargo-door, landing gear bay, wing-box or tail cone would 

significantly improve the crashworthiness of the overall fuselage structure. Further 

enhancement of the Kinematics Model is necessary to consider fuselage sections that 

differ from the typical fuselage design. In particular, the kinematic hinge macro 

architecture has to be extended to represent the frame failure behaviour of non-typical 

fuselage sections. Frame shear failure or skin separation are requirements for such an 

enhanced kinematic hinge architecture. After the implementation of enhanced modelling 

options for non-typical fuselage sections, the efficient simulation technique of the 

Kinematics Model can be used in a subsequent step to investigate crash concepts for 

composite fuselages in full aircraft simulations. 



A1. Appendix of chapter 2 

Paragraph A1.1 provides a short overview on the finite element method and its integration 

schemes with the focus on explicit time integration and structural elements as used in the scope 

of this thesis. 

A1.1. The finite element method in the scope of this thesis 

There is various literature dealing with the finite element method and explaining this theory in an 

excellent way, e.g. in [111,113,144]. Nevertheless, a short overview on the finite element 

method shall be given here with the aspect on the selected calculation schemes in this thesis. 

The finite element method uses several approximations to analyse structural problems. A first 

approximation is the discretisation which represents the considered structure by finite elements. 

The most complex finite element is the continuum element (solid) which represents all 

components of a general stress tensor. In some of the considered problems in this thesis the 

structure or parts of the structure behave according to the shell, beam or bar theory. Here, 

specific structural finite elements can be used to represent these parts in the finite element 

analysis. Structural elements only consider those components in the stress tensor which are 

affected by the structure or the structural part, while all other components are not considered. 

This leads to a significant improvement in the efficiency of element calculation. If the considered 

structure is discretised by structural finite elements which behaves similar to the real structure 

enormous calculation time can be saved instead of using calculation time consuming continuum 

elements. In the scope of the finite element analyses discussed in this thesis, the structures were 

discretised mainly with shell, beam and bar elements, as displayed in Figure A1-1.  

 

Figure A1-1: Discretisation by structural finite elements [112] 
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A further approximation in the finite element method is the definition of field quantities inside of 

a finite element. The field quantity “displacement” is defined at the element nodes whereas the 

field quantity “stress” is defined at the element integration points which are located inside of the 

element. Basic functions are used to describe the distribution of field quantities over a finite 

element. To calculate the stresses at the element integration points the basic functions are used to 

approximate the displacements, respectively the strains, at the integration points based on the 

known displacements at the element nodes. The order of such basic functions depends on the 

considered problem and on the time integration scheme which is used to solve the equation of 

motion. In the scope of this thesis, the finite element analyses use basic functions of first order.  

The equation of motion defines the force equilibrium at each node of the discretised structure 

and is given as follows: 

PuRuCuM =++ )(   (A1.1) 

P are the external forces which cause accelerations, velocities and displacements dependent on 

the mass M, the viscosity C and the stiffness R of the element respectively the elements node. 

Formulation (A1.1) is a system of n equations, n is the number of degrees of freedom defined for 

this element node.  

The integration of equation (A1.1) can be solved either with implicit time integration or with 

explicit time integration scheme. The implicit time integration replaces the time derivation by 

quantities which depend on both, the current time t and the unknown values of a time t + Δt. In 

each time step this integration scheme requires the solution of a non-linear system of equations 

which is accordingly complex. The advantage of the implicit time integration is the realisation of 

large time steps which can be solved absolutely stable. 

In contrast to the implicit integration scheme, the solution of an explicit time integration at the 

time t + Δt depends only on quantities of the time t. This integration scheme is particularly 

efficient if the mass matrix M and the damping matrix C are lumped, which means that they are 

of diagonal form. In this case each equation of the system given in (A1.1) can be solved 

independently. The drawback of this efficient time integration scheme is the limitation of small 

time steps to ensure a stable solution. 

If dynamic problems are considered, such as impact or shock loads, the time step has to be 

reduced in both integration schemes in a way that all high-frequent portions of the structural 

response are represented physically correct. Hence, the efficient explicit time integration is 

preferable compared to the complex solution of non-linear systems of equation in the implicit 
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time integration. The implicit integration scheme is preferable in cases where the structural 

response is composed mainly of the low-frequent portions.  

In the case of the crash analyses of this thesis the explicit time integration is used. Equation 

(A1.1) is transformed in the following form: 

)]([1 uRuCPMu −−= −    (A1.2) 

The accelerations are calculated through time using the central difference rule, which calculates 

the change in velocity assuming that the acceleration is constant. The change in velocity is added 

to the velocity from the middle of the previous time step to determine the velocities at the middle 

of the current time step: 
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The velocities are integrated through time and added to the displacements at the beginning of the 

time step to determine the displacements at the end of the time step: 
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After these nodal calculations, the displacements at each node are determined at the time t + ∆t. 

In a following step - the element calculations - the element strains are computed. Based on these 

strain increments the element stresses are computed at the element integration points from 

constitutive equations:  

),( )()( εσσ df ttt =∆+   (A1.5) 

Equation (A1.5) represents the material formulations of an element which describes the 

relationship of strain and stress for the considered material.  

Finally, the element stresses are assembled to nodal internal forces at the time t + ∆t and the 

calculation of the current increment is concluded. 

To ensure the physically correct representation of all high-frequent portions of the structural 

response, a stability limit is defined in terms of the highest frequency in the system. This stability 

limit considers a perturbation which propagates with the wave speed of the material. As a 

consequence, the stability limit can be defined using the element length Le and the wave speed of 

the material cd. The wave speed is calculated from the Young´s modulus E and the mass density 

ρ of the material:  
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d

e

stable c
Lt =∆   with  

ρ
Ecd =   (A1.6) 

The finite element analyses in this thesis are used in a preliminary design tool for crash 

investigations which requires an efficient computation strategy. The explicit time integration 

method is based on efficient nodal and element calculation as these calculations recur very often 

due to the small time step defined by the stability limit. The approach of the developed crash 

design tool, which is described in chapter 3, is based on a modelling technique which reduces the 

calculation time considering the theory discussed above. A linear-elastically modelled structure, 

where all failure is described in special macro elements, allows a coarse discretisation. The 

structure deforms only in the scope of its linear strain limits which are defined by comparatively 

small failure strains of the (composite) material. These small strains allow the use of large 

elements to represent the structural deformations. An increased element size improves the 

calculation efficiency significantly. On the one hand, the stability limit increases linearly with 

the element size. On the other hand, an increased element size is equivalent with a reduced 

number of elements that represent the considered structure and have to be calculated.  

As an example, a structure is considered that is discretised by shell elements. A discretisation 

with a shell element length which is twice the length compared to a reference discretisation 

reduces the calculation time by a factor 23 = 8. With twice the element length, the number of 

elements in a plane shell discretisation is reduced by the factor 22. In addition, the stability limit 

of the time step increases proportionally to the element length and leads to half the number of 

calculation cycles which are necessary for the calculation of the reference discretisation.  

 



A2. Appendix of chapter 4 

Paragraph A2.1 provides a detailed description of the numerical model that was used for 

investigations on the pre-failure behaviour of a frame-stringer-skin structure.  

A2.1. Analysis of pre-failure behaviour – description of the numerical 

model 

Figure A2-1 gives an overview on the numerical model of the generic frame-stringer-skin 

structure which was considered in the scope of the investigations of the pre-failure behaviour. 

One non-curved frame component is defined in this model. The radius of a standard transport 

aircraft fuselage is about rF = 2000 mm, effects of the curvature are expected to be marginal for 

such high radii, especially with respect to general instability failure modes. Therefore a planar 

geometry was considered here. The width of the model is based on a generic frame pitch of wF = 

635 mm. The length of the model is l = 700 mm. Three omega stringers with a stringer pitch of  

lS = 168 mm are modelled. The LCF-shaped frame corresponds to typical, integral CFRP frame 

designs with flange widths of wIFF = 25 mm, wMFF = 15 mm and wOFF = 28 mm. The outer frame 

web height is hOFW = 36 mm. The inner frame web height as well as the frame thicknesses are 

parameters in the present investigation. The skin thickness was defined to be constant in all 

simulations with tS = 2.125 mm and a layup of [10/70/20]1. The omega stringers were specified 

with a constant thickness of tSt = 1.375 mm in all simulations and a layup of [50/40/10]. Cleats 

were defined at each stringer position. All material formulations used in this model were linear-

elastic, material damage and failure was not considered. Apart from the cleats, which were 

modelled with isotropic material behaviour, all other structural parts were modelled with 

orthotropic material formulations for composites. Elastic data of typical CFRP material was 

used. The design and layup of the frame, the stringers and the skin is based on a static pre-sizing 

(on fuselage section level, considering the complete envelope of flight and ground loads) which 

was performed by the project partner Airbus. The connection of the individual parts was 

assumed to be ideal so that tied constraints were used. Symmetry boundary conditions were 

defined on both lateral sides. Both ends of the model were clamped using rigid bodies. These 

rigid bodies include the frame as well as the skin. A pure rotation was specified at the reference 

                                                 

1 Ratios in percent of ply orientation in the layup: [0°/±45°/90°] 
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nodes of the rigid bodies which were positioned in the centre of the cross-sectional area of frame 

and skin. Shell elements with reduced integration (S4R) were used. The characteristic element 

size is LE = 12 mm. The simulations were performed on a Microsoft Windows machine with the 

FE solver ABAQUS, solver version V6.8-1, using explicit time integration. 

Several LCF-shaped frame designs were analysed to identify the structural behaviour in 

dependence of different frame stiffness. All frame designs used in this investigation are based on 

a given static sizing and provide typical layup definitions in the webs (between [0/75/25]2 and 

[0/85/25]) and the flanges (between [45/45/10] and [50/40/10]). Flange thicknesses between    

tFF1 = 2.5 mm and tFF2 = 9.2 mm were considered as well as inner frame web heights between 

hIFW1 = 56 mm and hIFW2 = 84 mm.  

This model does not conform to the standard for detailed investigation of instability problems. 

For instance, imperfections or mesh dependencies were not considered in the scope of this 

investigation. The general elastic behaviour and the derivation of potential failure criteria were 

the focus of these simulations.  

 

 

Figure A2-1: Numerical model for the analysis of the pre-failure behaviour 

 

 

                                                 

2 With respect to layups in the frame: Ratios in percent of ply orientation in the layup: [0°/±30°/90°] 



A3. Appendix of chapter 5 

Paragraph A3.1 provides a summary of all user element property parameters that have to be 

defined in the ABAQUS input deck to describe the kinematic hinge behaviour. An overview of 

all solution-dependent variables used for internal element calculation is given in paragraph A3.2. 

A structogram of the calculation of internal forces is presented in paragraph A3.3. Finally, 

paragraph A3.4 provides a detailed definition of the reference model used for the verification of 

the user element.  

A3.1. List of property parameters 

The ABAQUS input deck of the implemented user element is given in Figures A3-1 and A3-2. A 

parameterised input definition was specified (Figure A3-1) that links the complex user element 

property definition (Figure A3-2) to a clear list of property parameters. The user element 

property definition requires the specification of all input in real format first and hereafter the 

specification of all input in integer format with eight inputs per line, separated by comma.   

The following list of property parameters describes all input parameters of the user element that 

are defined in the ABAQUS input deck: 

‘elastic_slope_pos’/ ‘elastic_slope_neg’:  

rotational elastic stiffness up to triggering – independent definition for positive and 

negative bending rotation 

‘eps_trigger_pos’/ ‘eps_trigger_neg’:  

strain limit value for the initiation of triggering – independent definition for positive and 

negative bending rotation 

‘jump_slope_pos’/ ‘jump_slope_neg’:  

slope stiffness of the transition from rotational elastic stiffness to the post-failure curve – 

independent definition for positive and negative bending rotation 

‘alpha_i_pos’/ ‘alpha_i_neg’ and ‘M_i_pos’/ ‘M_i_neg’ (i = 1-8):   

tabular definition of pairs of values of the post-failure curve (max. eight pairs of values) – 

independent definition for positive and negative bending rotation 
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‘slope_pos’/ ‘slope_neg’:   

unloading slope stiffness for the transition between post-failure curve, unloading curve 

and reloading curve – independent definition for positive and negative bending rotation 

‘unload_pos’/ ‘unload_neg’:   

moment level of the unloading behaviour – independent definition for positive and 

negative bending rotation 

‘reload_pos’/ ‘reload_neg’:   

moment level of the reloading behaviour – independent definition for positive and 

negative bending rotation 

‘normal_elastic_slope_pos’/ ‘normal_elastic_slope_neg’:       

translational elastic stiffness in the frame normal direction – independent definition for 

positive and negative bending rotation 

‘history_interval’:   

definition of output frequency 
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Figure A3-1: Parameterised user element input definition 
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Figure A3-2: ABAQUS input deck for the user element 

 

A3.2. List of solution-dependent variables (SDV) 

In the following, a list of solution-dependent variables, which were defined to calculate the user 

element behaviour, is given: 

‘salph1’: rotational displacement of the current increment (last increment: ‘salph1Old’) 

‘sM1’:  moment magnitude of the last/current increment 

‘loadflag’: flag for loading condition (loading/unloading/reloading/etc.) of the last/current 

increment 

‘jumpflag’: flag for loading condition (untriggered/triggered) of the last/current increment 

‘salph_j1’: rotational displacement at the increment of triggering  

‘salph_j2’: rotational displacement at the end of transition from the rotational elastic stiffness 

to the post-failure curve 

‘salphs_s1’: rotational displacement of the increment of the last unloading initiation 

‘salph_s2’: rotational displacement at the end of the transition from the post-failure curve to 

the unloading curve 

‘salph_s3’: rotational displacement at the beginning of the transition from the reloading curve 

to the post-failure curve 

‘salph_s4’: rotational displacement of the first increment of the reloading after unloading 

along the unloading curve 
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‘salph_s5’: rotational displacement at the end of the transition from the unloading to the 

reloading curve 

‘salph_s6’: rotational displacement of the first increment of the unloading after reloading 

along the reloading curve 

‘salph_s7’: rotational displacement at the end of the transition from the reloading to the 

unloading curve 

‘sF’: force magnitude (frame normal direction) of the last increment 

‘seps’: strain magnitude (frame normal direction) of the last increment 

A3.3. Structogram of the calculation of internal forces 

The following structogram is an extraction of the calculation of internal loads and considers the 

determination of the moment load (‘sM1’) based on the current rotational displacement 

(‘salph1’). The given structogram exclusively considers positive rotational displacement. Figure 

A3-3 again illustrates the solution-dependent variables for calculation of the moment load for a 

better understanding of the following structogram. 

 

Figure A3-3: Calculation of the moment load 
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Extraction of the moment calculation for ‘salph1’ ≥ 0: 

IF (salph1 ≥ salph1Old AND seps2 ≤ seps_p AND loadflag = 0) 

  current increment on elastic-slope_positive / loading 

  calculate sM1 on elastic-slope_positive 

ELSEIF (salph1 ≥ salph1Old AND seps2 > seps_p AND loadflag = 0 AND jumpflag = 0) 

  initiation of jump / loading 

  jumpflag = 1 

 calculate sM1 on elastic-slope_positive 

 calculate salph_j1 and salph_j2 

ELSEIF (salph1 ≥ salph1Old AND loadflag = 0 AND jumpflag = 1 AND salph_j1 < salph1 ≤ 

salph_j2) 

  on jump-slope_posistive / loading 

  calculate sM1 on jump-slope_positive 

ELSEIF (salph1 ≥ salph1Old AND loadflag = 0 AND jumpflag = 1 AND salph1 > salph_j2) 

  on post-failure-curve_positive / loading 

  calculate sM1 on post-failure-curve_positive 

ELSEIF (salph1 < salph1Old AND loadflag = 0 AND jumpflag = 0) 

  on elastic-slope_postive / unloading ( linear elastic unloading) 

  calculate sM1 on elastic-slope_positive 

ELSEIF (salph1 < salph1Old AND loadflag = 0 AND jumpflag = 1 AND salph1 ≤ salph_j2) 

 initiation of unloading on jump-slope_positive 

  loadflag = 1 

 calculate salph_s1, salph_s2 and salph_s3 

 calculate sM1 on jump-slope_positive 

ELSEIF (salph1 < salph1Old AND loadflag = 0 AND jumpflag = 1 AND salph1 > salph_j2) 

  initiation of unloading on the post-failure-curve_positive 

  loadflag = 1 
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 calculate salph_s1, salph_s2, salph_s3 

 calculate sM1 on post-failure-curve_positive 

ELSEIF (salph1 <s alph1Old AND loadlfag = 1 AND salph1 ≥ salph_s2) 

  unloading on slope_positive 

  calculate sM1 on slope_positive  

ELSEIF (salph1 < salph1Old AND loadflag = 1 and salph1 < salph_s2) 

  unloading on unloading-curve_positive 

  calculate sM1 on unloading-curve_positive 

ELSEIF (salph1 ≥ salph1Old AND loadflag = 1 AND salph1 < salph_s2) 

  initiation of reloading on the unloading-curve_positive 

  loadflag = 2 

 calculate salph_s4 and salph_s5 

 calculate sM1 on unloading-curve_positive 

ELSEIF (slaph1 ≥ salph1Old AND loadflag = 1 AND salph1 ≥ salph_s2) 

  initiation of reloading on slope_positive 

  loadflag = 2 

 calculate sM1 on slope_positive 

ELSEIF (salph1 ≥ salph1Old AND loadflag = 2 AND salph1 ≤ salph_s5) 

  reloading on slope_positive (between salph_s4 and salph_s5) 

  calculate sM1 on slope_positive 

ELSEIF (salph1 ≥ salph1Old AND loadlfag = 2 AND salph1 > salph_s5 AND salph1 ≤ 

salph_s3) 

  reloading on reloading-curve_positive 

  calculate sM1 on reloading-curve_positive 

ELSEIF (salph1 ≥ salph1Old AND loadflag = 2 AND salph1 > salph_s3 AND salph1 ≤ 

salph_s1) 

  reloading on slope_positive 
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  calculate sM1 on slope_positive 

ELSEIF (salph1 ≥ salph1Old AND loadflag = 2 AND salph1 > salph_s1) 

  back on the post-failure-curve_positive 

  loadflag = 0 

 calculate sM1 on the post-failure-curve_positive 

ELSEIF (salph1 < salph1Old AND loadlfag = 2 AND salph_s4 ≤ salph1 ≤ salph_s5) 

  initiation of unloading on slope_positive (between salph_s4 and salph_s5) 

  loadflag = 5 

 calculate sM1 on slope_positive (between salph_s4 and salph_s5) 

ELSEIF (salph1 < salph1Old AND loadflag = 5 AND salph_s4 ≤ salph1 ≤ salph_s5) 

  unloading on slope_positive (between salph_s4 and salph_s5) 

  calculate sM1 on slope_positive (between salph_s4 and salph_s5) 

ELSEIF (salph1 < salph1Old AND loadflag = 5 AND salph1 < salph_s4) 

  unloading back on unloading-curve_positive 

  loadlfag = 1 

 calculate sM1 on unloading-curve_positive 

ELSEIF (salph1 ≥ salph1Old AND loadflag = 5 AND salph_s2 ≤ salph1 ≤ salph_s5) 

  again reloading on slope_positive (between salph_s4 and salph_s5) 

  loadlfag = 2 

 calculate sM1 on slope_positive (between salph_s4 and salph_s5) 

ELSEIF (salph1 < salph1Old AND loadflag = 2 AND salph_s5 < salph1 ≤ salph_s3) 

  initiation of unloading on reloading-curve_positive 

  loadflag = 6 

 calculate salph_s6 and salph_s7 

 calculate sM1 on reloading-curve_positive 

ELSEIF(salph1 < salph1Old AND loadflag = 6 AND salph_s7 ≤ salph1 ≤ salph_s6) 
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  unloading on slope_positive (between salph_s6 and salph_s7) 

  calculate sM1 on slope_positive (between salph_s6 and salph_s7) 

ELSEIF (salph1 < salph1Old AND loadflag = 6 AND salph1 < salph_s7) 

  unloading back on unloading-curve_positive 

  loadflag = 1 

 calculate sM1 on unloading-curve_positive 

ELSEIF (salph1 ≥ salph1Old AND loadflag = 6 AND salph_s7 ≤ salph1 ≤ salph_s8) 

  again reloading on slope_positive (between salph_s7 and salph_s6) 

  loadflag = 2 

 salph_s5 = salph_s6 

 salph_s4 = salph_s7 

 calculate sM1 on slope_positive (between salph_s6 and salph_s7) 

ELSEIF (salph1 < salph1Old AND loadflag = 2 AND salph_s2 ≤ salph1 ≤ salph_s1) 

  unloading on slope_positive (between salph_s1 and salph_s2) 

  loadflag = 1 

 calculate sM1 on slope_positive (between salph_s1 and salph_s2) 

 ### Additional loops for zero crossing: ### 

ELSEIF (salph1 > salph1Old AND loadlfag = 3 AND salph1 ≤ salph_s2) 

  unloading on slope_negative 

  calculate sM1 on slope_negative 

ELSEIF (salph1 > salph1Old AND loadlfag = 3 AND salph1 > salph_s2) 

  unloading on unloading-curve_negative 

  calculate sM1 on unloading-curve_negative 

ELSEIF(salph1 ≤ salph1Old AND loadflag = 3 AND salph1 < salph_s2) 

  initiation of reloading on unloading-curve_negative 

  loadlfag = 4 
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 calculate salph_s4 and salph_s5 

 calculate sM1 on unloading-curve_negative 

ELSEIF (salph1 ≤ salph1Old AND loadflag = 3 AND salph1 ≤ salph_s2) 

  initiation of reloading on slope_negative 

  calculate sM1 on slope_negative 

ELSEIF (salph1 ≤ salph1Old AND loadflag = 4 AND salphs > salph_s5) 

  reloading on slope_negative 

  calculate sM1 on slope_negative 

ELSEIF (salph1 ≤ salph1Old AND loadflag = 4 AND salph1 ≤ salph_s5) 

  reloading on reloading-curve_negative 

  calculate sM1 on reloading-curve_negative 

ELSEIF (salph1 > salph1Old AND loadflag = 4 AND salph_s5 ≤ salph1 ≤ salph_s4) 

  initiation of unloading on slope_positive (between salph_s4 and salph_s5) 

  loadflag = 7 

 calculate sM1 on slope_negative (between salph_s4 and salph_s5) 

ELSEIF (salph1 > salph1Old AND loadflag = 7 AND salph_s5 ≤ salph1 ≤ salph_s4) 

  unloading on slope_negative (between salph_s4 and salph_s5) 

  calculate sM1 on slope_negative (between salph_s4 and salph_s5) 

ELSEIF (salph1 > salph1Old AND loadflag = 7 AND salph_s4 < salph1) 

  unloading back on unloading-curve_negative 

  loadflag = 3 

 calculate sM1 on unloading-curve_negative 

ELSEIF (salph1 ≤ salph1Old AND loadflag = 7 AND salph_s5 ≤ salph1 ≤ salph_s4) 

  again reloading on slope_negative (between salph_s4 and salph_s5) 

  loadflag = 4 

 calculate sM1 on slope_negative (between salph_s4 and salph_s5) 
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ELSEIF (salph1 > salph1Old AND loadflag = 4 AND salph_s3 ≤ salph1 ≤ salph_s5) 

  initiation of unloading on reloading-curve_negative 

  loadflag = 8 

 calculate salph_s6 and salph_s7 

 calculate sM1 on reloading-curve_negative 

ELSEIF (salph1 > salph1Old AND loadflag = 8 AND salph_s6 ≤ salph1 ≤ salph_s7) 

  unloading on slope_negative (between salph_s6 and salph_s7) 

  calculate sM1 on slope_negative (between salph_s6 and salph_s7) 

ELSEIF (salph1 > salph1Old AND loadflag = 8 AND salph1 > salph_s7) 

  unloading back on unloading-curve_negative 

  loadflag = 3 

 calculate sM1 on unloading-curve_negative 

ELSEIF (salph1 ≤ salph1Old AND loadflag = 8 and salph_s6 ≤ salph1 ≤ salph_s7) 

  again reloading on slope_negative (between salph_s7 and salph_s6) 

  loadflag = 4 

 salph_s5 = salph_s6 

 salph_s4 = salph_s7 

 calculate sM1 on slope_negative (between salph_s6 and salph_s7) 
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A3.4. Definition of the reference model 

The reference model used for the verification of the user element considers a frame-stringer-skin 

component similar to the numerical model that was used in the scope of the investigations of 

chapter 4.  

A non-curved frame segment is defined in this model with a LCF-shaped frame profile of typical 

static sizing according to the given profile in Figure 4-5e) of chapter 4. This is a frame profile 

with flange widths of wIFF = 25 mm, wMFF = 15 mm and wOFF = 28 mm. The flange thicknesses 

are tIFF = 2.5 mm for the inner and middle flange as well as tOFF = 1.5 mm for the outer flange. 

The inner frame web height is hIFW = 56 mm, the outer frame web height hOFW = 36 mm. Typical 

layup definitions based on a static sizing were used in the frame web ([0/75/25]) as well as in the 

frame flanges ([45/45/10]1). The width of the model is based on a generic frame pitch of wF = 

635 mm. The length of the model is l = 700 mm. Three omega stringers with a stringer pitch of  

lS = 168 mm are modelled with beam elements according to the Kinematics Model approach. The 

skin thickness was defined with tS = 2.125 mm and a layup of [10/70/20]2. The orthotropic 

material formulations used in this model were defined linear-elastically. The connection of the 

individual parts was assumed to be ideal so that tied constraints were used. Symmetry boundary 

conditions were defined on lateral side. Both ends of the model were clamped using rigid bodies. 

These rigid bodies include the frame as well as the skin. In several verification runs pure rotation 

as well as a combination of rotation and translation was specified at the reference nodes of the 

rigid bodies which were positioned in the centre of area of the cross-section of frame and skin. 

Summarising the definition of the reference model, a typical frame-stringer-skin component was 

modelled with a discretisation technique according to the final kinematic hinge architecture 

which is given in paragraph 4.7. In contrast to this kinematic hinge architecture the user element 

was implemented additionally for representation of the hinge behaviour. Figure A3-4 depicts the 

reference model.  

All verification simulations of the reference model (as well as of the quasi-single element model) 

were performed on a Microsoft Windows machine with the FE solver ABAQUS, solver versions 

V6.7-3, V6.8-1 and V6.9-1, using explicit time integration and double precision. For compilation 

and implementation of the user element the Intel FORTRAN Compiler version 10.1.014 as well 

as Microsoft Visual Studio 2005 were used. 

                                                 

1 With respect to layups in the frame: Ratios in percent of ply orientation in the layup: [0°/±30°/90°] 

2 Ratios in percent of ply orientation in the layup: [0°/±45°/90°] 
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Figure A3-4: Reference model for the verification of the user element 

 

 



A4. Appendix of chapter 6 

Paragraph A4.1 provides a detailed definition of the simulation model used in the scenario 

assessment study. Further simulation results are given in paragraph A4.2, in particular results of 

the robustness analyses are provided here. 

A4.1. Definition of the fuselage design and the Kinematics Model used for 

the crash scenario assessment 

This paragraph provides additional data of the Kinematics Model which was used for the crash 

scenario assessment. Figure A4-1 displays this FE model that comprises a two-frame fuselage 

section. The section length is one frame pitch of lFP = 533mm plus 100 mm overlap at the front 

and rear end. Symmetry boundary conditions are defined at both ends. One row of two triple-

seats is positioned in the middle of the section. 

 

Figure A4-1: Kinematics Model used for the scenario assessment 

The fuselage geometry corresponds to the cross-section of an Airbus A320 aircraft. Secondary 

structural parts like passenger crossbeams, seatrails, floorpanels, rollertracks and overhead bins 

are defined similarly to the A320 design. The primary structural parts were designed in CFRP 

material and sized according to several ground and flight load cases as well as dynamic load 
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cases. The design as well as the sizing was provided by the project partner Airbus. The skin was 

designed quasi-isotropic with thicknesses between tS = 1.6-4.0 mm. The LCF-shaped frame 

design describes frame heights of the inner C-part between HIFW = 50-60 mm. The frame inner 

flange width is defined between wIFF = 25-30 mm, the frame middle flange with wMFF = 20.8 

mm. The cargo-crossbeam is designed with high stiffness to enable sub-cargo crushing. The τ-

shaped cross-section has a height of HCCB = 80mm, an upper flange width of wUF = 60 mm and a 

lower flange width of wLF = 30 mm. The layup of the frame and the cargo-crossbeam web is 

defined with [0/100/0]1. The layup of the frame and the cargo-crossbeam flanges is defined 

between [45/55/0] and [60/40/0]. Elastic properties of CFRP UD material were used to model 

these structural parts: 

E11=130 GPa, E22=9 GPa, G12=4.5 GPa, υ=0.3, ρ=1.6 kg/m3 

Omega as well as blade stringers were designed of CFRP material and were represented in the 

simulation model by beam elements of equivalent stiffness.  

The positions of the macro elements are displayed in Figure A4-2. The kinematic hinge positions 

correspond to potential frame failure locations according to the investigation described in 

paragraph 4.1. The lateral position of the vertical support struts corresponds to the A320 design 

and is defined with y = ±1353 mm. The sub-cargo absorbers are located at a lateral position of    

y = ±150 mm. 

 

Figure A4-2: Positions of the macro elements 

                                                 

1 Layup orientation in percent: [0°/±45°/90°] 
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A4.1.1. Assumptions for the macro input characteristics 

The assumptions for the macro input characteristics are based on detailed numerical or 

experimental investigations which were performed by several project partners. The characteristic 

of the sub-cargo absorbers was derived from quasi-static crushing tests of half-tube segments 

which were performed at the DLR in the scope of the European Community funded project 

CRASURV. In these crushing tests the force level of progressive crushing achieved 80 % of the 

trigger force. The half-tube segments were equipped with a chamfer trigger. Figure A4-3 

compares the macro input characteristic with the test results.  

The absorbing characteristic of frame bending was investigated by ONERA using detailed 

numerical analyses. An energy absorbing mechanism located in the frame inner flange was 

assumed in this investigation. The frame stability and failure behaviour of different absorbing 

force levels in the frame inner flange was analysed. From these results a moment-rotation 

characteristic was derived which reduces the moment level with increasing bending rotation to 

avoid lateral frame instability. The analysis was performed for an opening hinge rotation. For 

comparability reasons the same macro input characteristic was used in the Kinematics Model for 

the closing hinge rotation. Figure A4-4 displays the detailed FE model which was developed by 

ONERA. In addition, the moment-rotation curve of the numerical simulation as well as the 

derived absorbing moment-rotation characteristic for the kinematic hinges are depicted. 

The crushing characteristic of the vertical support strut is based on experimental investigations 

performed by EADS-IW. The crash device concept is pictured in Figure A4-5. Shear pins 

provide the connection between CFRP strut and the metallic crash device which is connected to 

the fuselage structures with a bolt. The failure of the shear pins describes the first peak in the 

force-deflection characteristic. A small gap inside the crash device decouples the trigger 

mechanism and the absorbing mechanism. This gap leads to a small crushing distance on very 

low force level in the characteristic. A second peak is caused by the impact of the CFRP strut on 

the deflection ring followed by a cutting process which describes a constant force plateau. The 

second force peak can be modified by the design of the deflection ring and should provide a 

force level which is below the first force peak. Figure A4-5 displays the crushable strut concept, 

the experimental force-deflection result as well as the corresponding macro input characteristic.  
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Figure A4-3: Derivation of the sub-cargo macro input characteristic from crushing test results [136] 

 

Figure A4-4: Derivation of the absorbing kinematic hinge characteristic from detailed FEM analyses [121] 

 

Figure A4-5: Derivation of the crushable strut characteristic from experimental test results [122] 
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A4.1.2. Numerical parameters 

The Kinematics Model used in the crash scenario assessment study contains about 35,000 nodes 

as well as about 32,000 elements consisting of approximately 29,000 shell elements and 

approximately 3000 other elements (bars, beams, etc.). 

The average mesh size of the primary (elastically modelled) parts are lSkinL = 40 x 100 mm for 

the skin of the lower fuselage shell, lSkinU = 160 x 100 mm for the skin of the upper fuselage shell 

and lFrame = 40 mm for the frame. The stringer beam elements have an average mesh size of 

lStringer = 50 mm. 

The simulations of the scenario assessment study were performed with the explicit solver PAM-

CRASH V2005.0. The parameterisation of the Kinematics Model comprised 167 design 

parameters as well as some more dependent parameters. The parameter assignment was realised 

with the optimisation software PAM-OPT V2004. The simulation jobs were calculated on a 

Linux cluster (Opteron 250 processors) with parallel execution of four processors in the double 

precision mode. The simulation time was defined as tS = 200 ms and led to a calculation time of 

tC ≈ 27 h.  

A4.2. Further simulation results of the assessment study of the crash 

scenarios 

Further simulation results on the discussion of the scenario assessment are provided within this 

paragraph. In particular results of the robustness analyses are given in the sub-paragraphs A4.2.5 

and A4.2.6. 

A4.2.1. Change of sign of the moment load in the frame of scenario B 

In scenario B a change of sign in the moment load acting on the frame in the region of the 

coupling to the cargo-crossbeam is caused by the triggering of the kinematic hinge positioned 

below the vertical strut connection. Figure A4-6 illustrates the moment loads of both kinematic 

hinges. The plots identify almost simultaneously triggering of both kinematic hinges. After 

brittle failure of the upper kinematic hinge the moment in the lower kinematic hinge changes 

abruptly and leads to triggering of the lower hinge, too.  
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Figure A4-6: Moment loads in the active kinematic hinges of scenario B 

A4.2.2. Rotation angle of the absorbing kinematic hinges in both scenarios 

The difference in the maximum rotation angle of the absorbing kinematic hinges in both 

scenarios is depicted in Figure A4-7. The closing absorbing frame bending of scenario A reaches 

a maximum rotation angle of φA = 34° (0.59 rad). The opening absorbing frame bending of 

scenario B reaches a maximum rotation angle of φA = 43° (0.75 rad). The basis of this 

comparison is the ‘standard crash case’ which is precisely described in paragraph 6.2. 

 

Figure A4-7: Absorbing kinematic hinge rotation of scenario A & B 
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A4.2.3. Structural load – frame inner flange strains of both scenarios 

The frame inner flange strains, as an indicator of the structural loads, identified higher loads 

along the frame in scenario B. Figure A4-8 displays the frame inner flange strains along the 

whole frame of scenario A and B. During the first crash phase similar strain values are displayed 

as expected. The second phase, the frame bending phase, describes the crash sequence where the 

general crash kinematics develops. Higher strains in case of scenario B are obvious here.  

The given strain values of the third crash phase, the vertical support strut crushing, are strongly 

dependent on the definition of the crushing process in the Bermuda triangle and are not 

dependent on the general crash kinematics. Hence, structural loads which depend on the crash 

kinematics have to be assessed with respect to the kinematic hinge rotation phase. The basis of 

this comparison is the ‘standard crash case’ which is precisely described in paragraph 6.2. 

 

Figure A4-8: Frame inner flange strains of scenario A & B 

A4.2.4. Tensile loads in the vertical support struts 

In case of scenario B, high tensile loads act in the vertical support struts during the second phase 

of the kinematic hinge rotation. These tensile loads lead to failure of the vertical struts according 

to the considered input characteristic of the axial macro element. Figure A4-9 compares the axial 

load in the vertical support struts of scenario A and B. As the section model provides four 

vertical support struts, exemplary force-deflection curves of one strut are given here. The basis 

of this comparison is the ‘standard crash case’ which is precisely described in paragraph 6.2. 
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Figure A4-9: Axial load in the vertical support struts of scenario A & B 

A4.2.5. Simulation results of the robustness cases for scenario A 

In addition to the ‘standard crash case’, further crash load cases were considered in this 

assessment to determine the robustness of scenario A. These load cases differ from the standard 

crash case in: 

A 1. a higher initial velocity of vi = 9.1 m/s (30 ft/s),  

A 2. one-sided loading with occupied triple seat and loaded overhead bin at one side 

combined with free triple seat and unloaded overhead bin at the other side,  

A 3. cargo loading represented by a flat plate with a distributed mass of m = 745 kg,  

A 4. a roll angle of φ = 5°.  

The robustness cases of scenario A identified the frame region of the cargo-crossbeam 

connection as critical with respect to potential opening bending failure. Figure A4-10 compares 

the moment load in this frame region of different robustness cases with the standard crash case. 

The robustness cases show more distinct opening bending load (negative moment) compared to 

the standard crash case. In one robustness case, with a roll angle of φ = 5°, the moment load 

exceeded the limit value and frame failure occurred in this kinematic hinge. The depicted 

moment curves were generated by output definitions of cutting surfaces (SECFO) and consider 

the frame as well as the skin structure.  
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Figure A4-10: Comparison of the moment loads acting in the frame at the region of the cargo-crossbeam connection 

In the following figures, the robustness cases of scenario A are briefly documented with the 

illustration of the crash sequence as well as the energy plot. The diagrams compare the most 

important energies (total, kinetic and internal energy) of the standard crash case with the energies 

of the individual robustness case. In particular the difference of the initial kinetic energy in some 

of the robustness cases compared to the standard crash case is illustrated by this comparison.  

The robustness case with an initial velocity of vi = 9.1 m/s (A1) is given in Figure A4-11. In this 

robustness case the initial total energy is 84 % higher compared to the standard crash case. A 

consequence of this increased initial kinetic energy is the more distinct impact of the vertical 

support struts which is indicated by a steeper decrease of kinetic energy in the last crash phase.  

The one-sided loading crash case (A2) is illustrated in Figure A4-12. Due to the reduced mass, 

respectively reduced initial kinetic energy, the energy absorption capacity in the crash devices is 

well sufficient. The plot of the kinetic energy is very smooth and shows an elastic rebound effect 

in the last crash phase.  

In Figure A4-13, the crash case with cargo loading (A3) shows a very steep decrease of the 

kinetic energy in the energy plot after the first crash phase. This decrease of kinetic energy is 

related to the cargo mass and does not indicate high acceleration values for the passengers. Due 

to the enormous cargo mass the crash absorbers in the sub-cargo structure are crushed without 

significant effects on the kinetic behaviour of the above fuselage structure. After this crushing 

phase the cargo mass impacts on the ground. Hence, a large fraction of the total mass was 
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decelerated abruptly and caused the steep decrease of the total kinetic energy. The following 

developing of the kinetic energy is roughly the same as observed in the standard crash case.  

The robustness case with a roll angle of φ = 5° (A4) is depicted in Figure A4-14. The plot of the 

total kinetic energy indicates higher energy absorption during the hinge rotation phase compared 

to the standard crash case, despite of additional brittle frame failure at the cargo-crossbeam 

connection. The total kinetic energy shows a smooth developing and the overall crash kinematics 

was achieved.  
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Figure A4-11: Robustness case A1 - initial velocity of vi = 9.1 m/s 
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Figure A4-12: Robustness case A2 - one-sided loading 
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Figure A4-13: Robustness case A3 - cargo loading 
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Figure A4-14: Robustness case A4 - roll angle of φ = 5° 
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A4.2.6. Simulation results of the robustness cases for scenario B 

In addition to the ‘standard crash case’, further crash load cases were considered in this 

assessment to determine the robustness of scenario B. These load cases differ from the standard 

crash case in: 

B 1. a higher initial velocity of vi = 9.1 m/s (30 ft/s),  

B 2. one-sided loading with occupied triple seat and loaded overhead bin at one side 

combined with free triple seat and unloaded overhead bin at the other side,  

B 3. cargo loading represented by a flat plate with a distributed mass of m = 745 kg,  

B 4. a roll angle of φ = 5°.  

In the following figures, the robustness cases of scenario B are documented similarly to the 

robustness cases of scenario A in paragraph A4.2.5. The illustration of the crash sequence as 

well as the energy plots are given. The diagrams compare the most important energies (total, 

kinetic and internal energy) of the standard crash case with the energies of the individual 

robustness case.  

Figure A4-15 illustrates the robustness case with a higher initial velocity of vi = 9.1 m/s (B1). 

The comparison of total kinetic energies shows approximately a similar slope during the first 

crash phases in the standard as well as in the robustness case. In the following phase, a steeper 

decrease of the kinetic energy in the robustness case indicates the impact of the vertical struts. 

Hence, the difference in the initial kinetic energy was compensated by the vertical support strut 

crushing. At t = 90 ms, the crash sequence in Figure A4-15b) shows opening frame failure of the 

kinematic hinge that is located directly above the passenger crossbeam. In this robustness case 

strain exceedance occurred along this fuselage side shell that indicates high danger of additional 

failure in the cabin area. 

In Figure A4-16, the one-sided loading robustness case (B2) is shown. Due to the reduced mass a 

smooth developing of the total kinetic energy indicates a well sufficient energy absorption 

capacity of the crash devices.  

In Figure A4-17, the robustness case with cargo loading (B3) depicts a steep decrease of the total 

kinetic energy which is caused by the ground impact of the cargo mass. This effect was already 

discussed in paragraph A4.2.5. It was clarified that this decrease of the kinetic energy does not 

induce high accelerations on the passengers. Nevertheless, the energy absorption of the sub-

cargo structure was compensated almost completely by the cargo mass. After the crushing of the 
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sub-cargo structure with a subsequent ground impact of the cargo mass, the total kinetic energy 

provides a level that is close to the initial kinetic energy of the standard crash case. The 

following energy absorption by frame bending is not sufficient and the remaining additional 

kinetic energy has to be absorbed by vertical support strut crushing. Hence, the impact of the 

vertical struts is more distinct with the fixed parameter settings and strain exceedance occurred 

in the fuselage side shell. At t = 150 ms, the crash sequence in Figure A4-17b) shows opening 

frame failure of the kinematic hinges that are located above the passenger crossbeam.  

Finally, the robustness case with a roll angle of φ = 5° (B4) is given in Figure A4-18. Although 

the crash sequence shows asymmetric kinematic hinge rotation the general scenario was 

achieved as frame failure apart of the active kinematic hinges did not occur. The comparison of 

energies shows similar developing of the graphs of the standard and the robustness crash case. 
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Figure A4-15: Robustness case B1 - initial velocity of vi = 9.1 m/s 
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Figure A4-16: Robustness case B2 - one-sided loading 
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Figure A4-17: Robustness case B3 - cargo loading 
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Figure A4-18: Robustness case B4 - roll angle of φ = 5° 

 

 



A5. Appendix of chapter 7 

Paragraph A5.1 provides a detailed definition of the simulation model used in the crash scenario 

development study. Further results of the final crash scenario are given in paragraph A5.2. 

Paragraph A5.3 provides further results of the simulation work on the ovalisation effect. In 

paragraph A5.4 a detailed definition of the metallic frame model is provided which was used for 

the comparison of the final kinematic hinge characteristics. Finally, paragraph A5.5 discusses the 

axial forces in the vertical support struts of the final crash scenario to derive an appropriate 

trigger force for an optional energy absorbing strut crushing in some robustness cases. 

A5.1. Definition of the fuselage design and the Kinematics Model used for 

the crash scenario development 

Figure A5-1 displays the simulation model that was used for the crash scenario development. 

The model comprises a two-frame fuselage section. The section length is Ls = 1270 mm, which is 

twice the frame pitch of lFP = 635 mm. Hence a full overlap at the front and rear end of half a 

frame pitch is modelled. Symmetry boundary conditions are defined at both ends. The minimum 

seat pitch for this fuselage design was defined with lSPmin = 711 mm. To combine the frame pitch 

and the seat pitch in an appropriate way, two rows of triple-seats were installed in the numerical 

fuselage section, with passenger masses of mPAX = 68.5 kg. This passenger mass is 89 % of the 

typical passenger mass and enables the adjustment of frame and seat pitch in the two-bay 

fuselage section model. 
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Figure A5-1: Kinematics Model used for the scenario development 

The fuselage geometry is similar but not identical to the cross-section of an Airbus A320 aircraft. 

Secondary parts like passenger crossbeams, cargorails, seatrails and floorpanels represent a new 

design, partly defined in CFRP material. The overhead bins and seats are represented by standard 

models. The primary structural parts were designed in CFRP material and pre-sized according to 

relevant ground and flight load cases. The design and sizing was conducted by the project 

partner Airbus. The skin was designed with thicknesses between tS = 1.6-2.1 mm and typical 

layups of about [15/60/25]1. The elastic properties of the CFRP UD material used to model the 

skin structure are: 

E11=130 GPa, E22=8.5 GPa, G12=4.2 GPa, υ=0.35, ρ=1.6 kg/m3 

The LCF-shaped frame design describes frame heights of the inner C-part between HIFW = 56-66 

mm. The frame inner flange width is defined with wIFF = 25 mm, the frame middle flange with 

wMFF = 15 mm. The layup of the frame web is [0/75/25]2 and the frame flanges are defined with 

a layup of about [45/45/10]2. The elastic properties of the CFRP UD material used to model the 

frame structure are: 

E11=135 GPa, E22=8.5 GPa, G12=4.2 GPa, υ=0.35, ρ=1.6 kg/m3 

                                                 

1 Layup orientation in percent: [0°/±45°/90°] 

2 Layup orientation in percent (with respect to the frame only): [0°/±30°/90°] 
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The cargo-crossbeam is designed with high stiffness to enable sub-cargo crushing (bend-frame 

concept). The τ-shaped cross-section has a height of HCCB = 85 mm, an upper flange width of 

wUF = 60 mm and a lower flange width of wLF = 30 mm. The layup of the cargo-crossbeam web 

is defined with [13/75/13]. The layup of the cargo-crossbeam flanges is defined between 

[55/36/9] and [63/31/6]. The elastic properties of the CFRP UD material and woven fabric 

material used to model the cargo-crossbeam structure are: 

E11=126 GPa, E22=9.8 GPa, G12=4.9 GPa, υ=0.3, ρ=1.6 kg/m3 

E11=56 GPa, E22=56 GPa, G12=4.3 GPa, υ=0.06, ρ=1.4 kg/m3 

The stringer design describes several omega profiles with omega heights between HStr = 28-32 

mm. The stringer thickness is defined between tStr = 1.1-1.4 mm with a layup between [44/44/11] 

and [55/36/9]. The elastic properties of the CFRP UD material used to model the stringer 

structure are similar to the skin material.  

The positions of the macro elements are displayed in Figure A5-2. The kinematic hinge positions 

correspond to potential frame failure locations according to the investigation of chapter 4.1. The 

positions were adapted to the slightly changed fuselage section geometry compared to the 

generic design used in the crash scenario assessment in chapter 6. The new cargo floor design 

specifies a cargorail system instead of a central rollertrack. Therefore, the kinematic hinge in the 

cargo-crossbeam could be defined directly in the lateral centre. The lateral position of the 

vertical support struts corresponds to the A320 design and is defined with y = ±1353 mm. The 

sub-cargo absorbers are located at a lateral position of y = ±200 mm below the inner cargorails. 

 

Figure A5-2: Positions of the macro elements 
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The Kinematics Model of the crash scenario development study is a second generation model. In 

contrast to the first generation model used for the crash scenario assessment study, all modelling 

aspects discussed in chapter 4 are implemented. Hence, full accuracy according to the outcomes 

of chapter 4 is guaranteed in this scenario development. With respect to the kinematic hinge 

modelling, this second generation model does not include the user element which is described in 

chapter 5. These advanced modelling capabilities could not be included due to the unsolved 

issues of the solver bug. 

The Kinematics Model for the crash scenario development contains about 56,000 nodes and 

about 50,000 elements. The average mesh size of the primary (elastically modelled) parts are 

lSkinL = 30 x 100 mm for the skin of the lower fuselage shell, lSkinU = 190 x 100 mm for the skin of 

the upper fuselage shell and lFrame = 20 mm for the frame. The stringer beam elements have an 

average mesh size of lStringer = 50 mm. 

The simulations for the scenario development study were performed with the explicit solver 

ABAQUS/Explicit V6.8-1. The parameterisation of the Kinematics Model comprised 74 design 

parameters as well as 773 dependent parameters. The parameter assignment was realised with 

the *parameter command in ABAQUS. The simulation jobs were calculated on a Windows 

machine: 

Dell Inc.    Precision WorkStation T5400 

Processor EM64T Family 6 Model 23 Stepping 6 GenuineIntel ~2993 Mhz 

Microsoft(R) Windows(R) Server 2003 Standard x64 Edition (Service Pack 2 Build 3790) 

 Microsoft Compute Cluster Pack 

Parallelisation on domain-level was executed with two domains respectively two processors and 

double precision. The simulation time was defined with tS = 200 ms and led to a calculation time 

of tC ≈ 19 h.  

A5.2. Further results of the final crash scenario 

The detailed crash sequence of the final crash scenario is given in Figure A5-3. 

The diagram in Figure A5-4 compares the moment output of the kinematic hinges with the total 

internal energy of the final crash scenario. This comparison illustrates the correlation between 

failure, respectively triggering, of the kinematic hinges and the unsteadiness in the progression of 

the internal energy caused by the release of elastic energy.  

In addition, this diagram provides information about the chronological sequence of the absorbing 

frame bending. The absorbing rotation in the frame kinematic hinges of Δφabs = 20° is spent at a 

crash state where about 95 % of the final internal energy is reached. Hence, the defined 
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absorbing rotation of Δφabs = 20° corresponds well with the required bending deformation of this 

crash kinematics.  

Finally, the individual moment curves of the kinematic hinges show a good correlation. Thus, the 

final crash scenario provides a good symmetrical crash kinematics with identical bending 

mechanisms in both cargo-crossbeams as well as in the frames on both sides. 

The structural loads in the frames are presented in Figures A5-5 and A5-6. The bar element 

strains in the frame inner flange are illustrated in Figure A5-5 for both frames. The diagrams 

display the strains along the whole frame. The strains of both frames show a good correlation, 

both frames are loaded similarly. This correlation indicates a correct modelling method of the 

two seat-rows which leads to consistent load introduction in the frame structure.  

The most critical loading direction in the frame inner flange is clearly the compression direction. 

The progression of the minimum strain values shows a first peak at about t = 25 ms. This peak 

reaches values of about εmin = -8000 microstrain in the most critical frame region between the 

cargo floor and the vertical support strut connection. In the final frame design, the crippling 

strain of the frame inner flange in this region is εcc = -8290 microstrain. At this time of the first 

peak, the kinematic hinges in the frame trigger. The strain values of the frame structure decrease 

to a constant level which represents the energy absorbing frame bending phase. The second 

minimum peak value occurs at about t = 170 ms and represents the ground contact of the vertical 

support struts. The elements showing the maximum strain values of this second peak are located 

in the vertically orientated frame regions of the fuselage side shell.  

The elements showing the positive maximum strain values can be found in the upper fuselage 

area as well as in the region of the passenger crossbeam connection. All maximum strain values 

are clearly below the allowable of εt = +10,000 microstrain.  

The frame outer flange strains are given in Figure A5-6. Again, the strains of both frames show a 

good correlation, both frames are loaded similarly. In contrast to the frame inner flanges, the 

strain values are clearly smaller in the frame outer flanges. However, due to the lower thickness 

in the outer flange these strain values might be critical. In fact, the elements showing the 

minimum strain values in Figures A5-6a) and A5-6b) are located in the upper fuselage area 

where the frame outer flange provides a thickness of tOFF = 2.6 mm and a width of wOFF = 28 mm 

in the final crash scenario. Hence, the crippling strain in this flange region is εc1 = -3300 

microstrain. The minimum strain values in Figures A5-6a) and A5-6b) are εmin = -4000 

microstrain. Hence, the strain limit criterion is clearly exceeded and the outer flange had to be 

adapted to this maximum crash load. In this exemplary application of the Kinematics Model, the 

focus of the structural adaptation was on the loads in the frame inner flange based on a specified 
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frame profile catalogue. Further adaptation of the frame outer flange would require the definition 

of individual frame profiles in addition to the given profile catalogue which is beyond the scope 

of this exemplary application. Hence, the loads in the frame outer flange were checked against 

the flange design and potential exceeding was identified, but further adaptation was not 

conducted.  

Finally, the passenger loads in the final crash scenario are illustrated in Figure A5-7. The 

accelerations are given in the Eiband diagram and are illustrated separately for both seat-rows. In 

general, the passenger accelerations are similar to the values shown in chapter 7 for the variant 

with optimised crash kinematics and maximum frame design. The values are clearly below the 

limit of severe injuries.  

In the range of the most critical duration (Δt = 6-11 ms), the correlation of both seat-rows shows 

a more distinct scattering of passenger A-F in the second seat-row. Despite of that both seat-rows 

show similar acceleration values over the acceleration duration. Again, this good correlation 

indicates a correct modelling method with the two seat-rows. 
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Figure A5-3: Detailed crash sequence of the final crash scenario 
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Figure A5-4: Kinematic hinge moment output versus total internal energy 
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Figure A5-5: Strains along the frame inner flange 
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Figure A5-6: Strains along the frame outer flange  
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Figure A5-7: Passenger accelerations of the final crash scenario in the Eiband diagram 

A5.3. Further results of the ovalisation effect 

Based on the identified tensile forces in the passenger crossbeam, as illustrated in Figure 7-22, 

the definition of the parameter study was selected as shown in Figure A5-8. 

None of these nine variants identified significant divergences in the general crash kinematics. 

The total internal energies in Figure A5-9 compare these variants. In addition, the total internal 

energy of the final crash scenario that represents a rigid crossbeam connection is given in this 

diagram. As expected, the curves are identical up to the triggering of the ovalisation device. 

Depending on the amount of energy absorbed by the ovalisation device, the internal energy curve 

reaches different levels respectively leads to a different trigger time of the frame kinematic 

hinges. Nevertheless, the overall shape of the curves is similar which indicates similar crash 
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kinematics. The finally selected variant describes a trigger force of F = 20 kN as well as a 

rotational stiffness of K = 1.0e04 kNmm/rad, which is highlighted in Figure A5-8 in red colour.  

Figure A5-10 compares the longitudinal force in the passenger crossbeam of the final crash 

scenario as well as the finally selected ovalisation variant. This diagram clearly illustrates the 

load limiting effect of such a crash device. During the sequence a maximum ovalisation of Δy = 

37 mm (at each side of the crossbeam) could be found. 

The frame inner flange strains in the most critical frame region between the cargo floor and the 

vertical support struts are plotted in Figure A5-11. The final crash scenario is compared with the 

finally selected ovalisation variant. The minimum strain values at the time of frame failure in 

that region are slightly reduced. This is an indication for a potential to reduce the structural mass 

due to reduced crash loads in the frame structure in case of an ovalisation concept.  

Finally, the crash sequence of the finally selected ovalisation variant is shown in Figure A5-12. 

The sequence is compared with the final crash scenario and highlights the main differences at t = 

40 ms as well as t = 200 ms. 

 

Figure A5-8: Input characteristics of the ovalisation device, analysed in the parameter study 
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Figure A5-9: Total internal energies of the parameter study variants 

 

Figure A5-10: Longitudinal forces in the passenger crossbeam of the final crash scenario and the finally selected 

ovalisation variant  

 



249                                                                                                           A5. Appendix of chapter 7 

 

Figure A5-11: Frame inner flange strains in the most critical frame region of the final crash scenario and the finally 

selected ovalisation variant 
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Figure A5-12: Crash sequence of the final crash scenario and the finally selected ovalisation variant 
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A5.4. Further details of the metallic frame model 

A small study was performed to analyse exemplarily the energy absorbing capacity of the final 

frame design between the cargo-floor and the vertical support strut, using metallic instead of 

CFRP material. The detailed FE model of the metallic frame structure is shown in Figure A5-13. 

In the region of expected frame failure, located directly below the vertical support struts, the 

CFRP frame is replaced by a metallic frame structure which connects both CFRP frame parts as 

well as the vertical support strut. This metallic frame structure provides a similar LCF-shaped 

profile as the surrounding CFRP structure which is based on the final crash scenario. For 

assembly reasons, the frame middle and outer flange is defined on the opposite web side. Despite 

of this difference, the flange widths and thicknesses are identical to the CFRP frame profile. The 

frame inner and middle flanges describe a thickness of tIFF = 9.2 mm, whereas the frame web as 

well as the frame outer flange have a thickness of tOFF = 4.42 mm. The definition of the skin and 

the stringer design is according to the final crash scenario. The cleat design as well as the vertical 

support strut are similar to the A320 design.  

An isotropic elastic-plastic material formulation was used for the representation of the metallic 

parts. The material data used for the metallic frame structure as well as the cleats is according to 

aluminium 2024 properties. The material data used for the vertical struts is according to 

aluminium 7075 properties. The CFRP parts (frame, stringers, skin) were modelled orthotropic 

linear-elastically. 

Besides symmetry boundary conditions at the front and rear end of the model, the open cross-

sections of the frame-skin structure were reinforced using rigid body formulations. In addition, 

the upper end of the frame-skin structure as well as the vertical support strut is constraint with fix 

boundary conditions. An impact plate with a constant velocity of v = 6.7 m/s applies the crash 

loads on the frame-skin structure. This model setup corresponds to an experimental test setup 

which was performed with an A320 structure in the former European Community funded project 

“Crashworthiness for Commercial Aircraft” [28].  

The FE model size comprises 28,400 elements as well as 31,800 nodes. The simulation was 

performed with the explicit solver ABAQUS/Explicit V6.8-1. The simulation job was calculated 

on a Windows machine: 

Dell Inc.    Precision WorkStation T5400 

Processor EM64T Family 6 Model 23 Stepping 6 GenuineIntel ~2993 Mhz 

Microsoft(R) Windows(R) Server 2003 Standard x64 Edition (Service Pack 2 Build 3790) 

Microsoft Compute Cluster Pack 
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Parallelisation on domain-level was executed with two domains respectively two processors and 

double precision. The simulation time was defined with tS = 80 ms and led to a calculation time 

of tC ≈ 8 h.  

 

Figure A5-13: FE model of the metallic frame variant 

 

Figure A5-14: Sequence of the metallic frame bending under crash loads 

A5.5. Determination of an optional trigger load level for the vertical 

support struts 

In the investigations based on the ‘standard crash case’ passive vertical support struts were 

foreseen and the trigger load level was defined artificially high. With respect to other crash cases 

with higher initial kinetic energy or unfavourable loading conditions further energy absorption 

capacity in the vertical support struts could significantly improve the crashworthiness of the 

considered fuselage structure. For that reason, the definition of an appropriate trigger level for 
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the vertical struts is essential to ensure a stable crash kinematics respectively to ensure a 

cascading scenario with a final vertical strut crushing phase. 

Figure A5-15 shows the axial forces in the vertical support struts of the final crash scenario 

(standard crash case). In addition, the kinematic hinge moments as well as the total internal 

energy are plotted over the crash duration in this diagram to give an overview of the crash 

sequence. The graphs of all four vertical struts show an increase of the compression force up to 

values between F = 33-42 kN. These maximum compression forces occur at a state when 

approximately two thirds of the energy absorption capacity in the frame kinematic hinges are 

reached. A smooth transition from the frame bending phase to the vertical strut crushing phase 

can be achieved by a trigger load level which initiates the strut crushing at this state. With 

respect to the considered crash scenario such an appropriate trigger force can be defined as F = 

35 kN.   

 

Figure A5-15: Axial forces in the vertical support struts of the final crash scenario 



A6. Appendix of chapter 8 

Details about the development of a test setup for axial crushing are provided in paragraph A6.1. 

The test matrix of the axial crushing test programme is given in paragraph A6.2. 

Further details about the development of a test setup for frame bending tests are provided in 

paragraph A6.3 before the test matrix of the frame bending test programme is shortly presented 

in paragraph A6.4. 

A6.1. Remarks to the development of a test setup for axial crushing tests 

The development of the test setup for axial crushing tests was supported by detailed finite 

element analyses as well as experimental pre-tests. Different factors were identified which 

influence the failure behaviour of the considered crash absorber. Some of these factors are driven 

by the structural environment of the fuselage. 

The detailed FE model is illustrated in Figure A6-1. A multi-layered shell approach is used with 

shell elements of reduced integration (S4R elements). The CFRP material is modelled using an 

ABAQUS built-in user subroutine for fabric ply modelling (VUMAT ‘fabric_ply’). The rivet 

connection between the half-tube absorber and the strut is modelled with connector elements and 

appropriate failure models. The mesh independent fastener option (*fastener) is used to position 

the connector elements at the specified rivet locations. The connection of the metallic skin plate 

and the strut flange is modelled using a tied connection (*tie). The model size is 13,973 elements 

and 15,361 nodes. The simulations were performed with the explicit solver ABAQUS/Explicit 

V6.8-1. The simulation jobs were calculated on the following Windows machine: 

Dell Inc.    Precision WorkStation T5400 

Processor EM64T Family 6 Model 23 Stepping 6 GenuineIntel ~2993 Mhz 

Microsoft(R) Windows(R) Server 2003 Standard x64 Edition (Service Pack 2 Build 3790) 

Microsoft Compute Cluster Pack 

Parallelisation on domain-level was executed with two domains respectively two processors and 

single precision. The simulation time was defined as tS = 20 ms and led to a calculation time of  

tC ≈ 22 h.  
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Figure A6-1: FE model of the axial crushing test 

Based on the outcomes of the finite element analyses a first pre-test was conducted statically in a 

universal test machine (Zwick 1494). According to the identified tendency of the strut flange to 

roll up in a first phase of the crushing sequence, a metallic plate was bonded to the strut flange 

which is additionally guided to avoid further lateral displacement. Figure A6-2 pictures the 

prepared absorber structure for pre-test I. The pictured upper fixture represents the clamping part 

in which the specimen is embedded. This clamping part is bolted to a further fixture part which 

provides the bleeding channels. In the quasi-static pre-test I, the peeling effect of the above 

discussed roll up tendency induced high stresses which finally initiated failure of the bonded 

connection. As predicted in the finite element analyses without the modelling of the plate, the 

strut flange rotated after the bonding failure around its radius and separated from the plate. 

Figure A6-3 depicts the quasi-static pre-test I and compares this effect with outcomes of the 

finite element analyses.  

A second pre-test was conducted with a modified connection of the strut flange and the metallic 

plate. The bonding connection was replaced by a bolted one, as illustrated in Figure A6-4. After 

the general feasibility of the guidance system was proved in pre-test I, the second pre-test was 

performed dynamically (v = 6.7 m/s) in the test machine Instron VHS, similarly to the specified 

test conditions of the planned test programme. Results of pre-test II are presented in Figure A6-5. 

The failure modes of the absorber specimen are as expected, Figure A6-5a) and A6-5b). Besides 

the crushing of the specimen, rupture of the strut near the flange radius occurred as well as pull-

through failure of the rivets. The inspection of the upper test fixture identified no failure of the 

absorber specimen on this side, Figure A6-5c). Hence, the bonding connection in the fixture is 
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sufficient and potential crushing at this side of the specimen is not expected. The metallic skin 

plate showed little plastic deformation which was caused by the constraint roll up effect of the 

strut radius, Figure A6-5d).  

In a final pre-test a hardened steel plate (C60-steel) was used to achieve higher yield strength and 

to avoid any plastic deformation. Pre-test III was conducted dynamically similar to pre-test II. 

Figure A6-6 depicts the specimen after the test and illustrates the metallic plate without plastic 

deformation. Hence, in pre-test III the final test setup could successfully be verified.  

 

Figure A6-2: Prepared specimen of pre-test I 

 

Figure A6-3: Unrolling effect of the strut flange - comparison of the FE analysis and the test (pre-test I) 
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Figure A6-4: Prepared specimen of pre-test II 

 

Figure A6-5: Specimen after the test (pre-test II) 
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Figure A6-6: Specimen after the test (pre-test III) 

A6.2. Test matrix of the axial crushing test programme 

The test matrix with a total number of 72 dynamic absorber tests is given in Table A6-1. 

In the following, the test parameters are briefly explained to get an overview on the investigated 

effects.  

Two different designs of the flat strut were tested. Besides a simple geometry with a constant 

thickness of t = 1.5 mm, a complex design was considered that corresponds to a statically sized 

sub-cargo structure with a complex layup respectively thickness distribution along the strut.  

The influence of the half-tube absorber design was regarded with several parameters. 

Considering the geometry, two different angles of the geometrical trigger were tested. The 

definition of the trigger angle is important to achieve a robust initiation of the crushing mode.  

A further defined absorber design parameter is the thickness of the absorber laminate. The 

thickness of the absorber significantly influences the crushing force level. In addition, an 

increased absorber stiffness could avoid potential instability failure which is initiated by the flat 

strut. Hence, the influence of the absorber thickness on the global stability behaviour was of 

interest.  

Furthermore, different materials respectively fabrications of the absorber structure were 

investigated. Besides absorbers made of CFRP woven fabrics, variants of CFRP braided 

absorbers were tested.  

Another parameter considers the connection of the half-tube absorber and the flat strut. The 

reference variant is defined with a riveted connection. Additionally, a further variant was tested 

with a combination of riveted and paste bonded connection. Using additionally paste bonding, it 

was expected to reduce the oscillations on the force-displacement curves which are caused by the 

rivets. Instead a constant, increased force level was expected.  
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Finally, two parameters considered the influence of the loading condition. Besides the standard 

load case of vertical crushing with v = 6.7 m/s, a loading rate of v = 10 m/s as well as an off-axis 

angle (roll angle) of β = 10° was tested.  

 

Table A6-1: Test matrix of the absorber test programme 

A6.3. Remarks to the development of a test setup for frame bending tests 

The development of the test setup for frame bending tests was supported by detailed finite 

element analyses as well as experimental pre-tests [130].  

The detailed FE model of [130] is illustrated in Figure A6-7. A multi-layered shell approach is 

used for the representation of the frame segment with shell elements of reduced integration (S4R 

elements). The CFRP material is modelled using an ABAQUS built-in user subroutine for fabric 

ply modelling (VUMAT ‘fabric_ply’). The fixture is modelled using solid elements with reduced 

integration (C3D8R) and elastic material input according to aluminium data. A tied connection 

(*tie) is used to describe the bonded connection between fixture and frame segment. The model 

size is 12,426 elements and 17,015 nodes. The simulation was performed in a multi-step analysis 

to consider thermal stresses in the hybrid frame segments which are introduced in the structure 

during the thermoplastic manufacturing process. The simulations were performed with the 

explicit solver ABAQUS/Explicit V6.8-1. The simulation jobs were calculated on a Windows 

machine: 

Dell Inc.    Precision WorkStation T5400 

Processor EM64T Family 6 Model 23 Stepping 6 GenuineIntel ~2993 Mhz 

Microsoft(R) Windows(R) Server 2003 Standard x64 Edition (Service Pack 2 Build 3790) 

Microsoft Compute Cluster Pack 

Parallelisation on domain-level was executed with two domains respectively two processors and 

double precision. The simulation time of the complete multi-step analysis was defined as tS = 65 

ms and led to a calculation time of tC ≈ 7 h.  
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Figure A6-7: FE model of the frame bending test [130] 

Several experimental pre-tests were performed to develop an appropriate test setup. Initial pre-

tests were conducted with wooden inserts which were bonded in the C-frame segment in the 

region between the supports and the stamp. In addition, metallic plates (aluminium, t = 3 mm) 

were positioned at the supports and the stamp to smoothen the load introduction into the C-frame 

segment. This setup was identified to be non-sufficient. Distortion of the C-profile as well as 

local material damages at the supports and the stamp were observed, Figure A6-8a). Similar 

results of local damage by the load introduction were identified in the numerical analysis, Figure 

A6-8b). According to these results the test setup was modified and a solid aluminium fitting was 

designed which encase the C-profile in the region between the stamp and the supports.  

 

Figure 8: Damage by the load introduction of the supports and the stamp [130] 

Further finite element analyses, according to the final FE model depicted in Figure A6-7, were 

used to estimate the instability mode of the compressive loaded flange in dependence of the free 

length between the stamps. To achieve failure of the frame segment in the centre of the free 

length an instability mode of first order was desired. The simulation results identified a free 

length of L = 160 mm as sufficient to allow the compressive loaded flange to buckle in a mode 
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of first order, as displayed in Figure A6-9. The vertical displacement is pictured in this figure 

and highlights the buckling mode of the upper, compressive loaded flange.  

 

Figure A6-9: Instability mode of first order in the compressive loaded flange, displacement in z-direction [130] 

A6.4. Test matrix of the frame bending test programme 

The test matrix of the frame bending test programme is given in Table A6-2. A total of eight 

tests were conducted with the developed test setup. Hybrid frame segments with titanium sheets 

embedded in the flanges were tested and compared with tested reference frame segments which 

were made purely of CFRP. Figure A6-10 depicts the layups of both variants and illustrates the 

replacement of UD-plies by titanium sheets in the hybrid variant. 

The frame segments were tested quasi-statically in an universal testing machine (Zwick 1475) as 

well as dynamically in the DLR drop tower facility with an initial velocity of vi = 3.4 m/s. 

 

Table A6-2: Test matrix of the frame bending test programme 
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Figure A6-10: Flange and web layup of the reference and the hybrid variant  
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