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Abstract

This work analyzes the applicability of different temperature sensing methods in or-
der to compensate Fiber Bragg Grating based strain measurements in a short segment
of a single fiber. The presented methods for temperature measurements relying on
the refractive index (including reflectrometry techniques) or on scattering effects have
significant disadvantages for simultaneous strain and temperature measurement. De-
spite this result a method for high resolution distributed temperature measurement is
introduced based on spatially distributed fiber Bragg gratings.

In contrast to refractive index methods, doped fibers show promising properties. This
work derives a detailed model of doped fiber fluorescence lifetime, leading to the con-
clusion that the fluorescence spectrum is more suited for temperature sensing. Addi-
tionally, a connection between absorption, stimulated emission, spontaneous emission
and the measured spectrum is developed based on the fluorescence lifetime model
found. The results emphasize the need to treat the measured spectrum as the steady
state of a dynamic system rather than an approximated representation of internal ab-
sorption and emission spectra.

The fluorescence spectrum will be used for temperature sensing by tracking lowpass
effects in the spectrum. The optimal doping material is subject to further research and
not determined in this work.
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1 Introduction

In robotics strain measurements belong to the most often addressed problems. In
order to control the motion of a robot or to provide some kind of force feedback when
controlling the robot, measuring the strain is essential.

One example for a robotic system is shown in figure 1.1. The MiroSurge System was
developed at the German Aerospace Center (DLR) and is used for minimally invasive
surgery applications. Instruments (e.g. the gripper depicted in figure 1.1) are attached
to the tip of a slim robot arm and remote controlled by the surgeon. In order to give
the surgeon force feedback information, a six degrees of freedom force/torque sensor
is located behind the exemplary gripper. The sensor design is based on the Stewart
platform. The force/torque is calculated by analyzing the strain induced in the links
between top and bottom segment [GH03]. One approach for strain measuring is the
use of strain gauges, which change their resistance in case of strain. However, due to
the position of the strain sensor, size and medical compatibility are of special interest.

Optical approaches have promising properties regarding possible sensor sizes and
medical compatibility. Examples for medical compatibility are the need to avoid elec-
trical signals near the measurement area or having a sensor design robust enough
to sustain a sterilization process (e.g. sterilization by applying high temperatures or
chemicals). An example for optical strain measurement is presented in [Has13], where
Fiber Bragg Gratings (FBGs) are used for measuring the strains in the Stewart plat-
form leading to one of the smallest six degrees of freedom sensor to date. The sensor
is shown in figure 1.2.

Both the electronical and FBG-based optical sensor systems suffer from a critical draw-
back: Changes in length or refractive index are not only influenced by strain changes,
but also by temperature changes. Relating to the medical application, a simple body
contact could increase the temperature and cause the measurement of a non-existent
force. In case of the Fiber Bragg Grating based approach, a dependency of about 1 N

K is
observed [Has13]. Because of this, a temperature compensation is indispensable. One
solution is the use of temperature sensors with additional circuitry and components,
which undermines the advantages of the small and electronic-free light-based system.
A second solution is an optical temperature sensor placed near the force sensors as
presented in [Has13]. This solution suffers from the assumption of uniform tempera-
ture distribution, which is not necessarily true for medical applications. Additionally a
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Figure 1.1: One example for a medical robotic system with a strain sensor (structure
behind the gripper in the small image) for force feedback: The MiroSurge system is
used for telemanipulation in minimally invasive surgery. Due to its position, the strain
sensor has high demands regarding medical compatibility and size. Image c©DLR.

Figure 1.2: An example for a fiber optic strain sensor developed for the use in the
MiroSurge system (figure 1.1) [Has13]. Image from [Ley10].
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second sensor increases the sensor size. This explains the need for an optical approach
at the same location as the strain sensor.

Important for this integrated compensation is its independence from the light intensity
and the possibility of simultaneous strain measurement. Even if a certain intensity for
the input light can be guaranteed, the intensity of the output light will be influenced
by the properties of the transmitting fiber. The transmitting fiber can change the at-
tenuation of the light due to a lot of effects. One example would be bending, which is
unavoidable in a flexible system with moving parts. This work will evaluate the pos-
sibilities for such an optical, integrated and intensity independent (or at least intensity
compensated) measurement of temperature with the possibility of simultaneous strain
measurements.

In order to simplify the measurements, all approaches are only analyzed for their abil-
ity to measure the temperature. If the temperature measurement shows significant
disadvantages, no proper temperature compensation can be expected in case of ap-
plied strain. The target application is the compensation of the strain sensor presented
in [Has13] and depicted in 1.2. Thus the compensation must be usable for fiber seg-
ments with a length of approximately L ≈ 5.5 mm. The application in minimally inva-
sive surgery implies a temperature range from 283 K to 323 K that is used as operating
range in the following.

In chapter 2, properties of single mode optical fibers and their suitability to compen-
sate temperatures in the targeted setup are analyzed. A model of the fluorescence life-
time for doped fibers is derived in chapter 3 in order to test the robustness of lifetime
measurements for temperature sensing. The measured emission spectrum of doped
fibers is explained in chapter 4 and the observed temperature dependency is used for
temperature measurements. In chapter 5, optical frequency domain reflectometry is
used to determine intensity compensated reflection magnitudes and wavelengths of
spatially distributed Fiber Bragg Gratings to test the applicability for simultaneous
distributed strain and temperature measurement.
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Since the optical strain measurement system is (single mode) fiber based, it is impor-
tant to know which fiber types are available and how they differ. The most common
fiber type is the pure silica undoped fiber. Undoped fibers differ in the distribution of
their refractive indices. Doped fibers contain additional doping material that can be
excited by transmitted light.

The properties of these two types will be presented based on ideal fibers. Finally the
imperfections of optical fibers and their use for measurements will be discussed.

One special fiber type not covered in this work is the microstructured optical fiber,
where the light guiding is done through manipulation of the waveguide structure
rather than through the refractive index.

2.1 Ideal Undoped Fibers

Amongst others, undoped fibers may be distinguished by two properties: their re-
fractive index and their length. Both properties are sensitive to temperature and to
strain.

There are no significant influences on the light for a constant refractive index in an
ideal fiber. Thus a constant refractive index is not suitable for sensing purposes. Three
possibilities exist for varying refractive indices: they can vary along the fiber, with the
polarization (usually in case of birefringence, which will be explained later) or with
the polarization and along the (birefringent) fiber.

Because the target of this work is the simultaneous measurement of strain and temper-
ature and the measurement of two effects needs at least two independent equations, a
configuration is needed where two independent measurements are possible.

One possibility is to use two different wavelengths for the measurement. The refrac-
tive index is usually wavelength dependent, thus two completely different systems
based on completely different refractive indices can be analyzed by using two wave-
lengths. Unfortunately, the variance of the refractive index and especially the vari-
ance of its reaction to temperature or strain changes is almost negligible. [Gho94]
for instance measured a practically constant relative temperature sensitivity of about
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∂Tn
n ≈ 15 · 10−6 1

K for wavelengths above 800 nm and in case of silica glasses. Due to
the small variance, a measurement based on different wavelengths would be rather
insensitive [Fer00]. This is why more sophisticated approaches are needed for the
generation of two measurements.

In the following, possible configurations of undoped fibers are presented and their
ability to provide two independent measurement equations are compared. Light can
be divided into two categories: static light and time varying light. For this reason,
every fiber configuration is analyzed with respect to both light categories.

2.1.1 Birefringent Fibers

Birefringent fibers exhibit two separate refractive indices for the incoming light – one
for horizontal and one for vertical polarized light. The difference of refractive indices
is called birefringence and is temperature sensitive. Generally speaking, every fiber
is birefringent due to manufacturing imperfections, bending or other effects. This is
why special care must be taken to ensure that the transmitting fiber does not have a
significant influence on the measurement.

Static Input Light

Measurement Technique The refractive index difference must change either the po-
larization or the wavelength of the incoming light in case of static input light in order
to get an intensity independent measurement.

Circular birefringent fibers are a subtype of so called optically active materials. Linearly
polarized light is rotated by a circular birefringent fiber according to the difference of
refractive indices. Therefore a polarization based measurement technique is possible.
Polarization maintenance in optical fibers is especially difficult as nearly every fiber
has some birefringent properties. The polarization may be changed depending on
the temperature, pressure/bending or rotation of the transmission fiber causing false
measurements. Robust polarizing maintaining fibers exist, but are normally built to
transmit one particular polarization only [Dre12]. This is why a wavelength based
approach may be preferable in general.

The difference of refractive indices in standard birefringent fibers generates two sepa-
rate paths (one for each refractive index) splitted up prior and combined after the bire-
fringent fiber. The difference in optical length for both paths creates an interference
pattern filtering certain wavelengths (interferometer principle). Each path transmits a
certain polarization orientation only. In order to achieve proper interference of both
paths, a polarization filter after the birefringent fiber is needed [Ciu05]. The work-
ing principle is also depicted in figure 2.1. For proper interference, the polarization
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Velocity Difference

Birefringent Fiber Pol. Filter

Figure 2.1: An interferometer based on a birefringent fiber. Light coupled into the
birefringent fiber is splitted into a horizontally and vertically polarized fraction. Each
fraction propagates through the fiber with different velocities due to the different re-
fractive indices causing a phase (or path) difference. A linear polarization filter at the
end of the birefringent fiber creates an interference between both polarization paths.

filter should be placed as near as possible to the sensing area to reduce the influence
of the transmission fiber. Polarization changes after the interference point do not af-
fect the intensity, which is why birefringent effects in the transmission fiber after the
polarization filter are not problematic. A polarization filter and a polarization main-
taining fiber prior to the sensor fiber ensures that the birefringence of the transmitting
fiber has no influence (the second birefringence channel of the transmitting fiber will
be empty, thus no difference in optical length will be generated by the transmitting
fiber).

An example for a system using birefringence is the temperature sensor built by OpSens
based on White-Light-Polarization Interferometry [Ops10].

Simultaneous Measurement of Strain and Temperature Purely birefringent fibers
can be used to measure the difference of refractive indices in the fiber by analyzing the
filtering pattern of the interferometer. Since there is no other feature and the refractive
indices can be assumed to stay constant for every input light, there is no direct way
for simultaneous measurement of strain and temperature as the second equation is
missing.

Time Varying Input Light

Measurement Technique In order to exhibit a measurable effect on time varying
light, the fiber must change the time variation of the input signal. Changing the time
variation needs some kind of memory element (just like in electronics). The only mem-
ory element available in undoped fibers is their (optical) length, meaning that the an-
alyzed features must be distributed along the propagation direction to cause different
outputs.
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The spatially distributed feature in birefringent fibers is the (differing) optical lengths
for each path through the birefringent fiber. Using time varying light, the differing
time delay corresponding to the optical length can be directly observed. Just like in the
static case, a polarization filter and polarization maintaining fiber prior to the sensor
fiber reduces the influence of the transmitting fiber. A polarization filter after the
birefringent fiber is not necessary as no interference is needed.

It is important to note, that only the time difference and not the absolute time of both
channels provides information about the birefringence of the fiber. The absolute time
also includes the refractive index and the length of the transmitting fiber, which is
usually not part of the sensing area.

Simultaneous Measurement of Strain and Temperature Similar to the static light
case, only the birefringence can be measured. One feature is not enough for measuring
two effects making the simultaneous measurement of strain and force impossible with
the setup described.

However, a more sophisticated method for time varying birefringence measurement
is presented in [Par96] based on the Kerr Effect. In this technique, a high power,
circularly-polarised pulse of light induces a transient birefringence grating. A fluc-
tuation of powers occurs for a counter propagating CW probe beam. The frequency of
this fluctuation depends on the local birefringence. Therefore instead of only measur-
ing the birefringence along the whole fiber, distributed birefringence measurements
are possible. Accordingly, the position and the value of the birefringence can be used
to build up an equation system. However the setup is complex and reaches spatial
resolutions of only 0.6 m with 3 K accuracy, which is far too low for the target appli-
cation of this work. In a similar manner, Transient Brillouin Gratings induced by two
counter propagating short pump pulses have been used for distributed birefringence
measurements yielding a resolution of 20 cm [Don10], which is still too much for a
sensor in the millimeter scale.

2.1.2 Varying Refractive Indices along a Fiber

Reflection of light may occur whenever light travels from a medium of a given refrac-
tive index into a medium with a different refractive index. Therefore changing the
refractive index along the fiber creates temperature dependent positions of certain re-
flectivities. For a measurement, the effect of the reflectivities on an input light must be
analyzed.
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Static Input Light

Measurement Technique If static light is used, the reflectivities must have an in-
fluence on the polarization or on the wavelengths of the light in order to obtain an
intensity independent indicator for the measurand.

A fiber without any polarization dependent effect will not change the polarity in any
way, which is why the polarization is not usable for measurement in this case.

To create a wavelength filter based on reflectivities, the reflectivities must be located
in a way that allows interferences of the reflected light, thus providing an interference
filter. A refractive index profile with such properties is a Fiber Bragg Grating.

A Fiber Bragg Grating [Hil97] [Erd97] is a periodic variation of the refractive index in
an optical fiber. The grating causes the reflection of a certain wavelength λB that fulfills
the Bragg Condition λB = 2ne f f Λ with grating period Λ and effective fiber refractive
index ne f f . Other wavelengths are transmitted. Therefore the reflection wavelength
is direct proportional to the effective refractive index in the fiber and the grating pe-
riodicity. Applying temperatures to Fiber Bragg Gratings changes the elongation (i.e.
grating periodicity) and refractive index of the fiber leading to a different reflection
wavelength λB. The changed behavior can be observed and the applied temperature
can be calculated.

Fiber Bragg Gratings are widely used for sensor applications. One example is optical
temperature measurement as proposed in [Rao97].

Simultaneous Measurement of Strain and Temperature Special Fiber Bragg Grat-
ings can even reflect multiple wavelengths. Two reflected wavelengths could be used
to build up a system of two independent equations.

There are some approaches based on the changing of the periodicity or refractive index
combinations along the fiber to create two or more reflected wavelengths (an overview
can be found in [Che07]). But these approaches face the same disadvantages as two
separate fiber Bragg gratings – the temperature and the strain might change along the
fiber creating false measurements and longer grating structures are needed. Because
the periodicity should not change along the fiber, the only degree of freedom left is
the orientation of the grating. This is normally done by tilting the grating leading to
so called Tilted Fiber Bragg Gratings [Mel89] as shown in figure 2.2.

Tilted fiber Bragg gratings can be explained by the use of coupled mode theory [Erd96],
which is beyond the scope of this thesis. Roughly explained, the tilt changes the di-
rection of the reflections and thus their mode. Modes differing from the core mode are
coupled into the cladding and their backpropagating path is determined by the effec-
tive refractive index of the cladding. The wavelengths fulfilling the Bragg condition
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Cladding

Cladding

CoreλBragg

Incident Light

λcoupling,i Λg

Λ

Transmission Lightξ

Figure 2.2: A Tilted Fiber Bragg Grating in an optical fiber according to [Don11]. Λ is
the grating period and ξ represents the tilt angle and i is an index for a certain mode.
The dark areas are regions with a different refractive index.

for the sum of the forward propagating core path and the backpropagating cladding
path underly constructive interference in reflection and will partly vanish in transmis-
sion. However the reflections will be absorbed by the cladding and not be visible. A
fraction of the reflections will stay in the core mode and the normal Fiber Bragg For-
mulas still apply for this fraction. Thus there is more than one reflected wavelength in
a Tilted Fiber Bragg Grating (one wavelength for every mode i), but the complete set
is only visible in the transmission spectrum.

One disadvantage is that the measurement of notches (in the transmission spectrum)
instead of peaks (in the reflection spectrum) is more imprecise due to the weaker signal
and thus undesirable. The second disadvantage of tilted gratings is the dependency
of the Bragg wavelengths on the effective refractive index of the cladding. According
to [Don11], the cladding’s effective refractive index has been shown to be sensitive to
the ambient refractive index (e.g. air). Thus, tilted gratings are suitable for analyzing
surrounding liquids or gases, but inadequate for measurements in changing environ-
ments.

To sum up, none of the methods presented provides a satisfactory way to use Fiber
Bragg Gratings in combination with static light to measure strain and temperature
simultaneously in the same location in the fiber.

Time Varying Input Light

Measurement Technique As already mentioned in section 2.1.1, spatially distributed
features are needed for time varying input light. In the case of varying refractive
indices, these are the reflectivities in the fiber. With the help of reflectometry (e.g.
Optical Frequency Domain Reflectometry or Optical Time Domain Reflectometry), the posi-
tions in the optical path, which depend on the refractive index, and the magnitude of
the reflection can be measured. Especially the position information provides a stable



2.1 Ideal Undoped Fibers 11

measurement for the refractive indices and the length of the fiber. A more detailed
explanation follows in chapter 5.

A measurement system based on this approach is proposed by Luna Inc. [Sam12].
But instead of using artificially created reflectivities, the system is based on Rayleigh
scattering that is inherent to every fiber. Rayleigh scatterings will be briefly discussed
in chapter 2.3.

Simultaneous Measurement of Strain and Temperature As stated above, two prop-
erties can be measured: the optical position of the reflectivities and the reflectivity
values themselves. These two measurements would be enough in order to measure
strain and temperature. A disadvantage is that the reflectometry principle is based on
a reference reflectivity. Attenuation changes (e.g. bending of the fiber) between the
reference and the measurement reflectivity as well as changes of the reference reflec-
tivity (e.g. due to temperature) will affect the measurement of the reflectivity values.
In contrast, the optical positions of the reflectivities are independent of the reference.
However, the reference reflectivity can be designed to be stable regarding external
influences. This is why reflectometry techniques will be analyzed in more detail in
chapter 5.

2.1.3 Varying Refractive Indices along a Birefringent Fiber

The third approach is to vary the refractive index along the fiber and with the polar-
ization, which is essentially just a combination of the already analyzed methods.

Static Input Light

Measurement Technique For static input light, the periodical variation of the refrac-
tive index forms a Fiber Bragg Grating. The combination of a Fiber Bragg Grating in a
birefringent fiber and a polarization based interferometer as observed for birefringent
fibers leads to three wavelength filters. The Fiber Bragg Frating reflects different wave-
lengths in each channel of the birefringent fiber due to the differing refractive indices.
The interferometer features a periodic transfer function based on the fiber length and
the difference of the refractive indices. In reflection, only the two peaks caused by
the Fiber Bragg Grating are visible. The reason is, that the two differing wavelengths
in the reflection path are unable to interfere making the interferometer useless. In
transmission, this setup leads to the periodic transfer function of the interferometer
combined with the two Bragg wavelengths staying unaffected by the interferometer
curve as the interference partner in the other channel got reflected.
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The reflection properties are obviously more interesting as sharp peaks can be mea-
sured more easily. But in reflection, the interferometer feature does not have a sig-
nificant effect on the measurement. In transmission, detecting the fiber Bragg wave-
lengths is quite complex as they do not always form a clear notch or a peak. Without
being able to measure the Bragg wavelengths in a stable manner, the Fiber Bragg Grat-
ing is unnecessary. Thus in reflection the interferometer is not usable and in transmis-
sion, the Fiber Bragg Grating cannot be measured.

To be able to measure an effect significantly different from the previous configurations,
the measurements should be done in reflection without the need for a polarizer. The
two Bragg wavelengths measured correspond to the two refractive indices present in
the birefringent fiber.

Simultaneous Measurement of Strain and Temperature As the two refractive in-
dices of a birefringent fiber are independent, their reaction to temperature or strain can
be assumed to be different. As the Bragg wavelengths are directly proportional to the
corresponding (effective) refractive index, the two measured Bragg wavelengths are
expected to exhibit different sensitivities to temperature respective strain. Accordingly
an equation system for the Bragg wavelengths based on two independent equations
can be created. If this equation system is solved for the two unknowns temperature and
strain, a simultaneous measurement of strain and temperature is possible [Fer00].

Disadvantageous of using a birefringent Fiber Bragg Grating is that both channels
react to changes in strain and temperature in the same way while only being different
regarding the amount of the reaction. This leads to a decrease in sensitivity as an
accurate solving of the equation system relies on the difference (or independence) of
the reactions (compare to performances listed in [Che07]).

Additionally, the reflection peaks of the Fiber Bragg Grating might overlap, creating
the need to separate both polarizations for proper measurement. However, main-
taining two different polarizations in the transmission fiber is difficult as polarization
maintaining fibers are normally designed to maintain one polarization only and nor-
mal fibers are likely to destroy or vary the polarizations due to bending or curling of
the fiber.

Time Varying Input Light

Measurement Technique Time varying input light is used to analyze spatially dis-
tributed features. In case of birefringent fibers, these are the optical lengths in both
channels. For varying refractive indices, these are the positions of the reflectivities in
the optical path.
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Like in the non-birefringent case, the optical positions and values of the reflectivities
in the system can be determined by using reflectometry. But in contrast to the non-
birefringent case, the reflectivities are distributed over two channels with different
refractive indices changing the optical position.

Simultaneous Measurement of Strain and Temperature As already mentioned, the
measurement of the reflectivity values using reflectometry depends on a reference
reflectivity, which makes it more difficult to use them for a robust measurement. But
in contrast to the non-birefringent case, the optical positions for reflectivities of two
channels can be measured. These two channels provide information about the two
refractive indices of the fiber.

The strain and the temperature could be measured by using the value of these two
refractive indices. But just like in the static light case, the refractive indices will react
to strain and temperature in the same way. The difference of the reaction is important
for a precise measurement. But this difference will stay much smaller than the reaction
itself, similar to [Fer00].

Additionally, without a polarizer, one cannot distinguish between the channels and
the reflectometry would just detect reflectivities at the positions corresponding to their
optical distance. If it is known which reflectivity corresponds to which channel, a si-
multaneous measurement of two refractive indices would be possible although no
polarizer is involved as the optical position depends on the corresponding refractive
index. However, the reflectivity positions of both channels might overlap in the mea-
surement preventing a proper separation of both channels without using a polarizer.
Yet, using a polarizer for separation of the channels is difficult due to the general dif-
ficulties of transmitting differently polarized light in fibers in a robust way (compare
to the static light case).

2.2 Ideal Doped Fibers

A more convenient way to compensate for temperature is to use an effect independent
of the strain measurement. Since the refractive index is strain sensitive, optical effects
which are not based on the refractive indices are of special interest. Fibers providing
such effects are fibers doped with an active material, most commonly with rare earth
elements like Erbium or Ytterbium. The doping causes optical properties which are
almost completely independent of strain but dependent on temperature [Col02], thus
the doping could be used for temperature measurements. A method based on varying
refractive indices along the fiber (e.g. Fiber Bragg Gratings) can provide the strain
measurements within the doped fiber.



14 Chapter 2 State of the Art

4 I15/2

4 I13/2 h · 203 THz

4 I11/2 h · 306 THz

4 I9/2 h · 375 THz

4F9/2 h · 448 THz

4S3/2 h · 564 THz

2H11/2 h · 584 THz

4F7/2

4F5/2

4F3/2

3H9/2

(a) Energy levels of Erbium [Bel03]

2F7/2 i
2F7/2 j h · 13 THz

2F7/2 k h · 16 THz

2F7/2 l h · 26 THz

2F5/2 a h · 307 THz

2F5/2 b h · 326 THz

2F5/2 c h · 349 THz

92
0

nm
96

0
nm

97
7

nm
97

7
nm

10
20

nm
10

32
nm

10
69

nm

(b) Energy levels of Ytterbium [New07]

Figure 2.3: Energy levels of Erbium and Ytterbium with the energy expressed in terms
of optical frequency and referenced to ground level.

Erbium is a rare earth element with a lot of energy levels/transitions (compare to
figure 2.3a) and fibers can only be doped lowly due to quenching effects [Mys97].
For this reason, it is hard to handle for researching purposes as theoretical models (if
existent) are complex and inaccurate plus the interaction with the input light is weak.
Nevertheless, it is widely used because it emits light in the C-Band that is common in
telecommunication.

In contrast to Erbium, Ytterbium almost represents an ideal two level system (compare
to figure 2.3b), which is easier and more precise to model, and can be doped at higher
concentrations. Therefore Ytterbium, is used for the following analysis.

Single mode light has the following features: its spectrum, its polarization and the
behavior of both over time. Since doped fibers do not exhibit significant emission
properties with respect to the polarization, the leftover interesting features are the
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spectrum and the spectrum over time. These properties can be modified for the input
light and the influence of the fiber can be analyzed for the output light.

As already mentioned, if the input light varies over time, the system must have some
kind of memory capability to be able to change the variation in a measurable manner.
Doped fibers do not memorize wavelengths but intensities. After light of a certain in-
tensity has excited the dopant, the material will stays excited for a short time followed
by an emission of light at a different wavelength. The emission wavelength depends
on the emission spectrum of the material and the emission intensity depends on the
exciting intensity generating some kind of intensity memory. This is why intensity-
varying light will be filtered by the material but wavelength-varying light will just
be converted to certain emission wavelengths. Consequentially only the variation of
intensity over time is analyzed in the spectrum over time case.

To sum up, there are two set ups worth analyzing in the fluorescence measurement:
apply light with a fixed input spectrum and analyzing the corresponding (fixed) out-
put spectrum or inputting light with a time varying intensity and measuring the cor-
responding output intensity dynamics. The former is often addressed by the fluores-
cence intensity ratio measurement, the latter by the fluorescence lifetime measurement
(compare to [Col02]). The lifetime measurement is discussed in more detail in chapter
3, the intensity ratio in chapter 4.

2.3 Non-Ideal Fibers

Non ideal fibers exhibit some formerly discussed properties: They are normally bire-
fringent, the refractive index does not stay constant along the fiber and changes with
wavelengths, they attenuate light in a nonlinear way for example depending on bend-
ing or humidity, they cannot transmit every wavelength or may even emit light at
other wavelengths caused by chemical impurities. Some of these properties may be
intended in order to provide different fiber variants (see section 2.1 or 2.2). Others can
be reduced by careful design. And some can be used for measurements.

Parasitic non-ideal effects are usually very weak. Additionally, they will occur in the
transmitting and in the sensing fiber, generating the need to separate the origin of
the effect. Assigning origins to a non-ideal effect implies that the (measured) effect
must occur in distinguishable locations. This reduces the usable effects for sensing
and leads to reflectivities or more generally, scattering effects. Using static light can-
not provide any conclusions about the spatial distribution of the scatterings. For this
reason, scattering effects are normally measured using time-varying light based on
reflectometry techniques.
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An example for a scattering effect is Rayleigh scattering, which reflects light at the same
wavelength as the input light. Reflectivities with the same wavelength as the input
light (mostly caused by different refractive indices along the fiber) have already been
covered in section 2.1. Other notable scattering effects in the field of fiber optics are
Brillouin scattering and Raman scattering [Sin07].

2.3.1 Brillouin Scattering

Brillouin scattering is caused by time dependent optical density variations. It reflects
light at different wavelengths than the input light. One reason for such density vari-
ations is temperature. Since optical density is also strain dependent, Brillouin scat-
tering is often used for distributed strain measurement. While the Brillouin intensity
normalized by the Rayleigh intensity (also called Landau-Placzek-Ratio) is dominantly
temperature dependent [PCW96], the reflection wavelengths are dependent on the
applied strain and temperature [Par97].

The reflection wavelengths are close to the input wavelength (the wavelength shift is
small), differ along the fiber and thus are complex to measure in a distributed way.
Essentially the response spectrum of each location in the fibre must be measured to
be able to calculate the wavelength shift. Some approaches are explained in [Thé10],
but most of the traditional methods are limited to a spatial resolution of about 1 m
reducing the field of application to very long fibers. There are some experiments that
were able to reach a resolution of 1 cm [Son10]. But this is still too imprecise for the
target application of this work.

However temperature measurement is possible with higher resolutions as only the in-
tensities of the scattering need to be measured. Yet, the (commercially) most success-
ful distributed temperature measurements based on scattering intensities are based
on Raman scattering [De 01] due to the easier spectral separation from the Rayleigh
scattering and its larger sensitivity [PCW96].

2.3.2 Raman Scattering

Raman scattering reflects light at higher and lower wavelengths symmetric to the in-
put wavelength. The reflection with higher wavelengths is called Stokes Raman scatter-
ing and the lower wavelengths reflection Anti-Stokes Raman Scattering. Using the ratio
of both scatterings compensates possible attenuation effects in the fiber. Comparable
to Brillouin scattering, the intensities of the anti-stokes scatterings are primarily tem-
perature sensitive [Ala05]. And just like for Brillouin scattering, the wavelength shift
of Raman scattering depends, in addition to the used material, on the applied strain
[Hua09] [Rob87] and temperature [Har70]. But in contrast to Brillouin scattering, this
wavelength shift is normally not used for strain measurements [Ina06].



2.4 Conclusion 17

2.3.3 Simultaneous Measurement of Strain and Temperature

Raman and Brillouin scattering show similiar types of sensitivities to strain and tem-
perature. Measuring frequency shifts along the fiber is complicated in the neces-
sary millimeter scale, which is why the scattering intensities may be used preferably.
Both intensities are primarily temperature dependent, but Raman scattering has found
wider use for distributed temperature measurement.

Using birefringence for strain measurements would disturb the accurate measurement
of the scattering intensities as the two separate channels would overlap in the mea-
surement (compare to section 2.1.3). Doped fibers are not very strain sensitive (see
section 2.2). However, the strain of the system could be measured by using reflectivity
locations along the fiber combined with the already applied varying input light (just
like in section 2.1.2).

Due to their promising properties, scattering based measurements are discussed in
chapter 5 along with the reflectometry based measurement of refractive indices along
a fiber as introduced in section 2.1.2.

2.4 Conclusion

Table 2.1 gives an overview of the most important ways and properties to measure
temperatures in optical fibers.

Based on the previous discussion, the only approach based on ideal undoped fibers
that seems worth analyzing regarding simultaneous strain and temperature measure-
ment, is the measurement of reflection magnitudes and reflection positions along a
fiber using reflectometry analysis. The other approaches are either to sensitive to their
environment or too insensitive to the measurands. However, the applicability of re-
flection magnitude and reflection position measurements for simultaneous tempera-
ture and strain sensing needs further evaluation.

Property Remark

Birefringence Polarization dependent
Refractive index changings Similar reactions for strain and temperature
Absorption and emission For doped fibers, strain independent
Scatterings Weak signals, various origins, strain independent

Table 2.1: Summary of temperature dependent properties in fibers. Dealing with po-
larization dependence proved to be cumbersome as reported by [Fer00] and [Dre12],
thus birefringence based methods are not in the focus of this work.
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Doped fiber methods are widely researched, mostly using the fluorescence lifetime or
the fluorescence intensity ratio and promise a good way to measure the temperature
almost independently from possible strains [Col02]. Yet, the publications for tem-
perature detection based on fluorescence lifetime do not cover short fibers with high
excitation needed for good signal to noise ratios. Moreover, the fluorescence intensity
ratio is only one way to filter the temperature dependency of the spectrum, but other
ways (e.g. based on the full spectrum) are still unreported.

A temperature measurement based on a quite strain independent method is also pro-
vided by the analysis of scatterings. Yet, scattering measurements have primarily been
used for long fibers and the applicability for temperature compensation in short fibers
with high resolutions requires clarification.

This is why both doped fiber methods will be addressed in this work (chapter 3 and
4) in addition to a reflectometry based measurement for changes in refractive index or
scattering effects (chapter 5).

All methods except the analysis of changes in refractive index are nearly strain inde-
pendent. The strain measurement could, for instance, be added by using Fiber Bragg
Gratings (for doped fibers) or reflectivity locations in the fiber (for Raman/Brillouin
scattering).



3 Fluorescence Lifetime

If a doped fiber is exposed to light of a certain wavelength, the energies of some pho-
tons are absorbed by the electrons of the dopant. The absorption causes a change of
the energy level, such that (for example) electrons in the first energy level are raised
to the second energy level (compare to figure 2.3b or 3.1c). The electrons are called
excited in this case. They stay excited for certain amount of time before they return to
their original energy level under emission of photons. This emission is called fluores-
cence. The time between excitation and emission is called fluorescence lifetime. If the
fluorescence intensity is measured directly after stopping the excitation of the fiber
(i.e. after stopping the exposure to light), a decay I(t) of the fluorescence intensity can
be measured. The time constant τ of this decay is closely connected to the fluores-
cence lifetime. In fact this time constant τ is used as representation of the fluorescence
lifetime in the following.

It is generally assumed that the decay I(t) of the measured fluorescence intensity is
exponential, i.e. of the form

I(t) = I(0) exp
(
− t

τ

)
. (3.1)

Numerous publications are based on this assumption, e.g. [Zha93],[Zha96], [Sun98]
and [Sun04] to name a few. However own measurements showed, that the assumption
does not hold for short fibers (see figure 3.3). This observation has also been made in
[Bow05]. It is shown in the following, that an exponential decay can only be expected
for low fluorescence powers in case of short fibers.

3.1 Calculation and Dependencies

To be able to make statements about the dependencies and robustness of the fluores-
cence lifetime, its origin must be derived. Optical systems can reach a high complexity,
thus some simplifications are made.

First of all, the following calculations are based on ideal two level systems without
any radiationless transitions. Since the measurements are based on Ytterbium, this
assumption holds sufficiently well. The reflections at the fiber boundaries will be ig-
nored, which requires good splices and identical refractive indices for the transmitting
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Variable Description

ν Optical frequency of the light
T Temperature of the fiber section
N1(t) Density of electrons in the ground energy level
N2(t) Density of electrons in the excited energy level
N Density of excitable electrons (doping)
N2,ν(t) Balance for the density of electrons in the excited energy level

for a certain frequency ν
uν(t) Density of photons from an external source
Bν(T) Density of photons caused by Planckian radiation

(temperature radiation)
Yν(t) Overall amount of fluorescence photons (or defect of photons)

in fiber section caused by emission/absorption
yν(t) Average density of fluorescence photons (or defect of photons)

caused by emission/absorption
gν(t) Overall density of photons in the fiber
Eν Transmission function of the measurement system
I(t) Intensity of the measured light
σa,ν Effective absorption cross-section (absorption probability)
σe,ν Effective emission cross-section (stimulated emission probability)
aν Emission probability (spontaneous emission probability)
vν Group velocity of light in the fiber

Table 3.1: Notation used for fluorescence calculations. The index ν expresses the vari-
able’s dependency to the optical frequency ν.

and sensing fiber. Additionally, the photon density (i.e. excitation light) in the fiber
is assumed to be constant along the fiber. The external input light should be time
constant.

In reality, the photon density will change along the fiber creating an infinite amount of
fiber sections. For proper calculation, each fiber section would need to be modeled to
have a distinct external input and fluorescence output. As the fluorescence propagates
in every direction, the fluorescence output will be the input for each neighboring fiber
section each having an own fluorescence output. This would lead to an infinite cyclic
network of fiber sections, which is only numerically solvable.

The notation used for the following calculations is summed up in table 3.1. For the
variables, the following logical connections exist

N = N1(t) + N2(t) (3.2)

N2(t) =
∫ ∞

0
N2,ν(t) dν (3.3)

gν(t) = uν(t) + Bν(T) + yν(t). (3.4)
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Figure 3.1: The main causes for electron transitions in fluorescent materials. Depicted
is an ideal two level system with ground energy level E1 and excited energy level E2.
A spontaneous decay of an electron from the second energy level to the ground level
is called spontaneous emission and generates a photon with energy hν ≈ E2 − E1. A
photon with energy hν can also stimulate an emission of another photon with the same
propagation direction and energy hν. This process is called stimulated emission. In
the case of absorption, a photon with energy hν excites an electron from ground level
to the excited energy level.

The first equation states, that the overall amount of excitable electrons is equal to the
amount of electrons being in the first or second energy level. N2,ν(t) represents the
difference of electrons having absorbed a photon with frequency ν minus the electrons
having emitted a photon with frequency ν. Or in other words the current balance of
electrons in the second energy level for a certain frequency ν. The total amount of
electrons in the second energy level is the sum (or integral) over the balances of all
frequencies ν. This is stated by the second equation. The last equation states, that
the photons in the fiber section consist of photons caused by an external light source,
photons caused by Planckian radiation and photons created during the fiber internal
absorption/emission process.

According to [McC64], the system must fulfill the rate equation denoted by

− Ṅ2,ν(t) = σe,νgν(t)vνN2(t) + aνN2(t)− σa,νgν(t)vνN1(t). (3.5)

Essentially the rate equation states the following: The amount of emitted photons per
second per unit volume for a certain optical frequency equals the amount of photons
emitted by stimulated emission (figure 3.1b) plus the photons spontaneously emitted
(figure 3.1a) minus the absorbed photons (figure 3.1c). Note that the emission of each
photon causes a decay of an electron from second to ground energy level, thus the
amount of emitted photons per second per unit volume equals the amount of electron
decays per second per unit volume −Ṅ2,ν(t). The concept of stimulated emission,
spontaneous emission and absorption is further explained in figure 3.1.
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Let lν(t, ∆t, x) be the percentage of emitted photons that have been generated at posi-
tion x at the time t− ∆t and are still in the fiber at the time t. First of all, it is assumed
that the distribution of photon emitting directions and generation positions stays con-
stant over time. Thus, the times needed for leaving the fiber stay constant. Secondly,
the mean duration until reabsorption for each emitted photon is assumed to be long
compared to the time needed for leaving the fiber, such that the lifetime of photons
in the fiber is dominated by the fiber dimensions. Then it follows that lν(t, ∆t, x) is
approximately time constant and will just depend on ∆t making it independent from
t. In case lν(t, ∆t, x) drops fast enough over ∆t (which is normally true as the time
needed by photons to leave the fiber is much smaller than the time constants of the
system), only very small values of ∆t must be taken into account. For small values
of ∆t, Ṅ2,ν(t− ∆t) can be assumed to be constant over ∆t, i.e. Ṅ2,ν(t− ∆t) ≈ Ṅ2,ν(t).
These assumptions yield the following equation for the overall amount of fluorescence
photons in the fiber:

Yν(t) = −
∫

x

∫ ∞

0
lν(t, ∆t, x)Ṅ2,ν(t− ∆t) d∆t dx ≈ −Ṅ2,ν(t)

∫
x

∫ ∞

0
lν(∆t, x) d∆t dx.

(3.6)

To fulfill the assumption of position independent photon density, the average density
of fluorescence photons is used for further calculations. The average density in a fiber
of radius r and length L with average photon lifetime ∆t̃ν is

yν(t) ≈
Yν(t)
πr2L

≈ −Ṅ2,ν(t)

∫
x

∫ ∞
0 lν(∆t, x) d∆t dx

πr2L
= −∆t̃ν · Ṅ2,ν(t). (3.7)

The measured power I(t) will consist of all photons located at the fiber’s end surface
travelling towards the photodiode. The fiber end pointing towards the photodiode is
passed by πr2 · gν(t) photons per meter. The distribution of different photon emission
directions is assumed to stay constant (at least for the optical frequencies measured).
Thus of all emitted photons, only the time constant percentage eν actually propagates
towards the photodiode. The remaining emitted photons never reach the photodiode.
Therefore the photodiode measures the fractional amount of eν · πr2gν(t) photons.
The first ds meters after the fiber end will be filled up with ds · eνπr2gν(t) photons.
It took the photons dt = ds

vν
seconds to reach the distance ds. Because ds · eνπr2gν(t)

photons each having the energy hν left the fiber in dt seconds, the power (i.e. energy
per timestep) leaving the fiber is

Iν(t) = hν · vν · eνπr2gν(t). (3.8)
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Of course the photodiode will have its own sensivity ẽν for each optical frequency.
Thus the power measured by the photodiode is

I(t) =
∫ ∞

0
ẽν · hνvνeνπr2gν(t)dν =

∫ ∞

0
Eνgν(t)dν, (3.9)

where Eν is used to sum up the transmission function ẽνhνvνeνπr2.

With all connections between the variables explained, the system can be analyzed
in more detail. To solve this system, a differential equation based on a measurable
variable is derived, e.g. gν(t). Starting with equation (3.4), plugging in equation (3.7)
and deriving yields

gν(t) ≈ uν(t) + Bν(T)− ∆t̃ν · Ṅ2,ν(t) (3.10)

ġν(t) ≈ u̇ν(t)− ∆t̃ν · N̈2,ν(t). (3.11)

The same can be done using equation (3.5) and (3.2)

Ṅ2,ν(t) = −[σe,ν + σa,ν]gν(t)vνN2(t)− aνN2(t) + σa,νgν(t)vνN (3.12)

N̈2,ν(t) = −[σe,ν + σa,ν]vν[ġν(t)N2(t) + gν(t)Ṅ2(t)]− aνṄ2(t) + σa,ν ġν(t)vνN. (3.13)

And the last formula needed for a complete differential equation is the derivation of
equation (3.3) using the Leibniz Integral Rule

Ṅ2(t) =
∫ ∞

0
Ṅ2,ν(t) dν. (3.14)

Inserting equation (3.12) into (3.14), (3.14) into (3.13), (3.13) into (3.11) and (3.12) into
(3.10) leads to two equations with the variable N2(t) being in both equations. Thus it
is possible to replace N2(t) creating a single differential equation based on gν(t). The
result is

σν = [σa,ν + σe,ν] vν (3.15)

ũν,T(t) = uν(t) + Bν(T) (3.16)

kν = 1 + ∆t̃νvνσa,νN (3.17)

ġν(t) ≈ [σνgν(t) + aν]
[σνgν(t) + aν]∆t̃ν

∫ ∞
0

ũν,T(t)−gν(t)
∆t̃ν

dν + u̇ν(t)

σνũν,T(t) + aνkν
. (3.18)

The system dynamics should not be part of the measurement integral in equation
(3.9) as this would require the exact knowledge of Eν in order to draw the connection
between the measured dynamics and the actual system dynamics. Hence gν(t) should
ideally be of the following form with the system dynamics modeled by the frequency
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constant fk(t) and the frequency behavior modeled by the time constant hk(ν)

gν(t)
!
=

K

∑
k=1

fk(t)hk(ν). (3.19)

This postulate yields an intensity with the time variable (i.e. the system dynamics)
outside the measurement integral

I(t) !
=

K

∑
k=1

fk(t)
∫ ∞

0
Eνhk(ν)dν. (3.20)

If using this approach does not lead to any conflict, a valid solution for the differential
equation has been found.

Plugging equation (3.19) into (3.18) yields

cν(t) =

[
σν ∑K

k=1 fk(t)hk(ν) + aν

]
∆t̃ν

∫ ∞
0

ũν,T(t)−∑K
k=1 fk(t)hk(ν)
∆t̃ν

dν + u̇ν(t)

σνũν,T(t) + aνkν
, (3.21)

with

K

∑
k=1

ḟk(t)hk(ν)
!≈

K

∑
k=1

fk(t)hk(ν)σνcν(t) + aνcν(t). (3.22)

Let

f1(t) = 1 (3.23)

h1(ν) = −
aν

σν
(3.24)

in order to remove the appended term aνcν(t). Then the index k = 1 in equation (3.22)
can be substituted leading to

K

∑
k=2

ḟk(t)hk(ν)
!≈

K

∑
k=2

fk(t)hk(ν)σνcν(t). (3.25)

According to the comparison of coefficients, σνcν(t) should only be time dependent

c(t) = σνcν(t) =
σ2

ν ∆t̃ν

∫ ∞
0

ũν,T(t)−∑K
k=1 fk(t)hk(ν)
∆t̃ν

dν ∑K
k=2 fk(t)hk(ν) + σνu̇ν(t)

σνũν,T(t) + aνkν
. (3.26)

Resolving this expression for the sum yields

K

∑
k=2

fk(t)hk(ν) =
c(t)∫ ∞

0
ũν,T(t)−∑K

k=1 fk(t)hk(ν)
∆t̃ν

dν
·

σνũν,T(t) + aνkν − σν u̇ν(t)
c(t)

σ2
ν ∆t̃ν

. (3.27)
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Although it is possible to treat uν(t) as time changing variable uν(t) = uνut, the sys-
tem will be hardly solvable due to its increased complexity. Therefore, as already
mentioned, uν(t) is assumed to be time constant in the following calculations

K

∑
k=2

fk(t)hk(ν) =
c(t)∫ ∞

0
ũν,T−∑K

k=1 fk(t)hk(ν)
∆t̃ν

dν
· σνũν,T + aνkν

σ2
ν ∆t̃ν

. (3.28)

The comparison of the coefficients yields for the remaining indices

f2(t) =
c(t)∫ ∞

0
ũν,T−∑K

k=1 fk(t)hk(ν)
∆t̃ν

dν
(3.29)

h2(ν) =
σνũν,T + aνkν

σ2
ν ∆t̃ν

. (3.30)

Thus for c(t) holds (with f2(t) as unknown variable and using equations (3.23), (3.24),
(3.29) and (3.30))

c(t) = f2(t)
∫ ∞

0

ũν,T + aν
σν
− f2(t)

σν ũν,T+aνkν

σ2
ν ∆t̃ν

∆t̃ν
dν. (3.31)

According to the formulas (3.25), (3.26) and (3.31) the simplified differential equation
to solve is

ḟ2(t) ≈ f2(t)c(t) = f2(t)2
∫ ∞

0

ũν,T + aν
σν

∆t̃ν
dν− f2(t)3

∫ ∞

0

σνũν,T + aνkν

σ2
ν ∆t̃2

ν

dν. (3.32)

This differential equation is solved using a Computer Algebra System like Mathemat-
ica. The solution is implicitly given by

a =
∫ ∞

0

ũν,T + aν
σν

∆t̃ν
dν (3.33)

b =
∫ ∞

0

σνũν,T + aνkν

σ2
ν ∆t̃2

ν

dν (3.34)

t + C1 = − 1
a2

[
b ln

(
a

f2(t)
− b
)
+

a
f2(t)

]
. (3.35)

f2(t) can be substituted with the measurable value I(t) by using equation (3.20) as well
as (3.23), (3.24) and (3.30). Thus

c =
∫ ∞

0
Eν

σνũν,T + aνkν

σ2
ν ∆t̃ν

dν (3.36)

d =
∫ ∞

0
Eν

aν

σν
dν (3.37)

f2(t) =
I(t) + d

c
. (3.38)
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C1 can be calculated by setting t = 0, i.e.

C1 = − 1
a2

[
b ln

(
ac

I(0) + d
− b
)
+

ac
I(0) + d

]
. (3.39)

Combining equations (3.35), (3.38) and (3.39) yields

τ =
b
a2 =

∫ ∞
0

ũν,T+
aν
σν

kν

σν∆t̃2
ν

dν(∫ ∞
0

ũν,T+
aν
σν

∆t̃ν
dν
)2 (3.40)

f =
ac
b

=

∫ ∞
0

ũν,T+
aν
σν

∆t̃ν
dν
∫ ∞

0 Eν
σν ũν,T+aνkν

σ2
ν ∆t̃ν

dν∫ ∞
0

σν ũν,T+aνkν

σ2
ν ∆t̃2

ν
dν

(3.41)

t = τ

[
ln
(

I(0)− ( f − d)
I(t)− ( f − d)

)
+ ln

(
I(t) + d
I(0) + d

)
+

f
I(0) + d

− f
I(t) + d

]
. (3.42)

Note that I(t) ≥ 0 and d > 0, meaning that no matter what value I(t) takes, the
equation cannot reach t = ∞ based on the last two summands, which must be a valid
value for a time continuous system. Thus, the only way to reach t = ∞ is that the
logarithms reach infinity leading to the condition

I(∞) + d
I(∞)− ( f − d)

!
= ∞

I(∞) = f − d. (3.43)

This simplifies equation (3.42) to

t = τ

[
ln
(

I(0)− I(∞)

I(t)− I(∞)

)
+ ln

(
I(t) + d
I(0) + d

)
+

I(∞) + d
I(0) + d

− I(∞) + d
I(t) + d

]
. (3.44)

Equations (3.44) and (3.40) represent the most detailed derivation of fluorescence de-
cay to the author’s knowledge. Two possible simplifications in case d is much bigger
than I(0) are

Semiexponential Simplification: t = τ ln
(

I(0)− I(∞)

I(t)− I(∞)
· I(t) + d

I(0) + d

)
(3.45)

Exponential Simplification: t = τ ln
(

I(0)− I(∞)

I(t)− I(∞)

)
. (3.46)

The former simplification has also been found by [Bow05], who assumed (amongst
others) that the average density of fluorescence photons yν(t) is proportional to the
density of electrons in the excited energy level N2(t), i.e. yν(t) ≈ CνN2(t) with fre-
quency dependent constant Cν. Note that d partly compensates the missing two sum-
mands. Thus, d found by fitting equation (3.45) will not entirely correspond to d found
by fitting equation (3.44). The latter represents the ideal exponential decay already
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mentioned in equation (3.1). Both simplifications make it possible to express I(t) in an
explicit way.

The influence of the measurement system Eν is found in the variable d, while the life-
time τ is completely independent of the measurement system. Yet the lifetime τ relies
on the input photon density uν (equation (3.40)). In order to get comparable lifetime
measurements, uν must be kept at the exact same level which is hard to guarantee in
real life applications. Additionally, the dependence of the lifetime τ on uν implies that
the dynamic system is not a linear time invariant system.

The temperature dependence of τ can primarily be found in the temperature radiance
Bν(T) and in the rate equation coefficients aν, σa,ν and σe,ν. Temperature changes in vν

will cause equivalent changes in ∆t̃ν and ũν,T cancelling out the change.

τ depends on the doping density N, which is sensitive to strain. ∆t̃ν also shows a
small strain sensivity as an applied strain changes the geometry of the fiber leading
to a changed effective time a photon needs to leave the fiber. This explains the small
strain sensitivity of the fluorescence lifetime as observed in [Col02].

The connection of the steady state intensity I(∞) to other variables will be subject of
chapter 4.

3.2 Experimental Results

The setup used for measuring the fluorescence lifetime is depicted in figure 3.2. A
980 nm laserdiode excites a 5 mm long Ytterbium doped fiber. The length of the fiber
is limited due to the physical properties of the intended mounting place. The fluo-
rescence intensity near 1040 nm is filtered and measured using a photodiode, a fourth
order besssel lowpass with a cut off frequency of 20 kHz and a 192 kHz/24 bit analog
to digital converter. The excitation light intensity is measured by a second reference
photodiode.

For validation of the formulas derived in section 3.1, three measurements of fluores-
cence decay were made at room temperature with differing excitation powers from
15 mW to 30 mW. The laser diode was switched off after 50 ms of constant excitement
(i.e. uν forms a 10 Hz square wave). After that, the resulting decay of fluorescence was
tracked and fitted with equation (3.44) and both simplifications (3.45) and (3.46) using
the nonlinear least squares fitting method for implicit functions explained in [Mat09].
The results for the fluorescence decay are plotted in figure 3.3 along with the fittings.

The exponential fit (3.46) shows poor agreement with the measurement, the semiex-
ponential (3.45) and the original function (3.44) are almost indistinguishable. The as-
sumptions made for equation (3.44) seem to be fulfilled and the equation describes the
fluorescence decay very precisely for every excitation power.
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Splitter

WDM 5 mm Yb Doped Fiber

Measurement Photodiode

Reference Photodiode

−50 dB

1040 nm

980
nm

Figure 3.2: The used setup for measuring the fluorescence lifetime. WDM stands for
Wavelength Division Multiplexing and is used to filter and split the signal. The photo-
diodes are monitored by a 192 kHz/24 bit analog to digital converter after their signal
has been filtered by a 20 kHz fourth order bessel lowpass [Ley10]. Due to the short
measurement duration, the environmental conditions (e.g. temperature) are assumed
to stay constant.

The fitting constant of interest is the lifetime τ. Especially important is its sensitivity
to the excitation power. In an ideal case, τ should be completely independent of the
excitation power. The lowest experimentally derived standard deviation of τ over
excitation power is reached for the fitting approach based on equation (3.44) (as shown
in in figure 3.4) and is 3.43 µs. Accordingly the expected accuracy of the lifetime τ

determined by the standard deviation over excitation is in the order of

d∆τe ≈ 4 µs. (3.47)

The reasons for this variance may be the instability of the implicit nonlinear fitting
used, because four degrees of freedom (τ, d, I(0) and I(∞)) need to be determined.
An alternative explanation is the varying noise excitation uν(t) of the fiber during the
power off phase of the laser diode (i.e. a differing I(∞)). While the latter may be
avoided using a more sophisticated setup, the former is caused by mathematical limi-
tations. Thus the instability of the implicit nonlinear fitting represents lower boundary
for the accuracy of the system.

The worst case for the influence of noise regarding measurements are weak excita-
tions, e.g. due to strong bending of the transmitting fiber. To calculate an estimation
of the worst case lower boundary for the accuracy of τ, the fitting of equation (3.44)
to the low excitation measurement is used as a perfect reference measurement R0(t)
(figure 3.3a). Equation (3.44) is used, because it showed the most robust behavior in
the previous measurements (see figure 3.4). The low excitation measurement is used
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(b) Medium excitation of 20 mW.
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(c) High excitation of 30 mW.

Figure 3.3: The decay of the Ytterbium fluorescence intensity after turning off the
exciting laser diode for different excitation powers and different fitting equations. Al-
most no difference between the fittings based on (3.45) or (3.44) and the measurement
can be observed while the exponential fitting (3.46) does not fit correctly in all cases.
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Figure 3.4: The sensivity of the lifetime τ plotted against different excitations and
fitting variants together with the corresponding squared error between fitting and
dataset. The lifetime τ of the exponential fitting (eq. 3.46) has a standard deviation
of 11.43 µs over the excitations, the semiexponential (eq. 3.45) has 4.98 µs and no sim-
plification (eq. 3.44) varies with a standard deviation of 3.43 µs. Thus the biggest
robustness is expected from the fitting according to equation 3.44 although the fitting
error is almost negligible for both fittings from equation 3.45 and equation 3.44. The
exponential fit (eq. 3.46) shows a poor error performance but a quite stable lifetime
estimation.

to simulate a worst case. White Gaussian noise N (0, σ2) is added with a variance σ2

based on the variance measured for I(t) where t � 1 ms. Note that the measure-
ment noise is primarily caused by the shot noise of the photodiode, which cannot be
reduced with a better circuit or cooling. Thus a simulated set Ri(t) of perfect measure-
ments only influenced by measurement noise is created based on the perfect reference
measurement R0(t) and the added simulated noise N (0, σ2)

σ2 ≈ Var
(

I(t� 1 ms)
)
≈ 0.01 nW2 (3.48)

Ri(t) = R0(t) +N (0, σ2), (3.49)

where i ≥ 1 is the index of the generated simulated measurement. Then the corre-
sponding lifetime τi was determined for each simulated measurement. The result for
100 simulated measurements is shown in figure 3.5. Ideally τi should not vary over
the simulated measurements, but obviously it does with a standard deviation of about

∆τsim ≈ 3.9 µs. (3.50)
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Figure 3.5: The sensivity of the lifetime τ over different simulated measurements

Ri(t) = R0(t) +N
(

0, Var
(

I(t � 1 ms)
))

for a fitting based on equation (3.44) . The
standard deviation of the lifetime is 3.9 µs.

Since this variation is only due to the sensitivity of the fitting algorithm to the un-
avoidable measurement noise, it can be seen as an estimated lower boundary for the
accuracy of the lifetime. This is in good accordance with the measured accuracy of
∆τ ≈ 4 µs.

[Sun98] created a model for Ytterbium fluorescence lifetimes over temperature. Al-
though the model is based on exponential decays, the order of magnitude for the
lifetime sensitivity can be expected to be applicable in this work as well. Figure 3.6
shows the behavior of the fluorescence lifetime over temperature for different dop-
ing concentrations in the temperature region important for this work. Based on this
model, the best case sensitivity is about

∆τ

∆T
≈ 250

ns
K

. (3.51)

This corresponds to a lower boundary sensitivity for the system in this work of

∆Tmin ≈
3.9 µs
250 ns

K
= 15.6 K. (3.52)

In reality, the sensitivity is probably even worse, although the lower boundary sensi-
tivity is already far away from any satisfying value.

In summary, the temperature measurement based on fluorescence lifetime needs a
very well defined environment with very stable power off excitations. The high quan-
tity of degrees of freedom for the fitting function decreases the robustness of the sys-
tem. Therefore the constraints with respect to noise are tough and hard to fulfill for
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Figure 3.6: The sensivity of the fluorescence lifetime over temperature according to
[Sun98] for different dopings of Ytterbium doped fibers.

short length fibers with weak fluorescence intensities due to shot noise. Fitting func-
tions with less degrees of freedom (e.g. a pure exponential decay) show poor agree-
ment with the measured decay. Most of the more sophisticated (and maybe more
robust) fitting algorithms, e.g. based on phase shifts in Fourier domain, cannot be
used as the system is not a linear time invariant system. Normal gradient descent (or
similar) algorithms are slow and computationally expensive.

Thus, the system is not very well suited for fast and robust temperature measurements
based on fluorescence lifetime with high accuracy. However, measurements in very
high temperature regions are possible, where the low absolute accuracy may still suf-
fice the requirements and the lifetime sensitivity is intrinsically much higher [Sun98].



4 Fluorescence Spectrum

Both the emission and the absorption spectra of fluorescent materials vary with tem-
perature. In case of an ideal two level system, the fluorescence is created by the emis-
sion of photons during the transition of excited electrons from the second energy level
to the ground energy level (compare to figure 2.3b). This transition can happen sponta-
neously or stimulated by another photon (compare to figure 3.1). Each emitted photon
can also cause a stimulated emission of another photon. This process of self stimulated
emission is called amplified spontaneous emission. Electrons in the ground energy level
can absorb previously emitted photons and change to the second energy level. This
process is called reabsorption. Additionally photons emitted from an external input
source are absorbed or cause stimulated emissions. All these processes cause various
transitions of electrons between the two energy levels. Each transition changes the
probability of a photon getting absorbed or emitted as the amount of electrons in the
ground or second energy level changes. Thus the rate of transitions varies over time
until the same amount of electrons decay from the second to the ground energy level
as electrons are excited from the ground energy level to the second energy level. In
this case, the distribution of electrons among the two energy levels stays constant. The
(time constant) measured spectrum is the result of the emission in this steady state.

4.1 Calculation and Dependencies

Just like in chapter 3, it is be assumed that the excitation is relatively constant along the
fiber. According to equation (3.43), the emission intensity of the steady state system is
equal to

I(∞) = f − d =

∫ ∞
0

ũν,T+
aν
σν

∆t̃ν
dν∫ ∞

0
σν ũν,T+aνkν

σ2
ν ∆t̃2

ν
dν
·
∫ ∞

0
Eν

σνũν,T + aνkν

σ2
ν ∆t̃ν

dν−
∫ ∞

0
Eν

aν

σν
dν

=
∫ ∞

0
Eν

 ∫ ∞
0

ũν,T+
aν
σν

∆t̃ν
dν∫ ∞

0
σν ũν,T+aνkν

σ2
ν ∆t̃2

ν
dν
· σνũν,T + aνkν

σ2
ν ∆t̃ν

− aν

σν

 dν. (4.1)
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This result is compared to equation (3.9) evaluated for t→ ∞

I(∞) =
∫ ∞

0
Eνgν(∞) dν. (4.2)

As both equations must hold for every possible Eν, it directly follows for the steady
state fluorescence density spectrum that

γ(ũν,T) =

∫ ∞
0

ũν,T+
aν
σν

∆t̃ν
dν∫ ∞

0
ũν,T+

aν
σν

kν

σν∆t̃2
ν

dν
(4.3)

gν(∞) = γ(ũν,T)
ũν,T + aν

σν
kν

σν∆t̃ν
− aν

σν
, (4.4)

where γ(ũν,T) is a scale for the excitation of the fiber.

The thermal radiation Bν(T) is defined as the radiation that occurs in thermodynamic
equilibrium without excitation. No energy is emitted or absorbed in thermodynamic
equilibrium meaning that no emission or absorption effects can occur, i.e. Ṅ2,ν(∞) = 0
for all frequencies ν. For the thermal radiation holds (compare to (3.10))

gν(∞)|uν(∞)=0 = Bν(T)− ∆t̃ν · Ṅ2,ν(∞) = Bν(T), (4.5)

with Ṅ2,ν(∞) = 0.

An equation system can be constructed by using all known formulas for gν(∞) based
on equations (3.10) and (3.12) as well as equation (4.4) for the normal case and the
thermodynamic equilibrium case (i.e. uν(∞) = 0 and gν(∞) = Bν(T))

gν(∞) = γ(ũν,T)
ũν,T + aν

σν
kν

σν∆t̃ν
− aν

σν
(4.6)

Bν(T) = γ(Bν(T))
Bν(T) + aν

σν
kν

σν∆t̃ν
− aν

σν
(4.7)

gν(∞) = ũν,T + ∆t̃ν [σνN2(∞)− vνσa,νN] gν(∞) + ∆t̃νaνN2(∞) (4.8)

Bν(T) = Bν(T) + ∆t̃ν [σνN2,0(∞)− vνσa,νN] Bν(T) + ∆t̃νaνN2,0(∞). (4.9)

N2,0(∞) is the upper level population density in case of thermodynamic equilibrium.
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Some tedious, but straightforward further computations yield four different equations

Ne f f =
kν

∆t̃νσν
=

1
γ(ũν,T)

+ N2(∞) =
1

γ(Bν(T))
+ N2,0(∞) (4.10)

σ̃ν =
σa,ν

σa,ν + σe,ν
(4.11)

Bν(T) =
aν
vν

N2,0(∞)

σa,νN1,0(∞)− σe,νN2,0(∞)
(4.12)

gν(∞) = uν

1− σ̃ν
N

Ne f f

1− N2(∞)
Ne f f

+ Bν(T)

1 + σ̃ν
N

Ne f f

N2(∞)
N2,0(∞)

− 1

1− N2(∞)
Ne f f

 . (4.13)

Notable properties derived from equation (4.10) are Ne f f > N2(∞) ≥ N2,0(∞) and
Ne f f > σ̃νN.

It is clear from equation (4.13), that the measured spectrum will depend on the popula-
tion density N2(∞) and, accordingly, the excitation photon density uν. Ne f f , N2,0(∞),
N and σ̃ν are constant over the excitation photon density uν. Considering high excita-
tion photon densities, i.e. N2(∞) is large compared to N2,0(∞)

Ne f f +σ̃ν N
N2,0(∞)+σ̃ν N , and regions

where the excitation does not overlay the measurement, i.e. uν = 0, equation (4.13)
can be approximated by

gν(∞) ≈ Bν(T)σ̃ν
N

Ne f f

N2(∞)
N2,0(∞)

− 1

1− N2(∞)
Ne f f

∝ Bν(T)σ̃ν. (4.14)

The empirical explanation that the condition of high excitations can be fulfilled in the
scope of this work is the observation that the fluorescence power of the excited mate-
rial is significantly stronger than the thermal radiation power. For uν = 0, gν(∞) �
Bν(T) is fulfilled, if equation (4.14) is fulfilled (compare to equation (4.13)). Therefore,
the spectrum reaches a shape independent from the excitation for large excitations.
If a large excitation can be guaranteed, the insensitivity of the shape might suffice to
track the temperature dependence of the spectrum with adequate accurateness. Note
however, that this condition might be a problem for certain application areas. In the
following, a detailed analysis of what can be measured in cases of high excitation is
presented.

According to McCumber [McC64], the following relation holds

σe,ν

σa,ν
=

N1,0

N2,0
exp

(
− hν

kBT

)
= exp

(
h[νz − ν]

kBT

)
. (4.15)

The McCumber relation is a consequence of the temperature dependent population of
the two energy levels and their sublevels. νz is called zero-line frequency and describes
the frequency where σe,ν = σa,ν. A more detailed explanation is beyond the scope of
this thesis, but can be found in [McC64]. In case of Ytterbium, the zero-line frequency
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Figure 4.1: The emission and absorption cross sections, i.e. σe,ν and σa,ν, of Ytterbium
in germanosilicate glass as measured in [Pas97].

is normally located near the transition with the highest energy, i.e. νz ≈ c
977 nm =

307 THz (compare to figure 4.1). Using the McCumber relation in the formulas (4.11)
and (4.12) yields

σ̃ν =
1

1 + exp
(

h[νz−ν]
kBT

) (4.16)

Bν(T) =
aν

vνσe,ν

exp
(

hν
kBT

)
− 1

. (4.17)

Note that Bν(T) can also be defined based on the thermal radiation of a non-ideal
black body in thermodynamic equilibrium. In this case, the generalized Planck’s law
for the photon density Bν(T) is used. According to [Sch91], the generalized Planck’s law
converted to photon density representation is expressed by (neglecting fiber internal
reflectivities)

αν = 1− exp (−σa,νN1,0(∞)L) ≈ σa,νN1,0(∞)L if L� 1
σa,νN1,0(∞)

(4.18)

Bν(T) =
αν

8πν2

v3
ν

exp
(

hν
kBT

)
− 1

, (4.19)

where αν is the absorptance derived using the Beer–Lambert Law [Pow98, p. 104] and
approximated using the relation ex ≈ 1 + x for |x| � 1. L is the effective length (a
mean length over all directions) of the fiber which is assumed to be short. A compari-
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son of equations (4.17) and (4.19) followed by using equation (4.15) yields

aν

vνσe,ν
= σa,ν

8πN1,0(∞)Lν2

v3
ν

= σe,ν
8πN1,0(∞)Lν2

v3
ν

exp
(

h[ν− νz]

kBT

)
. (4.20)

Resolving for σe,ν yields

σe,ν =
√

aν
vν√

8πN1,0(∞)Lν2
exp

(
h[νz − ν]

2kBT

)
. (4.21)

Therefore, combined with equations (4.16) and (4.17), the overall fluorescence photon
density under high excitation is

fσa,ν(T) =
8πN1,0(∞)Lν2

v3
ν[

1 + exp
(

h[νz−ν]
kBT

)] [
exp

(
hν

kBT

)
− 1
] (4.22)

fσe,ν(T) =

8πN1,0(∞)Lν2

v3
ν

exp
(
− hνz

kBT

)
[
1 + exp

(
h[νz−ν]

kBT

)] [
1− exp

(
− hν

kBT

)] (4.23)

f√aν
(T) =

√
8πN1,0(∞)Lν2

v2
ν

exp
(
− hνz

2kBT

)
[
1 + exp

(
h[νz−ν]

kBT

)] [
exp

(
hν

2kBT

)
− exp

(
− hν

2kBT

)] (4.24)

gν(∞) ∝ Bν(T)σ̃ν = fσa,ν(T) · σa,ν (4.25)

= fσe,ν(T) · σe,ν (4.26)

= f√aν
(T) ·

√
aν. (4.27)

According to equation (3.8), the measured intensity spectrum is

Iν(∞) ∝ νgν(∞) ∝ ν f{σa,ν|σe,ν|
√

aν}(T) · {σa,ν|σe,ν|
√

aν}, (4.28)

assuming eνvν is constant over frequency. Each function f (T) = ν f{σa,ν|σe,ν|
√

aν}(T) can
be approximated using a first order Taylor series

f (T) ≈ f (T0)|ν=νz ·
[

1 +
∂T f (T)|T=T0

f (T0)
[T − T0]

]
· f (T0)

f (T0)|ν=νz

, (4.29)

where f (T0)|ν=νz has the function of a constant frequency and is a temperature inde-
pendent factor. In case

∂T f (T)|T=T0
f (T0)

is also frequency independent, the expression Iν(∞)
f (T0)

will be proportional to the corresponding spectrum (i.e. σa,ν, σe,ν or
√

aν) regardless
of the temperature (compare to equation (4.28)). Ideally, f (T0) can also be assumed to
be constant over frequency, in which case Iν(∞) is directly proportional to the corre-
sponding spectrum.
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Figure 4.2: The behavior of the factors ν fσa,ν(T), ν fσe,ν(T) and ν f√aν
(T) over temper-

ature and frequency evaluated at T0 = 303 K and assuming a frequency independent
vν (refer to equations (4.22) till (4.29)). The background shows a logarithmic example
measurement Iν(∞) of the spectrum. The temperature sensitivity in the minor peak
region between 288 THz and 303 THz is stable over frequency, if it is referenced to
the absorption spectrum σa,ν. Consequentially Iν(∞)

ν fσa,ν (T0)
∝ σa,ν holds in this region re-

gardless of the temperature. Since ν fσa,ν(T0) shows relatively good frequency stability
as well, the assumption Iν(∞) ∝ σa,ν can be used for applications with smaller accu-
racy needs. For a connection between Iν(∞)2 and aν, ν f√aν

(T) must be squared and
∂T f√aν

(T) doubled decreasing the stability over frequencies.

According to figure 4.2,

Iν(∞)

ν fσa,ν(T0)
∝ σa,ν (4.30)

is fulfilled in the region of the minor emission peak. Tests showed, that using the
approximation

Iν(∞) ∝ σa,ν (4.31)

does not decrease the reachable accuracy significantly as ν fσa,ν(T0) is approximately
constant over the frequency in the analyzed region. Consequentially, this approxima-
tion will be used in the following for the sake of convenience.

To sum up, the steady state emission spectrum of an Ytterbium doped fiber under
high excitation in the wavelength range 990 nm < λ < 1040 nm or, equivalently, the
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frequency range

288 THz < ν < 303 THz (4.32)

of the minor emission peak is approximately directly proportional to the absorption
spectrum σa,ν. This observation is contrary to the intuitive assumption, that the mea-
sured spectrum roughly corresponds to the spontaneous emission (although all spec-
tra still have similar properties). There are no significant temperature effects changing
the proportionality to the absorption spectrum in this region. Accordingly, measured
temperature effects will be a direct result of the temperature effects of the absorption
spectrum itself reducing the complexity for temperature sensing. The temperature
effects of the absorption spectrum are discussed in the next chapter.

As a remark, the overall measured spectrum exhibits more than just the temperature
dependence of the absorption spectrum. It has been shown in figure 4.2, that the
shape of the spectrum also changes with temperature according to ν fσa,ν(T). With a
stable normalization of the spectrum, this additional temperature effect could be used
to improve the temperature measurement. The underlying mechanism, however, is
rather complex as at least two temperature dependent effects influence each other (the
changes caused by ν fσa,ν(T) and the temperature dependent change of the absorption
spectrum). In addition, the stable normalization is another problem to solve and the
correct measurement of the entire spectrum (especially of the main peak) exhibits cer-
tain problems as can be seen in figure 4.4. This is why this work focuses on the minor
peak, that shows temperature effects primarily caused by the absorption spectrum.

4.2 Temperature Dependence of the Absorption Spectrum

Several effects influence the absorption spectrum. In this work, the two-level assump-
tion is used (see section 3.1), i.e. the system is believed to consist of only two energy
levels with different transitions. In reality, each energy level will consist of multiple
sublevels (compare to figure 2.3b). Sublevels are able to interchange electrons to a cer-
tain extend without the need for external excitation. If the temperature is increased,
the higher sublevels will get more densely populated. Consequentially, transitions
starting from higher sublevels will increase while transitions starting from lower sub-
levels will decrease. Normally this causes a shift of the emission spectrum towards
higher frequencies. This effect is modeled by the McCumber relation in equation 4.15
that has already been used for the formulas derived.

A second effect is the spectral line broadening. Several reasons exist for the broaden-
ing of spectra, most of them are well analyzed for gas spectra [Dem11]. A detailed
analysis is beyond the scope of this thesis. One intuitive example for spectral broad-
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ening is Doppler Broadening, caused by the temperature dependent movement of elec-
trons. If an electron emits a photon, the frequency of the photon will be shifted ac-
cording to the movement of the electron following the principle of the Doppler effect.
The higher the temperature, the faster the electrons will move, the stronger the fre-
quency bandwidth of emitted photons will be. However, Doppler Broadening is mainly
observed in gases.

Two main categories exist, the inhomogeneous broadening and the homogeneous broaden-
ing. Inhomogeneous broadening is observed if each single atom shows different emis-
sion probabilities (e.g. because they have different velocities like for Doppler broad-
ening). Homogeneous broadening describes effects that have equal probabilities for
all atoms. An effect of the former category is usually modeled by a convolution of
the spectrum with a Gaussian filter, the latter by a convolution with a Lorentzian filter
[Dem11].

A Gaussian filter kernel is defined by

sG(ν) ∝ exp
(
−π2 ν2

θ

)
(4.33)

with
√

θ being proportional to the bandwidth.

A Lorentzian kernel is represented by

sL(ν) ∝
1

1 + 4π2 ν2

γ2

, (4.34)

where γ is proportional to the bandwidth.

A convolution is equal to a multiplication in Fourier domain. As every broadening
effect is represented by a convolution of one of the above functions with the spectrum,
the total broadening can be described by a multiplication of all Fourier domain kernels
contributing to the broadening. The Fourier transformation from ν to tν yields for the
broadening kernels

SG(tν) ∝ exp
(
−θt2

ν

)
(4.35)

SL(tν) ∝ exp (−γ|tν|) . (4.36)

tν describes a frequency over the optical frequency ν (which is basically a time). For
easier discrimination, tν will be called Fourier frequency in the following. The overall
broadening in Fourier domain caused by different effects is consequentially

S′(tν) = ∏
k

SL,k(tν)∏
i

SG,i(tν) ∝ exp

(
−∑

k
γk|tν| −∑

i
θit2

ν

)
. (4.37)
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Additionally, a spectral shift might occur, e.g. due to an energy shift between the two
energy levels or due to pressure broadening. All individual shifts will add up to a
single spectral shift ∆ν

2π . A spectral shift in optical frequency domain is expressed by
using a phase shift in Fourier frequency domain. The overall spectral change S(tν) is
therefore modeled using

Γ = ∑
k

γk (4.38)

Θ = ∑
i

θi (4.39)

S(tν) = S′(tν) exp (−i∆νtν) ∝ exp
(
−Γ|tν| −Θt2

ν − i∆νtν

)
. (4.40)

Most known thermal spectral changes exhibit a temperature dependency of the broad-
ening bandwidths (γ respectively

√
θ) or spectral shift that has the form of a power

function. The sums of the power functions (i.e. Γ, Θ and ∆ν) form polynomial func-
tions. The sum of the three polynomials will again form a polynomial. Thus the
overall thermal change S(tν, T) can be written in terms of a polynomial function with
temperature independent coefficients

S(tν, T) = C(T) exp

(
−

P

∑
p=1

[
Γp|tν|+ Θpt2

ν + i∆νptν

]
T

p
K

)
, (4.41)

in which K defines the stepsize, P the degree of the polynomial and C(T) some scaling
coefficient. Note that the exact polynomial coefficients depend (amongst others) on
the material and the structure of the material, which is why they are assumed to be
unknown in the following.

Considering the absorption spectrum σa,ν(T) in Fourier domain at a specific tempera-
ture T

σa,ν(T) c sΣa,tν(T) (4.42)

the Fourier absorption spectrum Σa,tν(T) consists of a multiplication of the zero tem-
perature spectrum with the thermal change

Σa,tν(T) = S(tν, T) · Σa,tν(0)

= C(T)Σa,tν(0) exp

(
−

P

∑
p=1

[
Γp|tν|+ Θpt2

ν + i∆νptν

]
T

p
K

)
. (4.43)

Note that

Σa,tν=0(T) = C(T)Σa,tν=0(0) (4.44)
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holds, such that the temperature dependent coefficient C(T) can be substituted

Σa,tν(T)
Σa,tν=0(T)

=
Σa,tν(0)

Σa,tν=0(0)
· exp

(
−

P

∑
p=1

[
Γp|tν|+ Θpt2

ν + i∆νptν

]
T

p
K

)
. (4.45)

Due to the normalization with 1
Σa,tν=0(T)

, it is not important whether the absorption
spectrum σa,ν(T) itself is used for the calculation or just some spectrum proportional
to the absorption spectrum, e.g. Iν(∞) from equation (4.31).

To be able to measure the temperature, at least two measurements corresponding to
different Fourier frequencies tν are needed (one for normalization and one for the
measurement itself), where one frequency is normally tν = 0. A direct approach is the
use of Fourier Transform Infrared Spectroscopy (FTIR) [Gri07]. FTIR directly measures the
Fourier response of the spectrum using a Michelson interferometer. This setup would
be rather complex for verification of spectrum based temperature measurement and
selecting specific wavelength ranges for the measurement is difficult. This is why a
regular spectrum analyzer is used in this work and a Fourier transform is performed
in software.

Another idea is based on the optical frequency domain. Two measurements are done.
One where the amplitudes of high Fourier frequencies are dominant. The other over
the full range to catch the zero Fourier frequency component Σa,tν=0(T) or alterna-
tively where weak Fourier frequencies dominate. This is equivalent to the Fluorescence
Intensity Ratio (FIR) approach already introduced in section 2.2.

Both approaches will be discussed in reverse order the following.

4.2.1 Fluorescence Intensity Ratio (FIR)

The Fluorescence Intensity Ratio is based on the ratio of two measurements [Bax96].
According to equations (3.9) and (4.31) the two measurements can be denoted by

I0(∞, T) =
∫ ∞

−∞
h0(ν)σa,ν(T) dν (4.46)

I1(∞, T) =
∫ ∞

−∞
h1(ν)σa,ν(T) dν, (4.47)

with measurement and scaling functions h0(ν) and h1(ν). Based on the formula for
convolutions evaluated at ν = 0, the convolution-multiplication-identity of Fourier
transforms, the inverse transform of Fourier signals evaluated at ν = 0 and the sym-
metrical properties of phase and amplitude for real Fourier transforms the following
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relation holds ∫ ∞

−∞
h(ν)σa,ν(T) dν = (h(−ν) ∗ σa,ν(T))(ν = 0)

=
∫ ∞

−∞
Σa,tν(T)|H(−tν)|eiϕH(−tν) dtν

=
∫ ∞

−∞
Σa,tν(T)|H(tν)|e−iϕH(tν) dtν. (4.48)

Broad functions h(ν) result in narrow Fourier transforms H(tν). In the most extreme
case, H(tν) will form a dirac function. Thus, assuming a broad function h0(ν) yields

I0(∞, T) ≈ Σa,tν=0(T)|H0(0)|. (4.49)

I0(∞, T) can be interpreted as the scaled mean value of the absorption spectrum. An
alternative method for measuring the mean value I0(∞, T) is using a function h0(ν),
that selects a region of ν where weak Fourier frequencies dominate. However, these
regions have weak intensities in most cases.

A good choice for h1(ν) is a function selecting a region of ν, where σa,ν(T) changes
significantly with temperature. Additionally, the ratio I1(∞,T)

I0(∞,T) should be strictly mono-
tonically decreasing with higher temperatures to ensure a unique mapping of ratio
and temperature. This is normally the case if only regions with a stronger intensity
than the mean value I0(∞, T) are selected. Higher intensities will broaden towards
the mean value with higher temperatures leading to a monotonic decrease. Regions
fulfilling these requirements are the peaks of the absorption spectrum σa,ν(T), i.e. re-
gions of positive amplitudes and high Fourier frequencies.

Therefore another alternative for h0(ν) would be a function selecting a region of neg-
ative amplitudes (or notches) to get a strong counterpart to I1(∞, T) and an increased
temperature sensitivity. However, the signal powers of notches are very weak thwart-
ing the advantage of the counterpart effect due to increased noise. Selecting h0(ν)

as mean value creates the biggest frequency difference between I0(∞, T) and I1(∞, T)
without losing signal power.

The Fluorescence Intensity Ratio is the ratio of both measurements, i.e.

I1(∞, T)
I0(∞, T)

≈
∫ ∞

−∞

Σa,tν(T)
Σa,tν=0(T)

|H1(tν)|
|H0(0)|

e−iϕH1 (tν) dtν. (4.50)
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Inserting equation (4.45) leads to

eC0(tν) =
Σa,tν(0)

Σa,tν=0(0)
|H1(tν)|
|H0(0)|

e−iϕH1 (tν) (4.51)

Cp(tν) = −Γp|tν| −Θpt2
ν − i∆νptν for p ≥ 1 (4.52)

I1(∞, T)
I0(∞, T)

≈
∫ ∞

−∞
eC0(tν)e∑P

p=1 Cp(tν)T
p
K dtν =

∫ ∞

−∞
e∑P

p=0 Cp(tν)T
p
K dtν (4.53)

with some temperature independent complex constants Cp(tν).

Using the definition of an exponential function

ex = lim
M→∞

M

∑
m=0

xm

m!
(4.54)

the ratio can be rewritten as

I1(∞, T)
I0(∞, T)

≈
∫ ∞

−∞
lim

M→∞

M

∑
m=0

[
∑P

p=0 Cp(tν)T
p
K

]m

m!
dtν. (4.55)

The m’th power of a polynomial with degree P is a polynomial with degree mP. The
sum of polynomials with maximum degree MP is a polynomial with degree MP.
These two observations yield

I1(∞, T)
I0(∞, T)

≈ lim
M→∞

MP

∑
p=0

C̃pT
p
K . (4.56)

Note that the integral as well as all measurement functions H0(tν) and H1(tν) moved
into the (real) coefficients C̃p. This result is similar to a normal polynomial fit of the
ratio I1(∞,T)

I0(∞,T) . However, the approximation (4.56) is based on the convergent approxi-
mation (4.54).

Alternatively the equation (4.56) can be expressed in matrix notation for W measure-
ments 

I1(∞,T1)
I0(∞,T1)

...
I1(∞,TW)
I0(∞,TW)


︸ ︷︷ ︸

I

=


1 T

1
K

1 · · · T
MP
K

1
...

...
. . .

...

1 T
1
K

W . . . T
MP
K

W


︸ ︷︷ ︸

T


C̃0
...

C̃MP


︸ ︷︷ ︸

C̃

. (4.57)

Therefore the coefficients C̃ are easily calculated with the pseudoinverse T+

C̃ = T+I. (4.58)
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The temperature region of interest in this work is between 283 K and 323 K. As this
is a quite narrow temperature region, it is assumed that a linear fit, i.e. MP = 1 and
K = 1, approximates the ratio I1(∞,T)

I0(∞,T) with sufficient accuracy.

There are other possibilities to approximate (4.53) besides equation (4.56), for example
using a sum of exponentials based on Prony’s Method. These possibilities are not cov-
ered in this work as the measured ratios are nearly affine (probably due to the small
temperature range analyzed) and do not justify more complex approximations.

To summarize, two measurement regions h0(ν) and h1(ν) generate two intensities
I0(∞, T) and I1(∞, T). h0(ν) selects a wide range of frequencies in the region defined
by inequation (4.32). h1(ν) selects a peak in the same region. As the needed tempera-
ture range is small, the behavior of the ratio I1(∞,T)

I0(∞,T) can be assumed to be sufficiently
described by an affine first order term

I1(∞, T)
I0(∞, T)

≈ C̃0 + C̃1T =
(

1 T
)(C̃0

C̃1

)
(4.59)

4.2.2 Fourier Domain Intensity Ratio (FDIR)

The Fourier Domain Intensity Ratio is based on a software Fourier transformation of
the absorption spectrum Σa,tν(T). According to equation (4.31), Σa,tν(T) is known by a
measurement and discrete Fourier transformation of the output spectrum in the region
defined by equation (4.32)

Σa,tν(T) ∝ F (Iν(∞)) (tν). (4.60)

The scaling of the spectrum is not important as it will cancel out. Note that select-
ing only a certain region of σa,tν(T) (which is unavoidable as σa,tν(T) is proportional
to Iν(∞) only for the region defined in equation (4.32)) increases the importance of
an appropriate window function. A good window function reduces the resulting dis-
tortions of the Fourier transform Σa,tν(T). The best results are obtained by using the
Hamming window, which is why it was used for selecting the correct part of Iν(∞).

The general temperature dependency of the spectrum is derived in the following. Af-
terwards, some assumptions are made in order to simplify the system for practical
use.

Rewriting equation (4.45) yields

eC(tν) =
Σa,tν(0)

Σa,tν=0(0)
(4.61)

ln
(

Σa,tν(T)
Σa,tν=0(T)

)
= C(tν) +

P

∑
p=1

[
−Γp|tν| −Θpt2

ν − i∆νptν

]
T

p
K . (4.62)



46 Chapter 4 Fluorescence Spectrum

Alternatively the equation can be expressed in matrix notation for W measurements
and F + 1 frequencies with IF being the F× F unity matrix

ln
(

Σa,tν,1 (T1)

Σa,tν=0(T1)

)
· · · ln

(
Σa,tν,F (T1)

Σa,tν=0(T1)

)
...

. . .
...

ln
(

Σa,tν,1 (TW)

Σa,tν=0(T1)

)
· · · ln

(
Σa,tν,F (TW)

Σa,tν=0(T1)

)


︸ ︷︷ ︸
Σ

=


1 T

1
K

1 · · · T
P
K

1
...

...
. . .

...

1 T
1
K

W . . . T
P
K

W


︸ ︷︷ ︸

T


C(tν,1) · · · C(tν,F) 0 0 0

0 · · · 0 Γ1 Θ1 ∆ν1
...

. . .
...

...
...

...
0 · · · 0 ΓP ΘP ∆νP


︸ ︷︷ ︸

C


IF

−|tν,1| · · · −|tν,F|
−t2

ν,1 · · · −t2
ν,F

−itν,1 · · · −itν,F


︸ ︷︷ ︸

Tν

(4.63)

For a calibration of the coefficients in C, the following variables are defined

T̃ν =

−|tν,1| · · · −|tν,F|
−t2

ν,1 · · · −t2
ν,F

−itν,1 · · · −itν,F

 (4.64)

c =
(

C(tν,1) · · · C(tν,F) Γ1 Θ1 ∆ν1 · · · ΓP ΘP ∆νP

)
(4.65)

D = T+Σ. (4.66)

Let diagP(T̃ν) denote a block-diagonal matrix, where T̃ν is placed P times along the
diagonal. d is the rowwise vectorized matrix D (i.e. d is a row vector). Then, the
system can be rewritten as

d = c

(
IF

diagP(T̃ν)

)
. (4.67)

Therefore the coefficients are calculated using

c = d

(
IF

diagP(T̃ν)

)+

. (4.68)

If the degree of the polynom P is increased by one, three new unknown variables are
introduced into the system. For this reason, the system must be approximated by a
lower degree polynom to be able to calibrate the system without needing an unrealis-
tic amount of measurements. Additionally, the powers of the temperature matrix are
widely unknown, which is why the complexity of dependencies (especially regard-
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ing Fourier frequencies and temperature) should be reduced to be able to calibrate
effective constants C̃ that cover a lot of internal behavior.

Similar to section 4.2.1, it is assumed that the narrow temperature range allows the use
of an affine function. Thus P = 1 and K = 1 is used in the following. Lower Fourier
frequencies are more robust against noise as only properties existing over a broad
range of the optical spectrum are taken into account. Therefore, only three frequencies
are used in the analysis: the zero frequency tν = 0, the first positive frequency tν,1 =

+1 and the first negative frequency tν,2 = −1 (this approach is based on a discrete
Fourier transformation, therefore index numbers are sufficient for a description of the
frequency). Note that tν,1 and tν,2 carry the same information due to the symmetrical
properties of the Fourier spectrum for real functions, which is why the use of just tν,1 is
equivalent. The restriction to only one frequency additionally increases the accuracy
of the assumption, that an affine function describes the behavior sufficiently well due
to the reduced complexity of the system. Accordingly equation (4.62) simplifies to

C̃(tν) = −Γp|tν| −Θpt2
ν − i∆νptν (4.69)

ln
(

Σa,tν=1(T)
Σa,tν=0(T)

)
≈ C(1) + C̃(1)T =

(
1 T

)(C(1)
C̃(1)

)
. (4.70)

This equation is easily calibrated by using the method already mentioned in section
4.2.1.

To sum up, the logarithmic ratio of the zero frequency and first frequency term of a
discrete Fourier transformation of the optical spectrum measured in the region de-
fined by equation (4.32) is expected to depend on the temperature in an affine way.
This approach requires an accurate measurement, sampling and Fourier transforma-
tion (using an appropriate window function) of the optical spectrum, which is more
complex than just measuring two regions like in the FIR case.

4.3 Experimental Results

The measurement setup is depicted in figure 4.3. To be able to measure the emission,
the system must be excited. Measuring the emission spectrum in the same direction as
the excitement is called in transmission. Measuring in the opposite direction is denoted
as in reflection. Measuring in reflection requires some kind of beam splitter. Beam
splitters (especially in fiber optics) exhibit their own transmission curves altering the
original spectrum. Therefore, the measurement described in this section is carried out
in transmission. Measuring in transmission (and also in reflection due to non-ideal
effects) requires an excitation light source with a wavelength which is not part of the
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915 nm Laserdiode Peltier Element (TEC)

5 cm Yb Doped Fiber

Optical Spectrum Analyser

Figure 4.3: The utilized setup for measuring the fluorescence spectrum. The peltier
element was used for temperature stabilization. The resolution of the optical spectrum
analyzer was set to 0.05 nm or, equivalently, 13.6 GHz in the 1000 nm range.

emission spectrum. Accordingly a 915 nm light source is used in this work to excite
the dopant.

Figure 4.4 shows an example measurement. A remarkable disadvantage of the mea-
surement in transmission is the visibility of the laser diode’s emission spectrum, which
is probably the reason for the behavior of the spectrum at the left and right borders,
where the measured intensity increases proportional to the laser power. In order to
avoid wrong measurements of the fluorescence peaks due to the visibility of the laser
diode’s emission spectrum, the length of the fiber was increased to obtain higher flu-
orescence intensities. Therefore, instead of a 5 mm fiber length as used in section 3.2,
the fiber used for the following measurements has a length of 5 cm. The spectrum of
the laser diode could alternatively be filtered with increased effort.

Another problem are unwanted reflections in the fiber. These reflections are caused by
intersections between two fibers with different refractive indices or imperfect splices.
The reflections form interferometers with a periodic filtering pattern clearly visible
around the peaks of the measurements in figures 4.4 and 4.5. Especially the measure-
ment near the main peak in figure 4.4 is almost unusable as the periodicity of the
interferometer is similar to the peak bandwidth. A profound conclusion about the
peak power and spectral change over temperature is not possible as the interferomet-
ric effect overlays the temperature effects. However, the spectral part of interest is the
second and not the main peak (refer to equation (4.32)). This is why there is no further
investigation for a possible reduction of the interferometric effects.

The second peak that is used for the temperature measurement is shown in greater
detail in figure 4.5. Five temperatures between 283 K and 323 K where used for cal-
ibration. For each temperature, seven laser powers from 55 mW to 145 mW where
applied to test the robustness of the system.
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Figure 4.4: The measured Spectrum Iν(∞) of the Ytterbium doped fiber over different
powers for the 915 nm excitation laserdiode at room temperature T = 293 K. The in-
terferometric distortions at the main emission peak for high excitation powers prevent
an accurate measurement of the peak power, whereas the second peak shows less dis-
tortions. Some excitation proportional effects occur at the low power borders of the
spectrum, probably saturation effects or minor emissions of the used laserdiode.
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Figure 4.5: The normalized (i.e. relative to the mean of the plotted values) spectrum
Iν(∞) of the Ytterbium doped fiber in the range of the second emission peak over
different laser powers and fiber temperatures. Note that the shape is primarily tem-
perature and not excitation dependent. Additionally a very small spectral shift to
lower frequencies can be observed with higher temperatures. These shifts to lower
frequencies are usually caused by pressure broadening [Dem11]. The oscillation is the
result of unwanted reflections in the fiber creating interferometers.
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Figure 4.6: The FI Ratio as defined in section 4.2.1 and fitted using equation (4.56).
h0(ν) was chosen to be a rectangular window selecting the whole spectrum shown in
figure 4.5. h1(ν) is a rectangular window from νmin = 294.49 THz to νmax = 297.41 THz
or alternatively with the center at a wavelength of 1013 nm and a bandwidth of 10 nm.
The temperature sensitivity is about C̃1 ≈ −0.000 56 1

K .

4.3.1 Fluorescence Intensity Ratio

A system was calibrated using the formulas derived in 4.2.1 and two rectangular func-
tions h0(ν) and h1(ν). h0(ν) simply selects the whole spectrum shown in figure 4.5.
h1(ν) is a rectangular function starting at νmin and ending at νmax. The resulting mea-
surements for the seven different laser powers and the least squares fitting according
to equation (4.59) are shown in figure 4.6. The assumption of an affine behavior seems
to be fulfilled. The temperature sensitivity is about C̃1 ≈ −0.000 56 1

K . The accuracy of
temperature measurement has a standard deviation of about ∆T ≈ 0.94 K and will be
discussed in further detail in section 4.3.3.

4.3.2 Fourier Domain Intensity Ratio

The measurement system in the Fourier domain was calibrated based on the formulas
derived in 4.2.2. To minimize leakage effects, a Hamming window was used for the
calculation of the discrete Fourier transformation. The result of the transformation
applied to the spectrum in figure 4.5 is shown in figure 4.7. The stability over laser
powers is higher for the first frequency index. Therefore, and according to equation
(4.70), only the first frequency index was used for calibration.

The resulting measurements for the seven different laser powers and the least squares
fitting according to equation (4.70) are shown in figure 4.8. The assumption of an
affine behavior seems to be fulfilled. Note however, that the spectral shift represented
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Figure 4.7: The normalized (i.e. relative to the zero frequency or mean) discrete
Fourier transformation of the measured spectrum Iν(∞) as seen in 4.5. The trans-
formation was done using a Hamming window and without adding any zero values
(i.e. without any interpolation of the spectrum). While the second frequency index
seems to be rather unstable with excitation, the first frequency index shows almost
only temperature dependent behavior.

by the imaginary part of the logarithm (i.e. the Fourier phase) is not very robust and
counteracts the accuracy of the real part. This is why only the real part is considered in
the following. The temperature sensitivity of the real part is about C̃1 ≈ −0.000 95 1

K .
The accuracy of temperature measurement has a standard deviation of about ∆T ≈
0.95 K and will be discussed in further detail in section 4.3.3.

4.3.3 Comparison

A comparison of the FIR and the FDIR accuracy depicted in figure 4.9 shows no sig-
nificant differences. Based on figure 4.9, both approaches measure increasing temper-
atures Tmeasured with increasing laser powers. One reason could be the internal heating
caused by the energy loss between excitation and emission leading to assumed tem-
perature Treal that is too low. The standard deviation of both approaches is about 1 K,
which is far better than the results expected by the fluorescence lifetime method but
still worse than the accuracy of traditional methods (e.g. based on thermistors).

As already mentioned (see equation 4.14), the measurement based on the spectral
shape needs a certain laser power to fulfill all assumptions. I.e. the laser power must
excite enough electrons, such that the density N2(∞) of excited electrons is large com-
pared to N2,0(∞)

Ne f f +σ̃ν N
N2,0(∞)+σ̃ν N . These assumptions seem to be slightly violated for a laser
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Figure 4.8: The FDI Ratio as defined in section 4.2.2 for only one frequency tν = 1 and
fitted using equation (4.70). The original Fourier domain spectrum is plotted in figure
4.7. Note the small shift to lower frequencies represented by the increasing imaginary
part. Yet this shift is not very robust and might disturb the accuracy of the measure-
ment, which is why only the real part is used for the actual temperature determination.
The sensitivity is about C̃(1) ≈ −0.000 95 1

K for the real part and C̃(1) ≈ 0.000 35 1
K for

the imaginary part.

power of 55 mW as the output spectrum has not completely reached its final shape in-
dependent of the excitation power leading to a false measurement. Yet this minimal
laser power cannot be guaranteed in all environments.

The FIR approach could be realized based on custom made fiber optical filters and two
photodiodes. This approach has the advantage of temperature measurements with
only minor delay. The FDIR Methods needs a precise and fast optical spectrum an-
alyzer and complex postprocessing. Without any significant advantages in accuracy,
the FDIR method is inferior to the FIR method in terms of readout speed. However,
the FDIR method is capable of tracking shifts of the spectrum, that might show greater
sensitivities for other dopants.

Although an accuracy of 1 K is reasonable, it is expected to drop with shorter fibers
and it is still much worse than accuracies possible with traditional methods. Addi-
tionally the self-heating of the fiber may be problematic for some applications and the
minimal excitation power cannot be guaranteed in all systems. This why a third ap-
proach of temperature measurement will be analyzed in the next chapter based on the
reflectometry technique for measuring magnitude and position of reflections in a fiber.
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Figure 4.9: Accuracy of the temperature measurement using the spectral information.
The spectral shape is too broad for the excitation with 55 mW leading to a temperature
estimation that is too high. Thus, for 55 mW, the output spectrum has not completely
reached its final shape (although this difference is practically invisible in figure 4.5).
With increasing excitation, the temperature estimated is too high. One reason could
be the internal heating caused by the energy loss between excitation and emission,
leading to an assumed temperature Treal that is too low. The temperature estimation
error is about 0.94 K (standard deviation) for the FIR approach and 0.95 K for the FDIR
approach.
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5 Reflectometry

Reflectometry techniques enable the distributed measurement of reflections in optical
fibers. As scatterings can be interpreted as reflections, a distributed measurement of
scattering effects in a fiber is possible, as well. The temperature (or strain) dependence
of these reflections or scattering effects can be used to construct a sensing device.

Two reflectometry methods are reported in literature: the Optical Time Domain Re-
flectometry (OTDR) and the Optical Frequency Domain Reflectometry (OFDR), each hav-
ing various subtypes. In fact OTDR can be seen as a special subtype of the Network
Analysis (NA) OFDR. For this reason, OTDR will be explained along with NA-OFDR.
[Yük09] presents the subtypes of the OFDR methods, which will be discussed in more
detail in the following. A fiber internal refractive index of n ≈ 1.5 will be assumed for
calculations (e.g. like for the fiber SMF-28e+ by Corning [Inc11]).

5.1 Network Analysis Optical Frequency Domain Reflectometry

5.1.1 Method

For the NA-OFDR method [Nak87] [Dol88] a laser is intensity modulated with the
function u(t). The light is sent to the fiber under test through a coupler placed at
distance yl . The backscattered light in the fiber backpropagates through the coupler
and reaches a photodiode measuring the current backscattered intensity. This pho-
todiode has the distance yp from the coupler (see figure 5.1). To reach a reflection
in distance x from the coupler and travel to the photodiode, the light needs the time
∆t = 2x+yl+yp

v with v being the light velocity in the fiber. While travelling to position x,
the light is attenuated by a(x). Additionally only a certain fraction σ(x) of the incom-
ing light is backscattered. The measured intensity i(t) at the photodiode is the sum of
all backscattered signals. Using L as length of the fiber under test, i(t) is defined as

i(t) =
∫ L

0
a(x)σ(x)u(t− ∆t) dx. (5.1)
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Figure 5.1: The setup for NA-OFDR measurements is shown. The laser emits mod-
ulated light with intensity u(t) (measurable by using the reference photodiode), that
is backscattered by the fiber reflections and measured by a photodiode. The coupler
controls the distribution of emitted and scattered light. Ideally the fiber under test
does not exhibit a Fresnel backreflection at its end, e.g. by using a core-less end cap
and/or an angled end face.

With s(x) as rectangular window function from x = 0 to x = L and by using the
relations x = v

2 ∆t− yl+yp
2 and dx = v

2 d∆t, the equation can be rewritten as

s̃(∆t) = s
(

v
2

∆t−
yl + yp

2

)
(5.2)

ã(∆t) = a
(

v
2

∆t−
yl + yp

2

)
(5.3)

σ̃(∆t) = σ

(
v
2

∆t−
yl + yp

2

)
(5.4)

i(t) =
v
2

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t)u(t− ∆t) d∆t, (5.5)

where s̃(∆t), ã(∆t) and σ̃(∆t) are just compressed and shifted versions of s(x), a(x)
and σ(x). This corresponds to a convolution

i(t) =
v
2
(s̃ ã σ̃ ∗ u) (t). (5.6)

Using the Fourier transformation yields

I( f ) =
v
2
F (s̃(t) ã(t) σ̃(t)) ·U( f ). (5.7)
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The scattering coefficients can be determined by inversion

s̃(t) ã(t) σ̃(t) = F−1
(

2 · I( f )
v ·U( f )

)
. (5.8)

5.1.2 Resolution

The accuracy of this approach is limited by the accuracy of the inverse Fourier trans-
form. An inverse Fourier transform done for a Fourier domain signal with enforced
bandwidth B has the accuracy tacc = 1

B , because the bandwidth enforcement corre-
sponds to a lowpass of the time domain signal. E.g. in case of a rectangular window
function for bandwidth restriction with bandwidth B, the time domain signal will be
convoluted with a sinc function that has its first zero transition at 1

B .

Since the signal I( f ) is limited by the bandwidth BU of U( f ), the inverse transform in
equation (5.8) has the accuracy tacc =

1
BU

leading to a spatial resolution of

∆x =
v

2BU
. (5.9)

Most OFDR techniques use a sinusoidally modulated signal u(t) to create a high fre-
quency signal U( f ). In contrast to that, OTDR is based on pulsed functions u(t)
[Bar76]. Pulses exhibit high frequency behavior, as well, and the same formulas hold,
no matter if u(t) is represents sine waves or pulses.

For sensing areas in the mm scale, e.g. ∆x = 1 mm, bandwidths in the hundreds of
gigahertz are necessary. Even the fastest analog circuits cannot measure signals I( f )
in this frequency range. Thus, high resolution sensing is not practical using NA-OFDR
methods.

5.2 Incoherent Frequency-Modulated Continuous Wave OFDR

5.2.1 Method

The Incoherent Frequency-Modulated Continuous Wave OFDR [Mac81] is similar to
the NA-OFDR. The intensity of the laser is modulated and the reflection is measured
by a photodiode (the general setup is therefore identical to NA-OFDR, see figure 5.1).
However, the modulation function u(t) is based on a linear chirp with the current
frequency f (t) = f0 + γt

u(t) = C + C cos
(

2π
∫ t

0

[
f0 + γt̃

]
dt̃
)
= C + C cos

(
2π
[

f0 +
γ

2
t
]

t
)

. (5.10)
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Thus, the measurement results in (compare to equation (5.5))

i(t) = C
v
2

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t) d∆t

+ C
v
2

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t) cos

(
2π
[

f0 +
γ

2
[t− ∆t]

]
[t− ∆t]

)
d∆t. (5.11)

The AC part of i(t) is (e.g. electronically) multiplied with the AC part of the modula-
tion signal u(t) yielding

iM(t) = C2 v
4

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t)

·
[

cos
(

2πγ∆t · t + 2π
[

f0 −
γ

2
∆t
]

∆t
)

+ cos
(

2π [2 f0 + γ [t− ∆t]] · t− 2π
[

f0 −
γ

2
∆t
]

∆t
)]

d∆t. (5.12)

The second summand can easily be filtered out due to its high frequency of f ≥
2 f0. The first summand consists of summed cosines, where the amplitude of the co-
sine with frequency f = γ∆t corresponds to the factor s̃(∆t)ã(∆t)σ̃(∆t). Applying a
Fourier transformation on the filtered iM(t) yields

IM( f ) = C2 v
8

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t) [δ ( f + γ∆t) + δ ( f − γ∆t)] ei2π f

f0−
γ
2 ∆t

γ d∆t

= C2 v
8

s̃
(

f
γ

)
ã
(

f
γ

)
σ̃

(
f
γ

)
ei2π f

f0−
f
2

γ

+ C2 v
8

s̃
(
− f

γ

)
ã
(
− f

γ

)
σ̃

(
− f

γ

)
ei2π f

f0+
f
2

γ . (5.13)

Using the definition of s̃(∆t) (i.e. s̃(∆t) = 0 for ∆t ≤ 0) yields

IM( f ) = C2 v
8

s̃
(
| f |
γ

)
ã
(
| f |
γ

)
σ̃

(
| f |
γ

)
ei2π f

f0−
| f |
2

γ . (5.14)

The advantage of this approach is that only a single AD conversion channel and only
a single Fourier transformation is needed.

5.2.2 Resolution

The accuracy of this approach is again based on the length of the signal to be Fourier
transformed. The frequency accuracy for a signal of length T is facc =

1
T . The resulting

spatial accuracy is according to equation 5.4 and 5.14

∆x =
v

2γT
(5.15)
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with γT being the sweep range of the modulated input. Thus for a resolution of
∆x = 1 mm and a refractive index of n ≈ 1.5, a sweep range of γT ≈ 100 GHz (inten-
sity frequency, not optical frequency) is necessary, which is far beyond any driving or
measuring capabilities.

Both methods presented so far are unsuitable to track fiber reflections with high reso-
lution. Therefore a third approach is evaluated in the next section, namely the Coherent
Optical Frequency Domain Reflectometry (C-OFDR).

5.3 Coherent Optical Frequency Domain Reflectometry

5.3.1 Method

Instead of using the light intensity, C-OFDR uses the optical frequency ν (i.e. electro-
magnetic field) to create a linear frequency sweep [Eic81]. Using a constant intensity,
the modulation function for the electro-magnetic field is (compare to equation (5.10))

u(t) = C cos
(

2π
[
ν0 +

γ

2
t
]

t
)

. (5.16)

Obviously, even in case of a slowly (in comparison to the maximum time delay in the
system) varying amplitude C, a normalization with a reference signal can compensate
for these fluctuations and the assumption of a constant intensity is still fulfilled.

The measured optical intensity i(t) is proportional to the squared magnitude of the
electro-magnetic field e(t) (compare to the Poynting vector) yielding (similar to equa-
tion (5.5))

e(t) = C
v
2

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t) cos

(
2π
[
ν0 +

γ

2
[t− ∆t]

]
[t− ∆t] + φ̃(∆t)

)
d∆t

(5.17)

i(t) ∝ e(t)2, (5.18)

where φ̃(∆t) models possible phase shifting effects that may occur in case of electro-
magnetic wave reflections. Assuming a dominant reflection at position R with the
corresponding time delay ∆tR =

2R+yl+yp
v and reflection magnitude ãRσ̃R is added,

the overall measured intensity iR(t) becomes

eR(t) = CãRσ̃R cos
(

2π
[
ν0 +

γ

2
[t− ∆tR]

]
[t− ∆tR]

)
(5.19)

iR(t) ∝ (e(t) + eR(t))
2 = e(t)2 + 2e(t)eR(t) + eR(t)2. (5.20)

The complete setup is depicted in figure 5.2 and will be further explained in section
5.3.6. The dominant reflection was thereby realized by a mirror. An alternative to
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Figure 5.2: The setup for coherent OFDR. The laser emits wavelength modulated light
u(t) that is backscattered by the fiber reflections and measured by a photodiode as
intensity iR(t). The coupler controls the distribution of emitted and scattered light.
Several additional photodiodes ensure proper compensation of nonideal effects (fur-
ther details in section 5.3.6). The tuneable laser must be equipped with an optical
isolator to prevent damage caused by the reflected signal (compare to [Gen05]). Alter-
natively, the coupler must be replaced by a system preventing the backreflection of the
laser power to the laser diode (e.g. by using multiple couplers like in [Gif07]). Ideally
the fiber under test does not exhibit a Fresnel backreflection at its end, e.g. by using a
core-less end cap and/or an angled end face.
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Figure 5.3: The setup for an alternative coherent OFDR is shown. Instead of using a
reference mirror, the laser is directly connected to the coupler in forward and back-
ward direction. Everything else is identical to figure 5.2. The advantage is (especially
for measuring low signal reflections in the fiber under test), that no noise interferences
can occur in the reference path of the coupler. However light beam changes (e.g. po-
larization or attenuation) between splitter and coupler cannot be compensated in this
setup. A modification for improved polarization handling is found in [Gif07]. As no
significant noise interferences in the reference path of the coupler are expected in the
scope of this work, the setup shown in figure 5.2 will be used.
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the setup presented in figure 5.2 worth mentioning is shown in figure 5.3. The mirror
has been replaced with a virtual mirror created by connecting the laser directly to the
reference input of the coupler. This reduces the amount of unwanted interferometric
effects with the cost of a higher sensitivity to attenuation or polarization changes in
the transmitting fiber.

As the reflection at R is dominant, i.e. e(t) � eR(t), the following approximation
holds

iR(t) ∝ 2e(t)eR(t) + eR(t)2. (5.21)

The summands in equation 5.21 are

eR(t)2 =
C2

2
ã2

Rσ̃2
R [1 + cos (2π [2ν0 + γ [t− ∆tR]] [t− ∆tR])] (5.22)

2e(t)eR(t) = C2 v
2

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t)ãRσ̃R

·
[

cos
(
2πγ [∆t− ∆tR] ·

[
t− tϕ1

]
− φ̃(∆t)

)
+ cos

(
2π [2ν0 + γ [t− ∆t− ∆tR]] ·

[
t− tϕ2

]
+ φ̃(∆t)

)]
d∆t (5.23)

with

tϕ1 = −
ν0 − γ

2 [∆t + ∆tR]

γ
(5.24)

tϕ2 =
ν0 [∆t + ∆tR]− γ

2

[
∆t2 + ∆t2

R
]

2
[
ν0 +

γ
2 [t− ∆t− ∆tR]

] . (5.25)

Frequencies in the terahertz range, e.g. the (optical) frequency 2ν0, are filtered by
the lowpass effect inherent in every semiconductor photodiode. Accordingly all high
frequency terms with f ≥ 2ν0 (i.e. the second summands) can be ignored as they get
filtered out automatically during measurement.

For easier calculations, the measurement can be transformed to use the current fre-
quency sweep ∆ν = γt instead of the time (i.e. to use the control value instead of the
measurement value)

eR(∆ν)2 =
C2

2
ã2

Rσ̃2
R (5.26)

2e(∆ν)eR(∆ν) = C2 v
2

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t)ãRσ̃R

· cos
(
2π [∆t− ∆tR] ·

[
∆ν− γtϕ1

]
− φ̃(∆t)

)
d∆t. (5.27)



5.3 Coherent Optical Frequency Domain Reflectometry 63

Applying a Fourier transformation from ∆ν to tν combined with the functions defined
in equations (5.2) to (5.4) yields

F
(
eR(∆ν)2) = C2

2
ã2

Rσ̃2
Rδ(tν) (5.28)

F (2e(∆ν)eR(∆ν))

= C2 v
4

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t)ãRσ̃R

[
δ (tν − [∆t− ∆tR]) + δ (tν + [∆t− ∆tR])

]
e
−i2πtν

[
γtϕ1+

φ̃(∆t)
2π[∆t−∆tR]

]
d∆t (5.29)

= C2 v
4

s
(

R +
vtν

2

)
a
(

R +
vtν

2

)
σ

(
R +

vtν

2

)
ãRσ̃Rei2πtν[ν0−γ∆tR− γtν

2 ]−iφ̃(∆tR+tν)

+ C2 v
4

s
(

R− vtν

2

)
a
(

R− vtν

2

)
σ

(
R− vtν

2

)
ãRσ̃Rei2πtν[ν0−γ∆tR+

γtν
2 ]+iφ̃(∆tR−tν).

(5.30)

The Fourier transformation for iR(∆ν) from ∆ν to tν is denoted by (compare to equa-
tion (5.21))

IR(tν) = F (iR(∆ν)) ∝ F
(
eR(∆ν)2)+F (2e(∆ν)eR(∆ν)) . (5.31)

Using the properties of s(x) as introduced in section 5.1 as well as δ(0) ≈ ∆νmax due
to the resolution limitations of the Fourier transform with ∆νmax being the maximum
frequency shift and the conversion ∆x = v

2∆νmax
(see chapter 5.3.2), the following sums

up the relationships between a(x)σ(x) and IR(tν)

φ̃(∆t) = φ

(
v
2

∆t−
yl + yp

2

)
(5.32)

aσ(x) = a(x)σ(x) (5.33)

IR

(
±2
|x− R|

v

)
∝ C2 v

4
ãRσ̃R · . . .

[
2aσ(R) + ãRσ̃R

∆x

]
, 0 = |x− R|

[
aσ(x)e±i4π |x−R|

v

[
ν0− γ

v [v∆tR+x−R]− vφ(x)
4π[x−R]

]
. . .

+aσ(2R− x)e±i4π |x−R|
v

[
ν0− γ

v [v∆tR+R−x]− vφ(2R−x)
4π[R−x]

]] , 0 < |x− R| ≤ min (R, |L− R|)

aσ(x)e±i4π |x−R|
v

[
ν0− γ

v [v∆tR+x−R]− vφ(x)
4π[x−R]

]
, |x− R| > min (R, |L− R|)

.

(5.34)
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How to use these relationships for stable measuring will be discussed in the next sec-
tions after an analysis of the resolution.

5.3.2 Resolution

Fourier Limitations

Based on the constraints of the Fourier transformation, the resolution for tν is tν,acc =
1

∆νmax
with ∆νmax being the maximum frequency shift leading to a spatial resolution of

∆x =
v

2∆νmax
. (5.35)

A frequency sweep of ∆νmax ≈ 100 GHz is necessary to obtain 1 mm resolution with a
refractive index of n ≈ 1.5. That corresponds to a wavelength sweep of about 0.8 nm
for a 1550 nm light source, which is easily obtainable. According to the Nyquist the-
orem, the maximum length depends on the stepsize s∆ν of the measured frequencies
∆ν and is

max (L− R, R) =
v
2

tν,max =
v

4s∆ν
. (5.36)

Comparable results are obtained in [Sol05].

A possible stepsize is 1 pm, leading to a maximal length of 0.4 m given a 1550 nm light
source and a refractive index of n ≈ 1.5. Another limiting property, especially for the
length, is the laser coherence or spectral linewidth, which is discussed in more detail
in the following.

Spectral Laser Linewidth Limitations

The electromagnetic light wave u(t) describes the emitted electromagnetic amplitude
over time. However, the electromagnetic field in reality consists of a sum of different
waves each caused by a slightly different optical frequency ν′. In the following, an
approach for modeling the imperfection of the electromagnetic wave is presented.

To describe the distribution of the optical frequencies around a center frequency, the
spectral shape G(ν) is used in this work, where the sum of all different frequency shifts
is described by a convolution in the frequency domain

F (u(t)real)(ν) = (F (u(t)) ∗ G) (ν). (5.37)
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The scaling of G(ν) is chosen, such that (according to the law of conservation of en-
ergy) the energy of a perfect cosine u(t) is not changed by the convolution, i.e.∫ ∞

−∞
|F (u(t))(ν)|2 dν =

∫ ∞

−∞
|F (u(t)real)(ν)|2 dν. (5.38)

BecauseF (u(t)) has a dirac shape in case u(t) is a perfect cosine, the following relation
holds ∫ ∞

−∞
δ(ν)2 dν =

∫ ∞

−∞
|G(ν)|2 dν. (5.39)

Using ∫ ∞

−∞
δ(ν)2 dν =

∫ ∞

−∞
δ(ν)δ(ν− 0) dν = δ(ν = 0) (5.40)

leads to ∫ ∞

−∞
|G(ν)|2 dν = δ(ν = 0). (5.41)

The time domain functions are:

g(t) = F−1(G(ν))(t) (5.42)

ureal(t) = u(t) · g(t). (5.43)

The electromagnetic fields can therefore be modeled by

e(t) =
v
2

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t)g(t− ∆t)u(t− ∆t) d∆t (5.44)

eR(t) = ãRσ̃Rg(t− ∆tR)u(t− ∆tR). (5.45)

u(t − ∆t) is assumed to include possible phase shifts without having any influence
on g(t − ∆t). Possible phase shifts φ in u(t)real show up as a multiplication with a
symmetric (i.e. complex conjugated for positive and negative frequencies) exponential
ei sign(ν)φ in frequency domain. Accordingly, it can be modeled as being part of u(t)
only. As F (u(t)) lacks zero frequency regions, a convolution of the phase shifted
transform F (u(t)) with G yields the same result as if the phase would have been
added after the convolution. Therefore G can be assumed to be independent of a
possible phase shift.
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The products eR(t)2 and 2e(t)eR(t) are calculated by

eR(t)2 = ã2
Rσ̃2

Rg(t− ∆tR)
2u(t− ∆tR)

2 (5.46)

2e(t)eR(t) = v
∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t)ãRσ̃R

· g(t− ∆t)g(t− ∆tR)u(t− ∆t)u(t− ∆tR) d∆t. (5.47)

It is known from equations (5.21) to (5.23), that

u(t− ∆tR)
2 =

C2

2
(5.48)

u(t− ∆tR)u(t− ∆t) =
C2

2
cos

(
2πγ [∆t− ∆tR] ·

[
t− tϕ1

]
− φ̃(∆t)

)
. (5.49)

Using t = ∆ν
γ , the Fourier transformations of eR(∆ν)2 and 2e(∆ν)eR(∆ν) are

F
(
eR(∆ν)2) = C2

2
ã2

Rσ̃2
Rγ2

(
G(γτν)e−i2πγτν∆tR ∗τν G(γτν)e−i2πγτν∆tR

)
(tν) (5.50)

F (2e(∆ν)eR(∆ν))

= C2 v
4

∫ ∞

−∞
s̃(∆t)ã(∆t)σ̃(∆t)ãRσ̃R

· γ2

(
G(γτν)e−i2πγτν∆t ∗τν G(γτν)e−i2πγτν∆tR

∗τν

[
δ (τν + [∆t− ∆tR]) + δ (τν − [∆t− ∆tR])

]
e
−i2πτν

[
γtϕ1+

φ̃(∆t)
2π[∆t−∆tR]

])
(tν) d∆t,

(5.51)

where ∗τν denotes a convolution over τν. Obviously, the accordance of these formulas
with the formulas (5.21) to (5.23) will be limited by the filtering kernel

G f ilt(tν) = γ2
(

G(γτν)e−i2πγτν∆t ∗τν G(γτν)e−i2πγτν∆tR
)
(tν). (5.52)

In an ideal case, G f ilt(tν) has no effect meaning

G f ilt(tν)
!
= δ(tν). (5.53)

For an exact calculation of this filtering kernel, G(γτν) = |G(γτν)|eiϕ(γτν) needs to be
known. However only the spectral power shape |G(γτν)|2 is known for most laser
diodes. The missing phase information ϕ(γτν) is subject to various influences, includ-
ing the working mechanism of the laser, dispersion effects in the fiber and temporal
fluctuations. A simplified analysis, fitting the setup of this work (i.e. small γ, small
time difference |∆t − ∆tR| and reflections with comparable orders of magnitude), is
presented in the following.
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Due to the symmetry properties of the Fourier transformation, ϕ(−γτν) = −ϕ(γτν)

and |G(γτν)| = |G(−γτν)| must hold. For easier calculations, G(γτν) is scaled such
that

∫ ∞
−∞ |G(γtν)|2 dγtν = 1 is fulfilled. Therefore

√
δ(γtν = 0) is added as multipli-

cation for each kernel G(γτν) in the following formulas (compare to equation (5.41)).
Consequentially the filtering kernel according to equation (5.52) can be expressed as

G f ilt(tν) = δ(tν = 0)e−i2πγtν∆tR

∫ ∞

−∞
|G(ν)||G(ν− γtν)|e−i2πν[∆t−∆tR]ei∆ϕν(tν) dν, (5.54)

with

δ(tν = 0) = γδ(γtν = 0) (5.55)

ν = γτν (5.56)

∆ϕν(tν) = ϕ(ν)− ϕ(ν− γtν). (5.57)

The phase difference between two frequencies ν and ν′ with frequency difference γtν is
denoted by ∆ϕν(tν) (see equation (5.57)). The emission of frequencies is assumed to be
a random process and the phase of the emitted frequencies is assumed to be uniformly
distributed (i.e. the emission of a frequency ν or ν′ starts at a random moment in time).
Therefore the phase difference of the frequencies ν and ν′ is assumed to be random
based on a uniform distribution

∆ϕν(tν) = U (−π, π) (5.58)

with tν > 0. Alternatively ∆ϕν=γτν(tν) can be sampled over τν yielding

∆ϕτν(tν) = U (−π, π). (5.59)

In this case

∫ τ
(max)
ν

τ
(min)
ν

ei∆ϕτν (tν) dτν = 0, (5.60)

holds, because the integral is proportional to the mean over an endless amount of
samples represented by different times τν.

The integral of equation (5.54) is transformed to

Gintegral(tν) = γ
∫ ∞

−∞
|G(γτν)||G(γτν − γtν)|e−i2πγτν[∆t−∆tR]ei∆ϕτν (tν) dτν, (5.61)

using equation (5.56). If |∆t − ∆tR| � ∂τν ∆ϕτν (tν)
2πγ , which is either fulfilled for small

|∆t − ∆tR| or small γ, |G(γτν)||G(γτν − γtν)|e−i2πγτν[∆t−∆tR] can be considered to be
slowly varying over τν compared to ei∆ϕτν (tν). Accordingly, the integral can be approx-
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imated by a sum of integral sections

Gintegral(tν) ≈ γ ∑
i∈Z

|G(γτν,i)||G(γτν,i − γtν)|e−i2πγτν,i [∆t−∆tR]
∫ τ

(max)
ν,i

τ
(min)
ν,i

ei∆ϕτν (tν) dτν.

(5.62)

Based on equation (5.60), this leads to

Gintegral(tν) ≈ 0, (5.63)

if tν > 0.

Plugging this result into equation (5.54) yields

G f ilt(tν) =

δ(tν = 0)
∫ ∞
−∞ |G(ν)|2e−i2πν[∆t−∆tR] dν, tν = 0

0, tν 6= 0
(5.64)

= δ(tν)
∫ ∞

−∞
|G(ν)|2e−i2πν[∆t−∆tR] dν. (5.65)

The reason for the shapes |G(ν)| are broadening mechanism. Equivalent to section
4.2, the broadening leads to a Lorentzian or Gaussian power spectrum |G(ν)|2. Thus
exemplary shapes for |G(ν)|2 with the FWHM Bandwidth ν∆ are

|G(ν)|2 =
2

πν∆

1 + 4 ν2

ν2
∆

Lorentzian (5.66)

|G(ν)|2 =

√
ln(16)
πν2

∆
e
− ln(16) ν2

ν2
∆ Gaussian, (5.67)

where the functions have been normed such that
∫ ∞
−∞ |G(ν)|2 dν = 1. The correspond-

ing filter functions are

G f ilt(tν) = e−πν∆|∆t−∆tR| · δ(tν) Lorentzian (5.68)

G f ilt(tν) = e−
π2ν2

∆ |∆t−∆tR |2

ln(16) · δ(tν) Gaussian. (5.69)

Another more complex approach for a filter kernel analysis of a (Lorentzian) laser
source is based on stationary Gaussian phase noise in time domain instead of uniform
phase noise in frequency domain. Additionally, instead of assuming that e(t)� eR(t)
and either γ or the time difference |∆t− ∆tR| is small, the simplifying assumption of
having only a single reflectivity besides the reference reflectivity is used with the focus
on scattering measurements under the influence of a strong Fresnel reflection. The
results are presented in [Ven93] and although the calculations are based on different
assumptions, the results are identical to the formulas derived in this work – at least
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for either small time shifts τ0 = |∆t−∆tR| ≤ 1
πν∆

or small frequency slopes γ. In these
cases, the transfer function of the measurement system and the sweep range are the
limiting factors for spatial accuracy as a Dirac function has no filtering effect on the
response.

However, the filtering kernels will decrease the signal strength with an increasing time
difference |∆t− ∆tR|. A way to handle this decrease is the definition a coherence time
tc, after which the signal has decreased to 1

e of its ideal strength. A Lorentzian source
is assumed in the following as worst case estimation, because Lorentzian laser sources
have a stronger impact on the response strength compared to Gaussian laser sources
(see equations (5.68) and (5.69)). Based on equation 5.68, this leads to

tc =
1

πν∆
. (5.70)

The according reflectometry coherence length xcoherence, i.e. the position difference be-
tween reference and fiber reflection that causes a time shift tc, is

xcoherence =
v
2

tc. (5.71)

The maximum position difference to be measured should fulfill

max (L− R, R) ≤ xcoherence ≈
v

2πν∆
. (5.72)

Greater position differences are possible, but yield a decreased SNR due to the atten-
uation of the signal (e.g. as in [Gif07]).

Conclusion

Four different types of scattering or reflections have been mentioned. Raman, Bril-
louin and Rayleigh scattering as well as Fresnel reflections. In the following the appli-
cability of each reflection type for C-OFDR with respect to the reachable resolution is
discussed.

Raman scattering has a bandwidth of about ν∆ ≥ 100 GHz in silicon [Har70]. Brillouin
scattering shows a bandwidth of about ν∆ ≥ 100 MHz in optical fibers [Par97]. Thus
the best case length based on these scatterings can be accomplished using Brillouin
scattering

max (L− R, R)Brillouin ≤
v

2πν∆
≤ 0.34 m, (5.73)

using the refractive index n ≈ 1.5. This length constraint might suffice in some cases.
However, Brillouin scattering introduces an additional strain dependent frequency
shift, that has to be compensated in order to measure Brillouin scattering with C-
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OFDR techniques. Such a compensation could be done by frequency shifting the refer-
ence reflection using an acousto-optic modulator (similar to Self-Heterodyne Linewidth
Measurements [Oko80]). However, a modulator introduces additional bandwidths, cir-
cuitry and thus limitations and might even destroy the laser coherence. Addition-
ally, the needed frequency shift is not exactly known and subject to temperature and
strain effects. Another possible way would be to increase γ such that the Brillouin
frequency shift occurs as simple position shift, since the frequency changes along the
fiber according to the sweep speed γ and the propagation speed of the light. How-
ever, the maximum measurable distance is strongly limited due to the bandwidth of
Brillouin scattering and γ would need to be unreasonable large in order to shift the
Brillouin scattering to a measurable distance. For these reasons, Raman or Brillouin
measuring do not seem to be reasonable using C-OFDR. The last remaining reflection
types are Rayleigh scatterings (parasitic due to manufacturing) or intentional reflec-
tions not shifting the frequency, where intentional reflections yield higher signals and
thus higher SNRs. This is one reason why this work focuses on fiber Bragg gratings
(i.e. user induced reflections).

A laser with bandwidth ν∆ ≈ 100 kHz was used, leading to a coherence length limita-
tion of

max (L− R, R) ≤ 300 m. (5.74)

Accordingly the length of this system will be limited by the stepsize s∆v and not by
the laser bandwidth. The upper limit for the fiber length is therefore about 0.4 m for
s∆v ≈ 125 GHz (corresponding 1 pm at 1550 nm) and the attenuation caused by the
laser coherence is negligible.

5.3.3 Reflectivity Value Based Measurement

A possible measurement variable is the amount of reflected power at a position x (or
likewise the reflectivity value). Yet the reflectivity value is a scale variant measurement
variable. Therefore a proper normalization measure must be found.

The fraction σ(x) · ε of light scattered between position x and x + ε can be computed
using the assumption that the attenuation a(x) in the fiber is only caused by reflections
or scatterings (i.e. no light is absorbed). If ε is assumed to be small, the scattered
fraction is

σ(x)ε =

attenuation during
backpropagation︷︸︸︷

a(x)

√
1− a(x + ε)2

a(x)2︸ ︷︷ ︸
transmitted power at x

=
√

a(x)2 − a(x + ε)2 ε→0
=

√
− d

dx
a(x)2ε. (5.75)
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This formula leads to the differential equation

a(x)σ(x) = a(x)

√
−2a(x)a′(x)

ε
. (5.76)

Assuming a(x)σ(x) as known function and resolving for a(x) yields

a(x) = 4

√
a(0)4 − 2ε

∫ x

0
a(x̃)2σ(x̃)2 dx̃. (5.77)

ε can be replaced if some value a(L) is known:

ε =
a(0)4 − a(L)4

2
∫ L

0 a(x̃)2σ(x̃)2 dx̃
(5.78)

a(x) = 4

√√√√a(0)4 −
∫ x

0 a(x̃)2σ(x̃)2 dx̃∫ L
0 a(x̃)2σ(x̃)2 dx̃

[a(0)4 − a(L)4]. (5.79)

Two interesting extreme cases exist

a(x) ≈


a(0) a(L > x) ≈ a(0)

a(0) 4

√
1−

∫ x
0 a(x̃)2σ(x̃)2 dx̃∫ L
0 a(x̃)2σ(x̃)2 dx̃

a(L) ≈ 0
. (5.80)

Therefore, a scale invariant measurement variable depending on the amount of re-
flected power can be developed for the latter case. Although the attenuation a(x) in-
cludes all reflections until position x, this dependence can be removed by solving the
Beer-Lambert-Law a(x)2 = e−

∫ x
0 α(x) for the attenuation coefficient α(x) [Fan12] [Eic81].

Note that a(0) = 1, according to the Beer-Lambert-Law. However, in the scope of this
work, the assumption of the first case is fulfilled as the fiber is rather short. Accord-
ingly, a(x) ≈ a(0) = 1 is assumed in the following and another method to get a scale
invariant measurement variable is derived.

Using equation (5.34) and 2a(R)σ(R)� ãRσ̃R
∆x leads to

∣∣∣∣IR

(
±2
|x− R|

v

)∣∣∣∣ ∝ C2 v
4

ãRσ̃R ·


ãRσ̃R
∆x 0 = |x− R|

a(x)σ(x) |x− R| > min (R, |L− R|)
. (5.81)

Consequentially, the measurement can be normalized by∣∣∣∣∣∣
IR

(
±2 |x−R|

v

)
IR (0)

∣∣∣∣∣∣ ≈ a(x)σ(x)
ãRσ̃R

∆x ≈ σ(x)
ãRσ̃R

∆x for |x− R| > min (R, |L− R|) . (5.82)

This normalization depends on the stability of the reference reflection ãRσ̃R, which is
why a stable reference reflection must be ensured. The reflectivity σ(x) is independent
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of previous reflections in case of a constant a(x) ≈ 1 and is directly proportional to the
reflected signal at position x (compare to equation (5.75)).

5.3.4 Position Based Measurement

An interesting feature for measuring purposes is the position of the reflectivities. Po-
sitions have the advantage of being scale invariant. However, position changes due
to temperature or strain are very small compared to the absolute position and high
resolutions are necessary to track them. If the resolution is too low, position changes
will show up as changes in the magnitude of the reflection and its respective phase
shift rather than a spatial position change. The reflection magnitude is scale variant
and subject to other influences, phase values are periodic and therefore ambiguous.
A method to overcome these disadvantages is combining several phase measures in a
certain region with the cost of a decreased spatial accuracy. The most straightforward
way to combine different phase values at different positions with different weights is a
superposition of waves each having a different phase shift and amplitude. In complex
representation the amplitude of the superposition of waves with frequency ∆ν can be
written as

P(∆ν) =

∣∣∣∣∣
∫ tνmax

tνmin

IR(tν)ei2πtν∆ν dtν

∣∣∣∣∣ , (5.83)

where IR(tν) incorporates the phase shift and amplitude caused by reflections and
2πtν∆ν is the phase shift caused by the respective position. A short introduction in
complex wave representation and its benefits for amplitude calculation can be found
in [Sir93, p. 9f]. This method is for example used for interferometers, where the com-
bination of specially chosen phase values can lead to a favored frequency having the
highest response of all frequencies. If the reflections in the fiber are chosen such that
P(∆ν) exhibits a favored frequency ∆ν, this frequency would be a good and ideally
scale invariant measurement variable for position changes in the fiber.

In the following, it is shown that this superposition is proportional to the spectral
response of a certain fiber section. The response amplitude of a fiber section with
respect to a certain frequency ν and a unity input amplitude C = 1 is (similar to
equation (5.17) for γ = 0)

|e(ν)| = |e(ν)∗| =
∣∣∣∣∫ xmax

xmin

a(x)σ(x)ei2πν 2x
v −iφ(x) dx

∣∣∣∣ , (5.84)

where 2πν 2x
v models the time delay due to the position x and φ(x) the phase shift

caused by the reflection at position x. Assuming x > 2R, 2a(R)σ(R) � ãRσ̃R
∆x as well

as γ
[
∆tR + x−R

v

]
≈ 0 (which is especially true for short fibers), it is known from equa-
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tions (5.34) and (5.82) that

a(x)σ(x) ≈ ãRσ̃R

∆x

∣∣IR
(
2 x−R

v

)∣∣
IR (0)

≈ ãRσ̃R

∆x
IR
(
2 x−R

v

)
IR (0)

e−i4π x−R
v ν0+iφ(x). (5.85)

Combining the above equations yields

|e(ν)| ≈
∣∣∣∣∣
∫ xmax

xmin

ãRσ̃R

∆x
IR
(
2 x−R

v

)
IR (0)

ei2π[−2 x−R
v ν0+2 x−R

v ν+2 R
v ν] dx

∣∣∣∣∣ (5.86)

=

∣∣∣∣∣
∫ xmax

xmin

ãRσ̃R

∆x
IR
(
2 x−R

v

)
IR (0)

ei2π2 x−R
v [ν−ν0] dx

∣∣∣∣∣ (5.87)

= ∆νmax
ãRσ̃R

IR (0)

∣∣∣∣∣
∫ 2 xmax−R

v

2 xmin−R
v

IR (tν) ei2πtν[ν−ν0] dtν

∣∣∣∣∣ . (5.88)

The last formula is proportional to the calculation of P(∆ν). The integral corresponds
to an inverse Fourier transformation of IR (tν) in a window from tνmin = 2 xmin−R

v to
tνmax = 2 xmax−R

v .

Summing up, the relationship between P(ν− ν0), |e(ν)| and IR (tν) is

P(ν− ν0) ∝ |e(ν)| ≈ ∆νmax
ãRσ̃R

IR (0)

∣∣∣F−1(srange IR)(ν− ν0)
∣∣∣ , (5.89)

where srange(tν) is a rectangular window from tνmin = 2 xmin−R
v to tνmax = 2 xmax−R

v and
xmin must fulfill the condition xmin > 2R. Therefore the spectral responses of single
fiber sections can be calculated by an inverse Fourier transformation of this section.

The use for measurement can be enhanced if the reflectivities in the fiber are chosen to
develop high peak responses – for example if the reflectivities form a Fiber Bragg Grat-
ing. In this case the result of the inverse Fourier transformation will show peaks (like
in case of interferometer responses), where the peak position will be influenced by the
reflection positions. Accordingly, the scale invariant measurement variable based on
the reflection positions is

νpeak = arg max
ν

∣∣∣F−1(srange IR)(ν− ν0)
∣∣∣ . (5.90)

[Chi01] and [Yük11] used this approach to determine the distributed spectral responses
of Fiber Bragg Gratings for measuring strain or temperatures.

Due to the advantages of Fiber Bragg Gratings for sensing purposes, it is assumed in
the following that the reflectivities in the fiber form Fiber Bragg Gratings.
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5.3.5 Fitting Functions

Fiber Bragg gratings change their reflection wavelength proportional to the effective
refractive index ne f f and the grating length L

c
νpeak(T)

= λpeak(T) ∝ Lne f f . (5.91)

ne f f is thereby defined as the average effective refractive index ne f f =
ne f f ,high+ne f f ,low

2

[Erd97], where ne f f ,high and ne f f ,low are the effective refractive indices of the grating
sections. According to manufacturer technical informations, e.g. [SNA08], the refrac-
tive indices of optical fibers show a positive polynomial dependency to temperature
with a degree of three. Lengths are known to have a positive affine temperature be-
havior for most materials [Lid00]. Just like in chapter 4, it is assumed that the small
temperature range of only 40 K allows an affine approximation of Lne f f . This assump-
tion is also justified by the measurements shown in [Fer00] suggesting an affine tem-
perature dependency of the Bragg reflection wavelength.

The corresponding Bragg peak reflection power according to [Erd97] for a uniform
fiber grating with constant effective index perturbation (i.e. a rectangular apodization)
of length L is

|e(νpeak)|2 = tanh2
(

πνpeak

2c
L∆ne f f

)
, (5.92)

where c denotes the speed of light and ∆ne f f the difference of the induced effective
index perturbation ∆ne f f = ne f f ,high − ne f f ,low. Using equation (5.89) leads to

L∆ne f f ≈
2λpeak

π
artanh

(
∆νmax

ãRσ̃R

IR (0)

∣∣∣F−1(srange IR)(νpeak − ν0)
∣∣∣) . (5.93)

As ãRσ̃R must be assumed to be unknown, this function would require a nonlinear fit-
ting in order to connect the temperature dependency of L∆ne f f with the measurement∣∣F−1(srange IR)(ν− ν0)

∣∣. However in case of a weak grating L∆ne f f �
2λpeak

π (i.e. the
result of artanh(·) is � 1), artanh(·) can be replaced with a simple proportionality.
Additionally, assuming ãRσ̃R is constant yields∣∣F−1(srange IR)(νpeak − ν0)

∣∣
IR (0)

∝
L∆ne f f

λpeak
∝

∆ne f f

ne f f
. (5.94)

Note that this equation is directly influenced by the scale of IR(tν)
IR(0)

and therefore, ac-
cording to equation (5.82), by the reflection values σ(x) in the range of srange. Thus,
this measurement expands the single position measurement σ(x) to a measurement
of σ(x) in a range xmin to xmax. However, measurements performed in [Guo06] show
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no temperature dependency of the intensity |e(νpeak)|, yet this result will be rechecked
and evaluated in section 5.3.6. Just like for the reflection wavelength, it is assumed
that an affine function yields satisfying accuracies for the fitting of the rational func-
tion ∆ne f f

ne f f
due to the small temperature range of 40 K .

To sum up, the following relations are used for the peak frequency and the reflectivity
value

|enorm(ν)| =
∣∣F−1(srange IR)(ν− ν0)

∣∣
IR (0)

(5.95)

νpeak = arg max
ν
|enorm(ν)| (5.96)

c
νpeak(T)

≈
(

1 T
)( C f req

CT, f req

)
(5.97)

|enorm(νpeak)| ≈
(

1 T
)( Cre f l

CT,re f l

)
. (5.98)

These fitting functions are targeted at uniform fiber Bragg gratings with rectangular
apodization as sensing reflectivities. They generate two equations based on the same
region xmin to xmax rather than a single position x. The fact that both equations are
based on the same region is important for a proper combination of both equations for
compensation applications (which is one reason why the fitting is based on |enorm(ν)|
instead of σ(x)).

As these fitting functions are entirely targeted at fiber Bragg responses, one might
wonder if (besides peak wavelength and reflectivity) the linewidth of the fiber Bragg
spectrum is usable for sensing. As reflectometry techniques need weak gratings in
order to reduce attenuation at longer distance sensing points, the linewidth of the
responses is (according to [Erd97]) ∆λ ≈ 2

N λpeak, where N is the amount of grating
periods. Therefore the linewidth does not add any additional information and is more
difficult to measure than the peak wavelength λpeak. In case of strong gratings, the

linewidth can be calculated by ∆λ
λpeak

≈ ∆ne f f
ne f f

and shows the same dependency as the
reflection intensity |enorm(ν)| for weak gratings, which is analyzed in the following.

5.3.6 Experimental Results

For the coherent OFDR approach, an external cavity laser was tuned from νmax =

193.64 THz to νmin = 193.45 THz (1548.2 nm to 1549.7 nm) leading to an expected spa-
tial accuracy of roughly v

2(νmax−νmin)
≈ 0.5 mm (equation (5.35)). The reference reflec-

tion was placed relatively near to the coupler, thus the maximal fiber length was about
L ≤ 0.4 m. The refractive index of the fiber was thereby assumed to be n ≈ 1.5.
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The interferometer was designed with a peak distance of s∆ν = 125 MHz (about 1 pm
at 1550 nm). The peaks are used to mark the correct sampling points for the measure-
ment photodiode response in order to achieve an almost constant stepsize s∆ν. To be
able to have comparable measurements over the exact same frequency range, a wave-
length reference based on a cyanide gas cell was used in order to initialize and stop
the measurement. The measured reflection power was normalized with a reference
photodiode measuring the current output power of the laser. The schematic of this
setup was already introduced in figure 5.2.

The sweep responses of the interferometer, the reference wavelength and the refer-
ence photodiode were measured along with the sweep response of the fiber from the
measurement photodiode. The correct sampling, start and stop positions were in-
terpolated in software by detecting the corresponding peak positions in the response
of the interferometer and the wavelength reference respectively, and by interpolating
the fiber response at those time indices. The normalization of the signal was done in
software, as well.

Four fiber Bragg gratings were implemented in the fiber under test in order to get
peaks in the spectral response that are suitable for position based measurements. Each
FBG has a reflection wavelength of about 193.5 THz (1549.3 nm), a length of about
10 mm and a grating period in the order of 0.5 µm (thus, the grating itself is not vis-
ible in the measurement, but the overall structure is). The gratings were written to a
reflectivity of 1− 2% to comply with the assumption of negligible attenuation along
the fiber (equation (5.82)).

One measured example for iR(∆ν) is shown in figure 5.4. The corresponding Fourier
transformation, i.e. σ(x), is shown in figure 5.5. Examples for the normalized spectral
response |enorm(∆ν)| of selected fiber sections are shown in figure 5.6. The frequency
shift ∆ν expresses the difference ∆ν = ν− νmin between the current frequency and the
smallest used frequency.

The temperatures were tuned by fixing the fiber under test onto a TEC device, such
that only the two fiber Bragg gratings in the mid section had contact to the TEC, and
applying temperatures in the range from 283 K to 323 K. The measurements were fitted
with affine functions and repeatedly evaluated over 7 mW and 8 mW laser emission
powers in order to test the robustness. All peak measurements have been interpolated
using quadratic interpolation.

The result for the position based measurement is shown in figure 5.7, the results for the
reflectivity value based measurement in figure 5.8. Using an affine function approxi-
mates the behavior of the peak wavelength over temperature with sufficient accuracy
and provides an accurate way to determine the temperature. The temperature sensi-
tivity is CT, f req = 9.4 pm

K for FBG #2 and CT, f req = 9.8 pm
K for FBG #3. The reflectivity

value, however, does not show a significant temperature behavior. This is why the
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Figure 5.4: An example for the measurement of iR(∆ν) relative to the reference mea-
surement iRe f (∆ν), i.e. the intensity directly measured by the measurement photo-
diode normalized by the reference photodiode readings. The laser power was 7 mW
and the TEC temperature 293 K. The fiber had four FBGs, each having a reflection
wavelength of about 193.5 THz.
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Figure 5.5: An example for a measurement of σ(x) relative to ãRσ̃R
∆x , i.e. the absolute

value of the fast Fourier transformation for iR(∆ν) corresponding to figure 5.4 normal-
ized by IR(0) (see equation (5.82)). The four fiber Bragg Gratings are clearly visible
(broad peaks), as well as one Fresnel reflection (narrow peak) caused by bad splicing.
Also visible are three weak peaks near the origin. Those peaks are caused by the inter-
ference between the Fiber Bragg Gratings (i.e. one Fiber Bragg Grating has the effect
of a reference reflection).
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Figure 5.6: Examples for a measurement of |enorm(∆ν)|, i.e. the sectionwise inverse fast
Fourier transformation for the five strongest peaks in figure 5.5 (see equation (5.89)
and (5.95)). Note that figure 5.5 only shows an absolute value. The inverse Fourier
transformation additionally uses the complex phase not shown in figure 5.5. The or-
dering represents the distance, thus the first FBG is the nearest to the reference reflec-
tion. The advantage of having fiber Bragg gratings for tracking changes of the peak
frequency νpeak is obvious as Fresnel reflections have no well defined peak. The repe-
tition of the response in the high frequency shift region is due to the discrete Fourier
transformation.

reflectivity value can be assumed to be constant over temperature making it unusable
for temperature sensing.

Figure 5.9 shows the accuracy of the peak wavelength approach (i.e. figure 5.7) over
the different laser powers. The results are stable over the laser powers and an accuracy
of about±0.35 K (standard deviation) can be reached. This is in good accordance with
the expected accuracy of the setup – i.e. the accuracy of the applied temperature by
the TEC.

High precision distributed temperature sensing can be realized with distributed fiber
Bragg gratings by using the wavelength shift of the gratings. However the reflectivity
value seems to be independent of temperature (which was confirmed in [Guo06]). But
the reflectivity value might be solely strain dependent, in which case no temperature
compensation is necessary for proper strain measurement. Unfortunately this is im-
probable, as properties induced by strain changes are mostly results of the changed
elongation of the fiber under test. Because temperature changes the elongation as well
(amongst others), a temperature dependence must exist if a strain dependence exists.
If there is no temperature dependence, then there is most likely no strain dependence.
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Figure 5.7: The resulting behavior of c
νpeak

over temperature under the influence of
different laser powers can be seen for all fiber Bragg gratings along with the corre-
sponding fitting function. The second and third Fiber Bragg Grating was used for
temperature tracking (compare to figure 5.6). The coefficients for the affine fitting
function were C f req = 1547 nm and CT, f req = 9.4 pm

K for FBG #2 and C f req = 1546 nm
and CT, f req = 9.8 pm

K for FBG #3, respectively.

Summing up, although this approach can be used to gain two equation systems, only
one equation is usable for temperature or strain sensing. Under these circumstances
simultaneous measurement of temperature and strain is impossible in the exact same
location.
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Figure 5.8: The resulting behavior of |enorm(νpeak)| over temperature under the in-
fluence of different laser powers can be seen along with the corresponding fitting
function. The second and third Fiber Bragg Grating was used for temperature track-
ing (compare to figure 5.6). The coefficients for the affine fitting function were
Cre f l = 399·10−4

∆νmax
and CT,re f l = 0.51·10−4

∆νmaxK for FBG #2 as well as Cre f l = 344·10−4

∆νmax
and

CT,re f l =
0.83·10−4

∆νmaxK for FBG #3. Obviously, there is almost no difference in the response
between the temperated FBGs #2 or #3 and the non-temperated FBGs #1 or #4. For this
reason, the response is assumed to be independent of temperature and the differing
responses are likely to have another origin (possibly the increasing temperature of the
measuring circuit).
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6 Conclusion

Different approaches for fiber optic temperature sensing with possible strain measure-
ment have been analyzed for short fiber segments: using the fluorescence lifetimes of
doped fibers, tracking the lowpass effect of the emission spectrum of doped fibers and
determining reflection positions and magnitudes based on distributed Fiber Bragg
Gratings.

The fluorescence lifetime proved to be significantly sensitive to noise limiting the ob-
tainable temperature accuracies to over±15 K. The magnitude of reflections exhibited
temperature constant behavior making simultaneous temperature and strain measure-
ment using reflection magnitudes and positions impossible. Doped fiber approaches
based on the emission spectrum instead of the lifetime proved to be a robust and strain
independent possibility for temperature measurement. However, the temperature ac-
curacy obtained is rather low (max. ±2 K deviation in case of Ytterbium) and limits
the accuracy of compensation. Yet, different dopings may show higher temperature
sensitivities, thus increasing the accuracy. Self heating due to the energy loss between
absorption and emission is a possible source for additional measurement errors.

Important relationships for the fluorescence lifetime have been derived, yielding the
most accurate model function of fluorescence decay to the author’s knowledge. Even
a dependence of the fluorescence lifetime to the current excitation power has been
shown.

Additionally, a connection between absorption, stimulated emission, spontaneous emis-
sion and the measured spectrum has been developed for a two level system based on
the fluorescence decay model found. The measured spectrum is thereby considered as
the steady state result of a dynamic system influenced by spontaneous emission, am-
plified stimulated emission, reabsorption, stimulated emission and absorption. The
result suggests that the measured spectrum is close to the absorption spectrum and
not to the emission spectrum – at least in case of Ytterbium and in the range of the
minor emission peak. A dependence of the spectrum to the excitation power has been
shown. However, this dependence is negligibly weak for high excitation powers. The
results emphasize the need to treat the measured spectrum as the steady state of a dy-
namic system rather than an approximated representation of internal absorption and
emission spectra.
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Finally, different reflectometry techniques have been presented for distributed reflec-
tion or scattering measurement including their limitations. The target application of
this work strictly restricts the usable reflectometry techniques to the coherent optical
domain reflectometry (C-OFDR), whose resolution and range are primarily limited by
the Fourier transformation and not by the laser properties. Brillouin and Raman scat-
tering effects have been shown to be unsuitable for C-OFDR based approaches. A way
to track reflectivity position changes with magnitudes lower than the reached resolu-
tion was presented. Actually spectral responses of spatially distributed Fiber Bragg
Gratings have been calculated using a single measurement.

Summing up the favored approach for temperature compensation is analyzing the
spectrum of excited doped fibers (using fluorescence intensity ratios to track lowpass
effects in the spectrum and/or spectral shifts to track Fourier domain phase changes
applied by the lowpass), where the optimal doping material is subject of further re-
search. If a dopant is used that is not accurately modeled by a two level system, special
care must be taken that the dopant possesses an operating point with excitation inde-
pendent spectral properties.
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